FSUDAQ_Qt6/analyzers/SplitPoleAnalyzer.h

389 lines
13 KiB
C++

#ifndef SPLITPOLEANLAYZER_H
#define SPLITPOLEANLAYZER_H
/*********************************************
* This is online analyzer for Split-Pole at FSU
*
* It is a template for other analyzer.
*
* Any new analyzer add to added to FSUDAQ.cpp
* 1) add include header
* 2) in OpenAnalyzer(), change the new
*
* add the source file in FSUDAQ_Qt6.pro then compile
* >qmake6 FSUDAQ_Qt6.pro
* >make
*
* ******************************************/
#include "SplitPoleHit.h"
#include "Analyser.h"
//^===========================================
//^===========================================
class SplitPole : public Analyzer{
Q_OBJECT
public:
SplitPole(Digitizer ** digi, unsigned int nDigi, QMainWindow * parent = nullptr): Analyzer(digi, nDigi, parent){
SetUpdateTimeInSec(1.0);
RedefineEventBuilder({0}); // only build for the 0-th digitizer, otherwise, it will build event accross all digitizers
tick2ns = digi[0]->GetTick2ns();
SetBackwardBuild(false, 100); // using normal building (acceding in time) or backward building, int the case of backward building, default events to be build is 100.
evtbder = GetEventBuilder();
evtbder->SetTimeWindow(500);
//========== use the influx from the Analyzer
influx = new InfluxDB("https://fsunuc.physics.fsu.edu/influx/");
dataBaseName = "testing";
SetUpCanvas();
leTarget->setText("12C");
leBeam->setText("d");
leRecoil->setText("p");
sbBfield->setValue(0.76);
sbAngle->setValue(20);
sbEnergy->setValue(16);
hit.CalConstants(leTarget->text().toStdString(),
leBeam->text().toStdString(),
leRecoil->text().toStdString(), sbEnergy->value(), sbAngle->value());
hit.CalZoffset(sbBfield->value());
FillConstants();
hit.ClearData();
}
/// ~SplitPole(); // comment out = defalt destructor
void SetUpCanvas();
void FillConstants();
public slots:
void UpdateHistograms();
private:
MultiBuilder *evtbder;
// declaie histograms
Histogram2D * hPID;
Histogram1D * h1;
Histogram1D * h1g;
Histogram1D * hMulti;
int tick2ns;
SplitPoleHit hit;
RSpinBox * sbBfield;
QLineEdit * leTarget;
QLineEdit * leBeam;
QLineEdit * leRecoil;
RSpinBox * sbEnergy;
RSpinBox * sbAngle;
QCheckBox * runAnalyzer;
QLineEdit * leMassTablePath;
QLineEdit * leQValue;
QLineEdit * leGSRho;
QLineEdit * leZoffset;
RSpinBox * sbRhoOffset;
RSpinBox * sbRhoScale;
};
inline void SplitPole::FillConstants(){
leQValue->setText(QString::number(hit.GetQ0()));
leGSRho->setText(QString::number(hit.GetRho0()*1000));
leZoffset->setText(QString::number(hit.GetZoffset()));
}
inline void SplitPole::SetUpCanvas(){
setGeometry(0, 0, 1600, 1000);
{//^====== magnet and reaction setting
QGroupBox * box = new QGroupBox("Configuration", this);
layout->addWidget(box, 0, 0);
QGridLayout * boxLayout = new QGridLayout(box);
boxLayout->setAlignment(Qt::AlignTop | Qt::AlignLeft);
