498 lines
15 KiB
C++
498 lines
15 KiB
C++
#ifndef SPLITPOLEANLAYZER_H
|
|
#define SPLITPOLEANLAYZER_H
|
|
|
|
/*********************************************
|
|
* This is online analyzer for Split-Pole at FSU
|
|
*
|
|
* It is a template for other analyzer.
|
|
*
|
|
* Any new analyzer add to added to FSUDAQ.cpp
|
|
* 1) add include header
|
|
* 2) in OpenAnalyzer(), change the new
|
|
*
|
|
* add the source file in FSUDAQ_Qt6.pro then compile
|
|
* >qmake6 FSUDAQ_Qt6.pro
|
|
* >make
|
|
*
|
|
* ******************************************/
|
|
#include "Analyser.h"
|
|
#include "Isotope.h"
|
|
|
|
#include <QRandomGenerator>
|
|
|
|
#include <cmath>
|
|
#include <random>
|
|
|
|
// static double randZeroToOne() {
|
|
// return static_cast<double>(rand()) / RAND_MAX;
|
|
// }
|
|
|
|
// // Box-Muller transform to generate random Gaussian numbers
|
|
// static double generateGaussian(double mean, double stddev) {
|
|
// static bool hasSpare = false;
|
|
// static double spare;
|
|
// if (hasSpare) {
|
|
// hasSpare = false;
|
|
// return mean + stddev * spare;
|
|
// } else {
|
|
// double u, v, s;
|
|
// do {
|
|
// u = 2.0 * randZeroToOne() - 1.0;
|
|
// v = 2.0 * randZeroToOne() - 1.0;
|
|
// s = u * u + v * v;
|
|
// } while (s >= 1.0 || s == 0.0);
|
|
|
|
// s = std::sqrt(-2.0 * std::log(s) / s);
|
|
// spare = v * s;
|
|
// hasSpare = true;
|
|
// return mean + stddev * u * s;
|
|
// }
|
|
// }
|
|
|
|
namespace SPS{
|
|
namespace ChMap{
|
|
|
|
const short ScinR = 0;
|
|
const short ScinL = 1;
|
|
const short dFR = 9;
|
|
const short dFL = 8;
|
|
const short dBR = 10;
|
|
const short dBL = 11;
|
|
const short Cathode = 7;
|
|
const short AnodeF = 13;
|
|
const short AnodeB = 15;
|
|
|
|
};
|
|
|
|
const double c = 299.792458; // mm/ns
|
|
const double pi = M_PI;
|
|
const double deg2rad = pi/180.;
|
|
|
|
}
|
|
|
|
class SplitPoleHit{
|
|
|
|
public:
|
|
SplitPoleHit(){
|
|
Clear();
|
|
}
|
|
|
|
unsigned int eSR; unsigned long long tSR;
|
|
unsigned int eSL; unsigned long long tSL;
|
|
unsigned int eFR; unsigned long long tFR;
|
|
unsigned int eFL; unsigned long long tFL;
|
|
unsigned int eBR; unsigned long long tBR;
|
|
unsigned int eBL; unsigned long long tBL;
|
|
unsigned int eCath; unsigned long long tCath;
|
|
unsigned int eAF; unsigned long long tAF;
|
|
unsigned int eAB; unsigned long long tAB;
|
|
|
|
float eSAvg;
|
|
float x1, x2, theta;
|
|
float xAvg;
|
|
|
|
void CalZoffset(QString targetStr, QString beamStr, QString recoilStr, double bfieldT, double angleDeg, double energyMeV){
|
|
|
|
target.SetIsoByName(targetStr.toStdString());
|
|
beam.SetIsoByName(beamStr.toStdString());
|
|
recoil.SetIsoByName(recoilStr.toStdString());
|
|
// target.SetIso(12, 6);
|
|
// beam.SetIso(2,1);
|
|
// recoil.SetIso(1,1);
|
|
|
|
Bfield = bfieldT; // Tesla
|
|
angleDegree = angleDeg; // degree
|
|
beamKE = energyMeV; // MeV
|
|
|
|
