FSUDAQ_Qt6/SplitPoleAnalyzer.h
2023-06-23 13:50:21 -04:00

308 lines
8.7 KiB
C++

#ifndef SPLITPOLEANLAYZER_H
#define SPLITPOLEANLAYZER_H
/*********************************************
* This is online analyzer for Split-Pole at FSU
*
* It is a template for other analyzer.
*
* Any new analyzer add to added to FSUDAQ.cpp
* 1) add include header
* 2) in OpenAnalyzer(), change the new
*
* add the source file in FSUDAQ_Qt6.pro then compile
* >qmake6 FSUDAQ_Qt6.pro
* >make
*
* ******************************************/
#include "Analyser.h"
#include "Isotope.h"
namespace ChMap{
const short ScinR = 0;
const short ScinL = 1;
const short dFR = 9;
const short dFL = 8;
const short dBR = 10;
const short dBL = 11;
const short Cathode = 7;
const short AnodeF = 13;
const short AnodeB = 15;
};
const double c = 299.792458; // mm/ns
const double pi = M_PI;
const double deg2rad = pi/180.;
class SplitPoleHit{
public:
SplitPoleHit(){
target.SetIso(12, 6);
beam.SetIso(2,1);
recoil.SetIso(1,1);
Bfield = 0.76; // Tesla
angleDegree = 20; // degree
beamKE = 16; // MeV
heavyRecoil.SetIso(target.A + beam.A - recoil.A, target.Z + beam.Z - recoil.Z);
double Q = target.Mass + beam.Mass - recoil.Mass - heavyRecoil.Mass;
double haha1 = sqrt(beam.Mass + beamKE + recoil.Mass)/(recoil.Mass + heavyRecoil.Mass) / cos(angleDegree * deg2rad);
double haha2 = ( beamKE * ( heavyRecoil.Mass + beam.Mass) + heavyRecoil.Mass * Q) / (recoil.Mass + heavyRecoil.Mass);
double recoilKE = pow(haha1 + sqrt(haha1*haha1 + haha2), 2);
printf("Q value : %f \n", Q);
printf("proton enegry : %f \n", recoilKE);
double recoilP = sqrt( recoilKE* ( recoilKE + 2*recoil.Mass));
double rho = recoilP/(target.Z * Bfield * c); // in m
double haha = sqrt( recoil.Mass * beam.Mass * beamKE / recoilKE );
double k = haha * sin(angleDegree * deg2rad) / ( recoil.Mass + heavyRecoil.Mass - haha * cos(angleDegree * deg2rad));
const double SPS_DISPERSION = 1.96; // x-position/rho
const double SPS_MAGNIFICATION = 0.39; // in x-position
zOffset = -1000.0 * rho * k * SPS_DISPERSION * SPS_MAGNIFICATION;
printf("rho: %f m; z-offset: %f mm\n", rho, zOffset);
Clear();
}
unsigned int eSR; unsigned long long tSR;
unsigned int eSL; unsigned long long tSL;
unsigned int eFR; unsigned long long tFR;
unsigned int eFL; unsigned long long tFL;
unsigned int eBR; unsigned long long tBR;
unsigned int eBL; unsigned long long tBL;
unsigned int eCath; unsigned long long tCath;
unsigned int eAF; unsigned long long tAF;
unsigned int eAB; unsigned long long tAB;
float eSAvg;
float x1, x2, theta;
float xAvg;
void Clear(){
eSR = 0; tSR = 0;
eSL = 0; tSL = 0;
eFR = 0; tFR = 0;
eFL = 0; tFL = 0;
eBR = 0; tBR = 0;
eBL = 0; tBL = 0;
eCath = 0; tCath = 0;
eAF = 0; tAF = 0;
eAB = 0; tAB = 0;
eSAvg = -1;
x1 = NAN;
x2 = NAN;
theta = NAN;
xAvg = NAN;
}
void CalData(){
if( eSR > 0 && eSL > 0 ) eSAvg = (eSR + eSL)/2;
if( eSR > 0 && eSL == 0 ) eSAvg = eSR;
if( eSR == 0 && eSL > 0 ) eSAvg = eSL;
if( tFR > 0 && tFL > 0 ) x1 = (tFL - tFR)/2./2.1;
if( tBR > 0 && tBL > 0 ) x2 = (tBL - tBR)/2./1.98;
if( !std::isnan(x1) && !std::isnan(x2)) {
if( x2 > x1 ) {
theta = atan((x2-x1)/36.0);
}else if(x2 < x1){
theta = pi + atan((x2-x1)/36.0);
}else{
theta = pi * 0.5;
}
double w1 = 0.5 - zOffset/4.28625;
xAvg = w1 * x1 + (1-w1)* x2;
}
}
private:
Isotope target;
Isotope beam;
Isotope recoil;
Isotope heavyRecoil;
double Bfield;
double angleDegree;
double beamKE;
double zOffset;
};
//^===========================================
//^===========================================
class SplitPole : public Analyzer{
Q_OBJECT
public:
SplitPole(Digitizer ** digi, unsigned int nDigi, QMainWindow * parent = nullptr): Analyzer(digi, nDigi, parent){
SetUpdateTimeInSec(1.0);
RedefineEventBuilder({0}); // only build for the 0-th digitizer, otherwise, it will build event accross all digitizers
tick2ns = digi[0]->GetTick2ns();
SetBackwardBuild(false, 100); // using normal building (acceding in time) or backward building, int the case of backward building, default events to be build is 100.