box->setLayout(boxLayout);
QLabel * lbBfield = new QLabel("B-field [T] ", box);
lbBfield->setAlignment(Qt::AlignRight | Qt::AlignCenter);
boxLayout->addWidget(lbBfield, 0, 2);
sbBfield = new RSpinBox(box);
sbBfield->setDecimals(3);
sbBfield->setSingleStep(0.05);
boxLayout->addWidget(sbBfield, 0, 3);
QLabel * lbTarget = new QLabel("Target ", box);
lbTarget->setAlignment(Qt::AlignRight | Qt::AlignCenter);
boxLayout->addWidget(lbTarget, 0, 0);
leTarget = new QLineEdit(box);
boxLayout->addWidget(leTarget, 0, 1);
QLabel * lbBeam = new QLabel("Beam ", box);
lbBeam->setAlignment(Qt::AlignRight | Qt::AlignCenter);
boxLayout->addWidget(lbBeam, 1, 0);
leBeam = new QLineEdit(box);
boxLayout->addWidget(leBeam, 1, 1);
QLabel * lbRecoil = new QLabel("Recoil ", box);
lbRecoil->setAlignment(Qt::AlignRight | Qt::AlignCenter);
boxLayout->addWidget(lbRecoil, 2, 0);
leRecoil = new QLineEdit(box);
boxLayout->addWidget(leRecoil, 2, 1);
QLabel * lbEnergy = new QLabel("Beam Energy [MeV] ", box);
lbEnergy->setAlignment(Qt::AlignRight | Qt::AlignCenter);
boxLayout->addWidget(lbEnergy, 1, 2);
sbEnergy = new RSpinBox(box);
sbEnergy->setDecimals(3);
sbEnergy->setSingleStep(1.0);
boxLayout->addWidget(sbEnergy, 1, 3);
QLabel * lbAngle = new QLabel("SPS Angle [Deg] ", box);
lbAngle->setAlignment(Qt::AlignRight | Qt::AlignCenter);
boxLayout->addWidget(lbAngle, 2, 2);
sbAngle = new RSpinBox(box);
sbAngle->setDecimals(3);
sbAngle->setSingleStep(1.0);
boxLayout->addWidget(sbAngle, 2, 3);
boxLayout->setColumnStretch(0, 1);
boxLayout->setColumnStretch(1, 2);
boxLayout->setColumnStretch(2, 1);
boxLayout->setColumnStretch(3, 2);
connect(leTarget, &QLineEdit::returnPressed, this, [=](){
hit.CalConstants(leTarget->text().toStdString(),
leBeam->text().toStdString(),
leRecoil->text().toStdString(), sbAngle->value(), sbEnergy->value());
hit.CalZoffset(sbBfield->value());
FillConstants();
});
connect(leBeam, &QLineEdit::returnPressed, this, [=](){
hit.CalConstants(leTarget->text().toStdString(),
leBeam->text().toStdString(),
leRecoil->text().toStdString(), sbAngle->value(), sbEnergy->value());
hit.CalZoffset(sbBfield->value());
FillConstants();
});
connect(leRecoil, &QLineEdit::returnPressed, this, [=](){
hit.CalConstants(leTarget->text().toStdString(),
leBeam->text().toStdString(),
leRecoil->text().toStdString(), sbAngle->value(), sbEnergy->value());
hit.CalZoffset(sbBfield->value());
FillConstants();
});
connect(sbBfield, &RSpinBox::returnPressed, this, [=](){
hit.CalConstants(leTarget->text().toStdString(),
leBeam->text().toStdString(),
leRecoil->text().toStdString(), sbAngle->value(), sbEnergy->value());
hit.CalZoffset(sbBfield->value());
FillConstants();
});
connect(sbAngle, &RSpinBox::returnPressed, this, [=](){
hit.CalConstants(leTarget->text().toStdString(),
leBeam->text().toStdString(),