heavyRecoil.SetIso(target.A + beam.A - recoil.A, target.Z + beam.Z - recoil.Z);
|
|
|
|
double Q = target.Mass + beam.Mass - recoil.Mass - heavyRecoil.Mass;
|
|
|
|
double haha1 = sqrt(beam.Mass + beamKE + recoil.Mass)/(recoil.Mass + heavyRecoil.Mass) / cos(angleDegree * SPS::deg2rad);
|
|
double haha2 = ( beamKE * ( heavyRecoil.Mass + beam.Mass) + heavyRecoil.Mass * Q) / (recoil.Mass + heavyRecoil.Mass);
|
|
|
|
double recoilKE = pow(haha1 + sqrt(haha1*haha1 + haha2), 2);
|
|
|
|
printf("Q value : %f \n", Q);
|
|
printf("proton enegry : %f \n", recoilKE);
|
|
|
|
double recoilP = sqrt( recoilKE* ( recoilKE + 2*recoil.Mass));
|
|
double rho = recoilP/(target.Z * Bfield * SPS::c); // in m
|
|
double haha = sqrt( recoil.Mass * beam.Mass * beamKE / recoilKE );
|
|
double k = haha * sin(angleDegree * SPS::deg2rad) / ( recoil.Mass + heavyRecoil.Mass - haha * cos(angleDegree * SPS::deg2rad));
|
|
|
|
const double SPS_DISPERSION = 1.96; // x-position/rho
|
|
const double SPS_MAGNIFICATION = 0.39; // in x-position
|
|
|
|
zOffset = -1000.0 * rho * k * SPS_DISPERSION * SPS_MAGNIFICATION;
|
|
|
|
printf("rho: %f m; z-offset: %f cm\n", rho, zOffset);
|
|
|
|
}
|
|
|
|
void Clear(){
|
|
eSR = 0; tSR = 0;
|
|
eSL = 0; tSL = 0;
|
|
eFR = 0; tFR = 0;
|
|
eFL = 0; tFL = 0;
|
|
eBR = 0; tBR = 0;
|
|
eBL = 0; tBL = 0;
|
|
eCath = 0; tCath = 0;
|
|
eAF = 0; tAF = 0;
|
|
eAB = 0; tAB = 0;
|
|
|
|
eSAvg = -1;
|
|
x1 = NAN;
|
|
x2 = NAN;
|
|
theta = NAN;
|
|
xAvg = NAN;
|
|
}
|
|
|
|
void CalData(){
|
|
|
|
if( eSR > 0 && eSL > 0 ) eSAvg = (eSR + eSL)/2;
|
|
if( eSR > 0 && eSL == 0 ) eSAvg = eSR;
|
|
if( eSR == 0 && eSL > 0 ) eSAvg = eSL;
|
|
|
|
if( tFR > 0 && tFL > 0 ) x1 = (tFL - tFR)/2./2.1;
|
|
if( tBR > 0 && tBL > 0 ) x2 = (tBL - tBR)/2./1.98;
|
|
|
|
if( !std::isnan(x1) && !std::isnan(x2)) {
|
|
|
|
if( x2 > x1 ) {
|
|
theta = atan((x2-x1)/36.0);
|
|
}else if(x2 < x1){
|
|
theta = SPS::pi + atan((x2-x1)/36.0);
|
|
}else{
|
|
theta = SPS::pi * 0.5;
|
|
}
|
|
|
|
double w1 = 0.5 - zOffset/4.28625;
|
|
xAvg = w1 * x1 + (1-w1)* x2;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
private:
|
|
|
|
Isotope target;
|
|
Isotope beam;
|
|
Isotope recoil;
|
|
Isotope heavyRecoil;
|
|
|
|
double Bfield;
|
|
double angleDegree;
|
|
double beamKE;
|
|
|
|
double zOffset;
|
|
|
|
};
|
|
|
|
//^===========================================
|
|
//^===========================================
|
|
class SplitPole : public Analyzer{
|
|
Q_OBJECT
|
|
public:
|
|
SplitPole(Digitizer ** digi, unsigned int nDigi, QMainWindow * parent = nullptr): Analyzer(digi, nDigi, parent){
|
|
|
|
SetUpdateTimeInSec(1.0);
|
|
|
|
RedefineEventBuilder({0}); // only build for the 0-th digitizer, otherwise, it will build event accross all digitizers
|
|
tick2ns = digi[0]->GetTick2ns();
|
|
SetBackwardBuild(false, 100); // using normal building (acceding in time) or backward building, int the case of backward building, default events to be build is 100.
