FSUDAQ_Qt6/analyzers/Cross.h

232 lines
6.8 KiB
C++

#ifndef Cross_h
#define Cross_h
/*********************************************
* This is online analyzer for PID, ANL
*
* Created by Khushi @ 2024-09-03
*
* ******************************************/
#include "Analyser.h"
class Cross : public Analyzer{
public:
Cross(Digitizer ** digi, unsigned int nDigi, QMainWindow * parent = nullptr): Analyzer(digi, nDigi, parent){
SetUpdateTimeInSec(2.0);
RedefineEventBuilder({0}); // only builder for the 0-th digitizer.
tick2ns = digi[0]->GetTick2ns();
SetBackwardBuild(false, 100); // using normal building (acceding in time) or backward building, int the case of backward building, default events to be build is 100.
evtbder = GetEventBuilder();
evtbder->SetTimeWindow(500);
//========== use the influx from the Analyzer
influx = new InfluxDB("http://localhost:8086");
dataBaseName = "testing";
SetUpCanvas(); // see below
};
void SetUpCanvas();
public slots:
void UpdateHistograms();
private:
MultiBuilder *evtbder;
//Histogram2D * hPID;
Histogram1D * hdE; // raw dE (ch=1): ch1
Histogram1D * hE; // raw E (ch=4) : ch4
Histogram1D * hdT; // raw dT (ch=7): ch7
Histogram1D * hTotE; // total energy (dE+E): ch1+ch4
Histogram1D * hTWin; // coincidence time window TWin: (t4-t1)*1e9
Histogram2D * hdEE; // dE versus E : ch1 versus ch4
Histogram2D * hdEtotE; // dE versus totE : ch1 versus (ch1+ch4)
Histogram2D * hdEdT; // dE versus TOF: ch1 versus (t7-t1)*1e9
int tick2ns;
float ch1, ch4, ch7;
unsigned long long t1, t4, t7;
};
inline void Cross::SetUpCanvas(){
setGeometry(0, 0, 2000, 1000);
//============ histograms
//hPID = new Histogram2D("RAISOR", "E", "dE", 100, 0, 5000, 100, 0, 5000, this);
//layout->addWidget(hPID, 2, 0);
hdEE = new Histogram2D("dE vs E", "E[ch]", "dE[ch]", 500, -100, 10000, 500, -100, 10000, this);
layout->addWidget(hdEE, 0, 0, 1, 2);
hdE = new Histogram1D("raw dE (ch=1)", "dE [ch]", 300, 0, 8000, this);
layout->addWidget(hdE, 0, 2);
hdEdT = new Histogram2D("dE vs TOF", "TOF [ns]", "dE", 100, 0, 500, 100, 0, 4000, this);
layout->addWidget(hdEdT, 1, 3);
hE = new Histogram1D("raw E (ch=4)", "E [ch]", 300, 0, 10000, this);
layout->addWidget(hE, 0, 3);
hdEtotE = new Histogram2D("dE vs TotE", "TotE[ch]", "dE[ch]", 500, 0, 10000, 500, 0, 10000, this);
layout->addWidget(hdEtotE, 1, 0, 1, 2);
hdT = new Histogram1D("raw dT (ch=7)", "dT [ch]", 300, 0, 1000, this);
layout->addWidget(hdT, 1, 2);
hTotE = new Histogram1D("total energy (dE+E)", "TotE [ch]", 300, 0, 16000, this);
layout->addWidget(hTotE, 0, 4);
hTWin = new Histogram1D("coincidence time window", "TWin [ns]", 300, 0, 500, this);
layout->addWidget(hTWin, 1, 4);
}
inline void Cross::UpdateHistograms(){
if( this->isVisible() == false ) return;
BuildEvents(false); // call the event builder to build events
//============ Get events, and do analysis
long eventBuilt = evtbder->eventBuilt;
if( eventBuilt == 0 ) return;
//============ Get the cut list, if any
/*
QList<QPolygonF> cutList = hPID->GetCutList();
const int nCut = cutList.count();
unsigned long long tMin[nCut] = {0xFFFFFFFFFFFFFFFF}, tMax[nCut] = {0};
unsigned int count[nCut]={0};
*/
QList<QPolygonF> cutList1 = hdEE->GetCutList();