leRecoil->text().toStdString(), sbAngle->value(), sbEnergy->value());
hit.CalZoffset(sbBfield->value());
FillConstants();
});
connect(sbEnergy, &RSpinBox::returnPressed, this, [=](){
hit.CalConstants(leTarget->text().toStdString(),
leBeam->text().toStdString(),
leRecoil->text().toStdString(), sbAngle->value(), sbEnergy->value());
hit.CalZoffset(sbBfield->value());
FillConstants();
});
runAnalyzer = new QCheckBox("Run Analyzer", this);
boxLayout->addWidget(runAnalyzer, 4, 1);
QFrame *separator = new QFrame(box);
separator->setFrameShape(QFrame::HLine);
separator->setFrameShadow(QFrame::Sunken);
boxLayout->addWidget(separator, 5, 0, 1, 4);
QLabel * lbMassTablePath = new QLabel("Mass Table Path : ", box);
lbMassTablePath->setAlignment(Qt::AlignRight | Qt::AlignCenter);
boxLayout->addWidget(lbMassTablePath, 6, 0);
leMassTablePath = new QLineEdit(QString::fromStdString(massData),box);
leMassTablePath->setReadOnly(true);
boxLayout->addWidget(leMassTablePath, 6, 1, 1, 3);
QLabel * lbQValue = new QLabel("Q-Value [MeV] ", box);
lbQValue->setAlignment(Qt::AlignRight | Qt::AlignCenter);
boxLayout->addWidget(lbQValue, 7, 0);
leQValue = new QLineEdit(box);
leQValue->setReadOnly(true);
boxLayout->addWidget(leQValue, 7, 1);
QLabel * lbGDRho = new QLabel("G.S. Rho [mm] ", box);
lbGDRho->setAlignment(Qt::AlignRight | Qt::AlignCenter);
boxLayout->addWidget(lbGDRho, 7, 2);
leGSRho = new QLineEdit(box);
leGSRho->setReadOnly(true);
boxLayout->addWidget(leGSRho, 7, 3);
QLabel * lbZoffset = new QLabel("Z-offset [mm] ", box);
lbZoffset->setAlignment(Qt::AlignRight | Qt::AlignCenter);
boxLayout->addWidget(lbZoffset, 8, 0);
leZoffset = new QLineEdit(box);
leZoffset->setReadOnly(true);
boxLayout->addWidget(leZoffset, 8, 1);
QFrame *separator1 = new QFrame(box);
separator1->setFrameShape(QFrame::HLine);
separator1->setFrameShadow(QFrame::Sunken);
boxLayout->addWidget(separator1, 9, 0, 1, 4);
QLabel * lbRhoOffset = new QLabel("Rho-offset [mm] ", box);
lbRhoOffset->setAlignment(Qt::AlignRight | Qt::AlignCenter);
boxLayout->addWidget(lbRhoOffset, 10, 0);
sbRhoOffset = new RSpinBox(box);
sbRhoOffset->setDecimals(2);
sbRhoOffset->setSingleStep(1);
sbRhoOffset->setValue(0);
boxLayout->addWidget(sbRhoOffset, 10, 1);
QLabel * lbRhoScale = new QLabel("Rho-Scaling ", box);
lbRhoScale->setAlignment(Qt::AlignRight | Qt::AlignCenter);
boxLayout->addWidget(lbRhoScale, 10, 2);
sbRhoScale = new RSpinBox(box);
sbRhoScale->setDecimals(2);
sbRhoScale->setSingleStep(0.01);
sbRhoScale->setMinimum(0.5);
sbRhoScale->setMaximum(1.5);
sbRhoScale->setValue(1.0);
boxLayout->addWidget(sbRhoScale, 10, 3);
}
//============ histograms
hMulti = new Histogram1D("Multiplicity", "", 10, 0, 10, this);
layout->addWidget(hMulti, 0, 1);
// the "this" make the histogram a child of the SplitPole class. When SplitPole destory, all childs destory as well.