|
|
evtbder = GetEventBuilder();
|
|
evtbder->SetTimeWindow(500);
|
|
|
|
//========== use the influx from the Analyzer
|
|
influx = new InfluxDB("https://fsunuc.physics.fsu.edu/influx/");
|
|
dataBaseName = "testing";
|
|
|
|
SetUpCanvas();
|
|
leTarget->setText("12C");
|
|
leBeam->setText("d");
|
|
leRecoil->setText("p");
|
|
sbBfield->setValue(0.76);
|
|
sbAngle->setValue(20);
|
|
sbEnergy->setValue(16);
|
|
|
|
hit.CalZoffset(leTarget->text(), leBeam->text(), leRecoil->text(), sbBfield->value(), sbAngle->value(), sbEnergy->value());
|
|
|
|
|
|
hit.Clear();
|
|
|
|
}
|
|
|
|
/// ~SplitPole(); // comment out = defalt destructor
|
|
|
|
void SetUpCanvas();
|
|
|
|
public slots:
|
|
void UpdateHistograms();
|
|
|
|
private:
|
|
|
|
MultiBuilder *evtbder;
|
|
|
|
// declaie histograms
|
|
Histogram2D * hPID;
|
|
|
|
Histogram1D * h1;
|
|
Histogram1D * h1g;
|
|
Histogram1D * hMulti;
|
|
|
|
int tick2ns;
|
|
|
|
SplitPoleHit hit;
|
|
|
|
RSpinBox * sbBfield;
|
|
QLineEdit * leTarget;
|
|
QLineEdit * leBeam;
|
|
QLineEdit * leRecoil;
|
|
RSpinBox * sbEnergy;
|
|
RSpinBox * sbAngle;
|
|
|
|
QCheckBox * runAnalyzer;
|
|
|
|
};
|
|
|
|
|
|
inline void SplitPole::SetUpCanvas(){
|
|
|
|
setGeometry(0, 0, 1600, 1000);
|
|
|
|
{//^====== magnet and reaction setting
|
|
QGroupBox * box = new QGroupBox("Configuration", this);
|
|
layout->addWidget(box, 0, 0);
|
|
QGridLayout * boxLayout = new QGridLayout(box);
|
|
boxLayout->setAlignment(Qt::AlignTop | Qt::AlignLeft);
|
|
box->setLayout(boxLayout);
|
|
|
|
QLabel * lbBfield = new QLabel("B-field [T] ", box);
|
|
lbBfield->setAlignment(Qt::AlignRight | Qt::AlignCenter);
|
|
boxLayout->addWidget(lbBfield, 0, 2);
|
|
sbBfield = new RSpinBox(box);
|
|
sbBfield->setDecimals(3);
|
|
sbBfield->setSingleStep(0.05);
|
|
boxLayout->addWidget(sbBfield, 0, 3);
|
|
|
|
QLabel * lbTarget = new QLabel("Target ", box);
|
|
lbTarget->setAlignment(Qt::AlignRight | Qt::AlignCenter);
|
|
boxLayout->addWidget(lbTarget, 0, 0);
|
|
leTarget = new QLineEdit(box);
|
|
boxLayout->addWidget(leTarget, 0, 1);
|
|
|
|
QLabel * lbBeam = new QLabel("Beam ", box);
|
|
lbBeam->setAlignment(Qt::AlignRight | Qt::AlignCenter);
|
|
boxLayout->addWidget(lbBeam, 1, 0);
|
|
leBeam = new QLineEdit(box);
|
|
boxLayout->addWidget(leBeam, 1, 1);
|
|
|
|
QLabel * lbRecoil = new QLabel("Recoil ", box);
|
|
lbRecoil->setAlignment(Qt::AlignRight | Qt::AlignCenter);
|
|
boxLayout->addWidget(lbRecoil, 2, 0);