evtbder = GetEventBuilder();
evtbder->SetTimeWindow(500);
//========== use the influx from the Analyzer
influx = new InfluxDB("https://fsunuc.physics.fsu.edu/influx/");
dataBaseName = "testing";
SetUpCanvas();
hit.Clear();
}
/// ~SplitPole(); // comment out = defalt destructor
void SetUpCanvas();
public slots:
void UpdateHistograms();
private:
MultiBuilder *evtbder;
// declaie histograms
Histogram2D * hPID;
Histogram1D * h1;
Histogram1D * h1g;
Histogram1D * hMulti;
int tick2ns;
SplitPoleHit hit;
};
inline void SplitPole::SetUpCanvas(){
setGeometry(0, 0, 1600, 1000);
// the "this" make the histogram a child of the SplitPole class. When SplitPole destory, all childs destory as well.
hPID = new Histogram2D("Split Pole PID", "Scin-L", "Anode-Font", 100, 0, 2000, 100, 0, 2000, this);
//layout is inheriatge from Analyzer
layout->addWidget(hPID, 0, 0, 2, 1);
h1 = new Histogram1D("Spectrum", "x", 100, 0, 2000, this);
h1->SetColor(Qt::darkGreen);
h1->AddDataList("Test", Qt::red); // add another histogram in h1, Max Data List is 10
layout->addWidget(h1, 0, 1);
hMulti = new Histogram1D("Multiplicity", "", 10, 0, 10, this);
layout->addWidget(hMulti, 1, 1);
h1g = new Histogram1D("Spectrum (gated)", "x", 100, 0, 2000, this);
layout->addWidget(h1g, 2, 0, 1, 2);
}
inline void SplitPole::UpdateHistograms(){
BuildEvents(); // call the event builder to build events
//============ Get events, and do analysis
long eventBuilt = evtbder->eventBuilt;
if( eventBuilt == 0 ) return;
//============ Get the cut list, if any
QList<QPolygonF> cutList = hPID->GetCutList();
const int nCut = cutList.count();
unsigned long long tMin[nCut] = {0xFFFFFFFFFFFFFFFF}, tMax[nCut] = {0};
unsigned int count[nCut]={0};
//============ Processing data and fill histograms
long eventIndex = evtbder->eventIndex;
long eventStart = eventIndex - eventBuilt + 1;
if(eventStart < 0 ) eventStart += MaxNEvent;
for( long i = eventStart ; i <= eventIndex; i ++ ){
std::vector<Hit> event = evtbder->events[i];
//printf("-------------- %ld\n", i);
hMulti->Fill((int) event.size());
//if( event.size() < 9 ) return;
if( event.size() == 0 ) return;
hit.Clear();
for( int k = 0; k < (int) event.size(); k++ ){
//event[k].Print();
if( event[k].ch == ChMap::ScinR ) {hit.eSR = event[k].energy; hit.tSR = event[k].timestamp;}
if( event[k].ch == ChMap::ScinL ) {hit.eSL = event[k].energy; hit.tSL = event[k].timestamp;}
if( event[k].ch == ChMap::dFR ) {hit.eFR = event[k].energy; hit.tFR = event[k].timestamp;}
if( event[k].ch == ChMap::dFL ) {hit.eFL = event[k].energy; hit.tFL = event[k].timestamp;}
if( event[k].ch == ChMap::dBR ) {hit.eBL = event[k].energy; hit.tBL = event[k].timestamp;}
if( event[k].ch == ChMap::dBL ) {hit.eBL = event[k].energy; hit.tBL = event[k].timestamp;}
if( event[k].ch == ChMap::Cathode ) {hit.eCath = event[k].energy; hit.tCath = event[k].timestamp;}
if( event[k].ch == ChMap::AnodeF ) {hit.eAF = event[k].energy; hit.tAF = event[k].timestamp;}
if( event[k].ch == ChMap::AnodeB ) {hit.eAB = event[k].energy; hit.tAB = event[k].timestamp;}
}
hit.CalData();
hPID->Fill(hit.eSL, hit.eSR); // x, y
h1->Fill(hit.eSL);
h1->Fill(hit.eSR, 1);
//check events inside any Graphical cut and extract the rate, using tSR only
for(int p = 0; p < cutList.count(); p++ ){
if( cutList[p].isEmpty() ) continue;
if( cutList[p].containsPoint(QPointF(hit.eSL, hit.eSR), Qt::OddEvenFill) ){
if( hit.tSR < tMin[p] ) tMin[p] = hit.tSR;
if( hit.tSR > tMax[p] ) tMax[p] = hit.tSR;
count[p] ++;
//printf(".... %d \n", count[p]);
if( p == 0 ) h1g->Fill(hit.eSR);
}
}
}
hPID->UpdatePlot();
h1->UpdatePlot();
hMulti->UpdatePlot();
h1g->UpdatePlot();
QList<QString> cutNameList = hPID->GetCutNameList();
for( int p = 0; p < cutList.count(); p ++){
if( cutList[p].isEmpty() ) continue;
double dT = (tMax[p]-tMin[p]) * tick2ns / 1e9; // tick to sec
double rate = count[p]*1.0/(dT);
//printf("%llu %llu, %f %d\n", tMin[p], tMax[p], dT, count[p]);
//printf("%10s | %d | %f Hz \n", cutNameList[p].toStdString().c_str(), count[p], rate);
influx->AddDataPoint("Cut,name=" + cutNameList[p].toStdString()+ " value=" + std::to_string(rate));
influx->WriteData(dataBaseName);
influx->ClearDataPointsBuffer();
}
}
#endif