hPID = new Histogram2D("Split Pole PID", "Scin-L", "Anode-Font", 100, 0, 5000, 100, 0, 5000, this);
//layout is inheriatge from Analyzer
layout->addWidget(hPID, 1, 0, 2, 1);
h1 = new Histogram1D("Spectrum", "x", 300, 30, 70, this);
h1->SetColor(Qt::darkGreen);
h1->AddDataList("Test", Qt::red); // add another histogram in h1, Max Data List is 10
layout->addWidget(h1, 1, 1);
h1g = new Histogram1D("Spectrum (PID gated)", "Ex", 300, -2, 10, this);
layout->addWidget(h1g, 2, 1);
layout->setColumnStretch(0, 1);
layout->setColumnStretch(1, 1);
}
inline void SplitPole::UpdateHistograms(){
if( this->isVisible() == false ) return;
if( runAnalyzer->isChecked() == false ) return;
BuildEvents(); // call the event builder to build events
//============ Get events, and do analysis
long eventBuilt = evtbder->eventBuilt;
if( eventBuilt == 0 ) return;
//============ Get the cut list, if any
QList<QPolygonF> cutList = hPID->GetCutList();
const int nCut = cutList.count();
unsigned long long tMin[nCut] = {0xFFFFFFFFFFFFFFFF}, tMax[nCut] = {0};
unsigned int count[nCut]={0};
//============ Processing data and fill histograms
long eventIndex = evtbder->eventIndex;
long eventStart = eventIndex - eventBuilt + 1;
if(eventStart < 0 ) eventStart += MaxNEvent;
for( long i = eventStart ; i <= eventIndex; i ++ ){
std::vector<Hit> event = evtbder->events[i];
//printf("-------------- %ld\n", i);
hMulti->Fill((int) event.size());
//if( event.size() < 9 ) return;
if( event.size() == 0 ) return;
hit.ClearData();
for( int k = 0; k < (int) event.size(); k++ ){
//event[k].Print();
if( event[k].ch == SPS::ChMap::ScinR ) {hit.eSR = event[k].energy; hit.tSR = event[k].timestamp;}
if( event[k].ch == SPS::ChMap::ScinL ) {hit.eSL = event[k].energy; hit.tSL = event[k].timestamp;}
if( event[k].ch == SPS::ChMap::dFR ) {hit.eFR = event[k].energy; hit.tFR = event[k].timestamp;}
if( event[k].ch == SPS::ChMap::dFL ) {hit.eFL = event[k].energy; hit.tFL = event[k].timestamp;}
if( event[k].ch == SPS::ChMap::dBR ) {hit.eBL = event[k].energy; hit.tBL = event[k].timestamp;}
if( event[k].ch == SPS::ChMap::dBL ) {hit.eBL = event[k].energy; hit.tBL = event[k].timestamp;}
if( event[k].ch == SPS::ChMap::Cathode ) {hit.eCath = event[k].energy; hit.tCath = event[k].timestamp;}
if( event[k].ch == SPS::ChMap::AnodeF ) {hit.eAF = event[k].energy; hit.tAF = event[k].timestamp;}
if( event[k].ch == SPS::ChMap::AnodeB ) {hit.eAB = event[k].energy; hit.tAB = event[k].timestamp;}
}
hit.CalData();
hPID->Fill(hit.eSL, hit.eSR); // x, y
h1->Fill(hit.eSL);
h1->Fill(hit.eSR, 1);
//check events inside any Graphical cut and extract the rate, using tSR only
for(int p = 0; p < cutList.count(); p++ ){
if( cutList[p].isEmpty() ) continue;
if( cutList[p].containsPoint(QPointF(hit.eSL, hit.eSR), Qt::OddEvenFill) ){
if( hit.tSR < tMin[p] ) tMin[p] = hit.tSR;
if( hit.tSR > tMax[p] ) tMax[p] = hit.tSR;
count[p] ++;
//printf(".... %d \n", count[p]);
if( p == 0 ) h1g->Fill(hit.eSR);
}
}
}
hPID->UpdatePlot();
h1->UpdatePlot();
hMulti->UpdatePlot();
h1g->UpdatePlot();
QList<QString> cutNameList = hPID->GetCutNameList();
for( int p = 0; p < cutList.count(); p ++){
if( cutList[p].isEmpty() ) continue;
double dT = (tMax[p]-tMin[p]) * tick2ns / 1e9; // tick to sec
double rate = count[p]*1.0/(dT);
//printf("%llu %llu, %f %d\n", tMin[p], tMax[p], dT, count[p]);
//printf("%10s | %d | %f Hz \n", cutNameList[p].toStdString().c_str(), count[p], rate);
influx->AddDataPoint("Cut,name=" + cutNameList[p].toStdString()+ " value=" + std::to_string(rate));
influx->WriteData(dataBaseName);
influx->ClearDataPointsBuffer();
}
}
#endif