|
|
leRecoil = new QLineEdit(box);
|
|
boxLayout->addWidget(leRecoil, 2, 1);
|
|
|
|
QLabel * lbEnergy = new QLabel("Beam Energy [MeV] ", box);
|
|
lbEnergy->setAlignment(Qt::AlignRight | Qt::AlignCenter);
|
|
boxLayout->addWidget(lbEnergy, 1, 2);
|
|
sbEnergy = new RSpinBox(box);
|
|
sbEnergy->setDecimals(3);
|
|
sbEnergy->setSingleStep(1.0);
|
|
boxLayout->addWidget(sbEnergy, 1, 3);
|
|
|
|
QLabel * lbAngle = new QLabel("SPS Angle [Deg] ", box);
|
|
lbAngle->setAlignment(Qt::AlignRight | Qt::AlignCenter);
|
|
boxLayout->addWidget(lbAngle, 2, 2);
|
|
sbAngle = new RSpinBox(box);
|
|
sbAngle->setDecimals(3);
|
|
sbAngle->setSingleStep(1.0);
|
|
boxLayout->addWidget(sbAngle, 2, 3);
|
|
|
|
boxLayout->setColumnStretch(0, 1);
|
|
boxLayout->setColumnStretch(1, 2);
|
|
boxLayout->setColumnStretch(2, 1);
|
|
boxLayout->setColumnStretch(3, 2);
|
|
|
|
connect(leTarget, &QLineEdit::returnPressed, this, [=](){
|
|
hit.CalZoffset(leTarget->text(), leBeam->text(), leRecoil->text(), sbBfield->value(), sbAngle->value(), sbEnergy->value());
|
|
});
|
|
|
|
connect(leBeam, &QLineEdit::returnPressed, this, [=](){
|
|
hit.CalZoffset(leTarget->text(), leBeam->text(), leRecoil->text(), sbBfield->value(), sbAngle->value(), sbEnergy->value());
|
|
});
|
|
|
|
connect(leRecoil, &QLineEdit::returnPressed, this, [=](){
|
|
hit.CalZoffset(leTarget->text(), leBeam->text(), leRecoil->text(), sbBfield->value(), sbAngle->value(), sbEnergy->value());
|
|
});
|
|
|
|
connect(sbBfield, &RSpinBox::returnPressed, this, [=](){
|
|
hit.CalZoffset(leTarget->text(), leBeam->text(), leRecoil->text(), sbBfield->value(), sbAngle->value(), sbEnergy->value());
|
|
});
|
|
|
|
connect(sbAngle, &RSpinBox::returnPressed, this, [=](){
|
|
hit.CalZoffset(leTarget->text(), leBeam->text(), leRecoil->text(), sbBfield->value(), sbAngle->value(), sbEnergy->value());
|
|
});
|
|
|
|
connect(sbEnergy, &RSpinBox::returnPressed, this, [=](){
|
|
hit.CalZoffset(leTarget->text(), leBeam->text(), leRecoil->text(), sbBfield->value(), sbAngle->value(), sbEnergy->value());
|
|
});
|
|
|
|
runAnalyzer = new QCheckBox("Run Analyzer", this);
|
|
boxLayout->addWidget(runAnalyzer, 4, 1);
|
|
|
|
}
|
|
|
|
//============ histograms
|
|
hMulti = new Histogram1D("Multiplicity", "", 10, 0, 10, this);
|
|
layout->addWidget(hMulti, 0, 1);
|
|
|
|
// the "this" make the histogram a child of the SplitPole class. When SplitPole destory, all childs destory as well.