const int nCut1 = cutList1.count();
unsigned long long tMin1[nCut1] = {0xFFFFFFFFFFFFFFFF}, tMax1[nCut1] = {0};
unsigned int count1[nCut1]={0};
QList<QPolygonF> cutList2 = hdEtotE->GetCutList();
const int nCut2 = cutList2.count();
unsigned long long tMin2[nCut2] = {0xFFFFFFFFFFFFFFFF}, tMax2[nCut2] = {0};
unsigned int count2[nCut2]={0};
//============ Processing data and fill histograms
long eventIndex = evtbder->eventIndex;
long eventStart = eventIndex - eventBuilt + 1;
if(eventStart < 0 ) eventStart += MaxNEvent;
for( long i = eventStart ; i <= eventIndex; i ++ ){
std::vector<Hit> event = evtbder->events[i];
//printf("-------------- %ld\n", i);
if( event.size() == 0 ) return;
for( int k = 0; k < (int) event.size(); k++ ){
//event[k].Print();
if( event[k].ch == 0 ) {ch1 = event[k].energy; t1 = event[k].timestamp;} // Reads channel 0 of the digitizer corresponding to dE
if( event[k].ch == 2 ) {ch4 = event[k].energy; t4 = event[k].timestamp;} // Reads channel 2 of the digitizer corresponding to E
if( event[k].ch == 7 ) {ch7 = event[k].energy; t7 = event[k].timestamp;} //RF Timing if setup
}
// printf("(E, dE) = (%f, %f)\n", E, dE);
//hPID->Fill(ch4 , ch1); // x, y
//etotal = ch1*0.25*0.25 + ch4
hdE->Fill(ch1);
hE->Fill(ch4);
hdT->Fill(ch7);
hTotE->Fill(ch1 + ch4);
hdEE->Fill(ch4,ch1);
hdEtotE->Fill(ch1 + ch4,ch1);
hdEdT->Fill((t7-t1)*1e9,ch1);
hTWin->Fill((t4-t1)*1e9);
//check events inside any Graphical cut and extract the rate
/*
for(int p = 0; p < cutList.count(); p++ ){
if( cutList[p].isEmpty() ) continue;
if( cutList[p].containsPoint(QPointF(ch4, ch1), Qt::OddEvenFill) ){
if( t1 < tMin[p] ) tMin[p] = t1;
if( t1 > tMax[p] ) tMax[p] = t1;
count[p] ++;
//printf(".... %d \n", count[p]);
}
}
*/
for(int p = 0; p < cutList1.count(); p++ ){
if( cutList1[p].isEmpty() ) continue;
if( cutList1[p].containsPoint(QPointF(ch4, ch1), Qt::OddEvenFill) ){
if( t1 < tMin1[p] ) tMin1[p] = t1;
if( t1 > tMax1[p] ) tMax1[p] = t1;
count1[p] ++;
//printf("hdEE.... %d \n", count1[p]);
}
}
for(int p = 0; p < cutList2.count(); p++ ){
if( cutList2[p].isEmpty() ) continue;
if( cutList2[p].containsPoint(QPointF(ch1+ch4,ch1), Qt::OddEvenFill) ){
if( t1 < tMin2[p] ) tMin2[p] = t1;
if( t1 > tMax2[p] ) tMax2[p] = t1;
count2[p] ++;
//printf("hdEtotE.... %d \n", count2[p]);
}
}
}
for(int p = 0; p < cutList2.count(); p++ ){
printf("hdEE.... %d %d \n", p, count1[p]);
}
//hPID->UpdatePlot();
hdE->UpdatePlot();
hE->UpdatePlot();
hdT->UpdatePlot();
hTotE->UpdatePlot();
hdEE->UpdatePlot();
hdEtotE->UpdatePlot();
hdEdT->UpdatePlot();
hTWin->UpdatePlot();
//========== output to Influx
QList<QString> cutNameList1 = hdEE->GetCutNameList();
for( int p = 0; p < cutList1.count(); p ++){
if( cutList1[p].isEmpty() ) continue;
double dT = (tMax1[p]-tMin1[p]) / 1e9; // tick to sec
double rate = count1[p]*1.0/(dT);
//printf("%llu %llu, %f %d\n", tMin1[p], tMax1[p], dT, count1[p]);
printf("%10s | %d | %f Hz \n", cutNameList1[p].toStdString().c_str(), count1[p], rate);
influx->AddDataPoint("Cut,name=" + cutNameList1[p].toStdString()+ " value=" + std::to_string(rate));
influx->WriteData("testing");
influx->ClearDataPointsBuffer();
}
}
#endif