|
|
hPID = new Histogram2D("Split Pole PID", "Scin-L", "Anode-Font", 100, 0, 5000, 100, 0, 5000, this);
|
|
//layout is inheriatge from Analyzer
|
|
layout->addWidget(hPID, 1, 0, 2, 1);
|
|
|
|
h1 = new Histogram1D("Spectrum", "x", 300, 30, 70, this);
|
|
h1->SetColor(Qt::darkGreen);
|
|
h1->AddDataList("Test", Qt::red); // add another histogram in h1, Max Data List is 10
|
|
layout->addWidget(h1, 1, 1);
|
|
|
|
h1g = new Histogram1D("Spectrum (gated)", "x", 300, 30, 70, this);
|
|
layout->addWidget(h1g, 2, 1);
|
|
|
|
layout->setColumnStretch(0, 1);
|
|
layout->setColumnStretch(1, 1);
|
|
|
|
//===========fill fake data
|
|
// int min = 0;
|
|
// int max = 8;
|
|
|
|
// double meanX[9] = { 500, 500, 1000, 1000, 1000, 1500, 3000, 3000, 3000};
|
|
// double stdX[9] = { 100, 100, 300, 300, 300, 100, 500, 500, 500};
|
|
// double meanY[9] = {1000, 1000, 3000, 3000, 1500, 2000, 500, 500, 500};
|
|
// double stdY[9] = { 100, 100, 500, 500, 500, 200, 100, 100, 100};
|
|
|
|
// int mu[9] = {1, 2, 3, 4, 5, 6, 6, 5, 6};
|
|
|
|
// double ex[9] = {60, 60, 50, 45, 45, 45, 45, 42, 42};
|
|
|
|
// for( int i = 0; i < 2456; i++){
|
|
// int index = QRandomGenerator::global()->bounded(min, max + 1);
|
|
|
|
// double radX = generateGaussian(meanX[index], stdX[index]);
|
|
// double radY = generateGaussian(meanY[index], stdY[index]);
|
|
|
|
// double radEx = generateGaussian(ex[index], 0.1);
|
|
|
|
// double rad = generateGaussian(55, 20);
|
|
|
|
// printf("%5d | %2d %6f %6f %6f %6f\n", i, index, radX, radY, radEx, rad);
|
|
|
|
// hPID->Fill(radX, radY);
|
|
|
|
// if( i % 3 != 0 ){
|
|
// h1-> Fill(radEx);
|
|
// }else{
|
|
// h1->Fill(rad);
|
|
// }
|
|
|
|
// hMulti->Fill(mu[index]);
|
|
|
|
// if ( i% 3 != 0) h1g->Fill(radEx);
|
|
// }
|
|
|
|
// hPID->UpdatePlot();
|
|
// h1->UpdatePlot();
|
|
// hMulti->UpdatePlot();
|
|
// h1g->UpdatePlot();
|
|
|
|
}
|
|
|
|
inline void SplitPole::UpdateHistograms(){
|
|
|
|
if( this->isVisible() == false ) return;
|
|
if( runAnalyzer->isChecked() == false ) return;
|
|
|
|
BuildEvents(); // call the event builder to build events
|
|
|
|
//============ Get events, and do analysis
|
|
long eventBuilt = evtbder->eventBuilt;
|
|
if( eventBuilt == 0 ) return;
|
|
|
|
//============ Get the cut list, if any
|
|
QList<QPolygonF> cutList = hPID->GetCutList();
|
|
const int nCut = cutList.count();
|
|
unsigned long long tMin[nCut] = {0xFFFFFFFFFFFFFFFF}, tMax[nCut] = {0};
|
|
unsigned int count[nCut]={0};
|
|
|
|
//============ Processing data and fill histograms
|
|
long eventIndex = evtbder->eventIndex;
|
|
long eventStart = eventIndex - eventBuilt + 1;
|
|
if(eventStart < 0 ) eventStart += MaxNEvent;
|
|
|
|
for( long i = eventStart ; i <= eventIndex; i ++ ){
|
|
std::vector<Hit> event = evtbder->events[i];
|
|
//printf("-------------- %ld\n", i);
|
|
|
|
hMulti->Fill((int) event.size());
|
|
//if( event.size() < 9 ) return;
|
|
if( event.size() == 0 ) return;
|
|
|
|
hit.Clear();
|
|
|
|
for( int k = 0; k < (int) event.size(); k++ ){
|
|
//event[k].Print();
|
|
if( event[k].ch == SPS::ChMap::ScinR ) {hit.eSR = event[k].energy; hit.tSR = event[k].timestamp;}
|
|
if( event[k].ch == SPS::ChMap::ScinL ) {hit.eSL = event[k].energy; hit.tSL = event[k].timestamp;}
|
|
if( event[k].ch == SPS::ChMap::dFR ) {hit.eFR = event[k].energy; hit.tFR = event[k].timestamp;}
|
|
if( event[k].ch == SPS::ChMap::dFL ) {hit.eFL = event[k].energy; hit.tFL = event[k].timestamp;}
|
|
if( event[k].ch == SPS::ChMap::dBR ) {hit.eBL = event[k].energy; hit.tBL = event[k].timestamp;}
|
|
if( event[k].ch == SPS::ChMap::dBL ) {hit.eBL = event[k].energy; hit.tBL = event[k].timestamp;}
|
|
if( event[k].ch == SPS::ChMap::Cathode ) {hit.eCath = event[k].energy; hit.tCath = event[k].timestamp;}
|
|
if( event[k].ch == SPS::ChMap::AnodeF ) {hit.eAF = event[k].energy; hit.tAF = event[k].timestamp;}
|
|
if( event[k].ch == SPS::ChMap::AnodeB ) {hit.eAB = event[k].energy; hit.tAB = event[k].timestamp;}
|
|
}
|
|
|
|
hit.CalData();
|
|
|
|
hPID->Fill(hit.eSL, hit.eSR); // x, y
|
|
|
|
h1->Fill(hit.eSL);
|
|
h1->Fill(hit.eSR, 1);
|
|
|
|
//check events inside any Graphical cut and extract the rate, using tSR only
|
|
for(int p = 0; p < cutList.count(); p++ ){
|
|
if( cutList[p].isEmpty() ) continue;
|
|
if( cutList[p].containsPoint(QPointF(hit.eSL, hit.eSR), Qt::OddEvenFill) ){
|
|
if( hit.tSR < tMin[p] ) tMin[p] = hit.tSR;
|
|
if( hit.tSR > tMax[p] ) tMax[p] = hit.tSR;
|
|
count[p] ++;
|
|
//printf(".... %d \n", count[p]);
|
|
if( p == 0 ) h1g->Fill(hit.eSR);
|
|
}
|
|
}
|
|
}
|
|
|
|
hPID->UpdatePlot();
|
|
h1->UpdatePlot();
|
|
hMulti->UpdatePlot();
|
|
h1g->UpdatePlot();
|
|
|
|
QList<QString> cutNameList = hPID->GetCutNameList();
|
|
for( int p = 0; p < cutList.count(); p ++){
|
|
if( cutList[p].isEmpty() ) continue;
|
|
double dT = (tMax[p]-tMin[p]) * tick2ns / 1e9; // tick to sec
|
|
double rate = count[p]*1.0/(dT);
|
|
//printf("%llu %llu, %f %d\n", tMin[p], tMax[p], dT, count[p]);
|
|
//printf("%10s | %d | %f Hz \n", cutNameList[p].toStdString().c_str(), count[p], rate);
|
|
|
|
influx->AddDataPoint("Cut,name=" + cutNameList[p].toStdString()+ " value=" + std::to_string(rate));
|
|
influx->WriteData(dataBaseName);
|
|
influx->ClearDataPointsBuffer();
|
|
}
|
|
|
|
}
|
|
|
|
|
|
#endif |