PtolemyGUI/Cleopatra/PlotWindow.py

146 lines
5.2 KiB
Python
Raw Normal View History

#!/usr/bin/python3
from PyQt6.QtWidgets import (
QGridLayout, QWidget, QCheckBox
)
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.backends.backend_qtagg import NavigationToolbar2QT as NavigationToolbar
from matplotlib.backends.backend_qt5agg import FigureCanvasQTAgg as FigureCanvas
2024-11-08 14:23:49 -05:00
# Set backend to a Qt-compatible one
plt.switch_backend('QtAgg') # Or use 'Qt5Agg' if there are still issues
2024-11-08 14:23:49 -05:00
class FitPlotWindow(QWidget):
def __init__(self, windowTitle):
super().__init__()
self.setWindowTitle(windowTitle)
self.resize(800, 600)
self.default_colors = plt.rcParams['axes.prop_cycle'].by_key()['color']
self.log_scale_checkbox = QCheckBox("Use Log Scale for Y-Axis")
self.log_scale_checkbox.setChecked(True)
2024-11-08 14:23:49 -05:00
self.log_scale_checkbox.stateChanged.connect(self.plot_Fit)
self.gridline_checkbox = QCheckBox("Show Gridlines")
2024-11-08 14:23:49 -05:00
self.gridline_checkbox.stateChanged.connect(self.plot_Fit)
2024-11-08 16:54:04 -05:00
self.legend_checkbox = QCheckBox("Show Legends")
self.legend_checkbox.setChecked(True)
self.legend_checkbox.stateChanged.connect(self.plot_Fit)
self.figure, self.ax = plt.subplots()
self.canvas = FigureCanvas(self.figure)
self.toolbar = NavigationToolbar(self.canvas, self)
layout = QGridLayout(self)
layout.addWidget(self.toolbar, 0, 0, 1, 3)
2024-11-08 14:23:49 -05:00
layout.addWidget(self.log_scale_checkbox, 1, 0)
layout.addWidget(self.gridline_checkbox, 1, 1)
2024-11-08 16:54:04 -05:00
layout.addWidget(self.legend_checkbox, 1, 2)
layout.addWidget(self.canvas, 2, 0, 5, 3)
2024-11-08 14:23:49 -05:00
self.setLayout(layout)
2024-11-08 16:54:04 -05:00
def set_data(self, ID, expData, fitOption, dataName_list, xData, yData_list, headers, para, perr, chi_square ):
self.x_exp = expData[ID][:, 0]
self.x_err = expData[ID][:, 1]
self.y_exp = expData[ID][:, 2]
self.y_err = expData[ID][:, 3]
2024-11-08 16:54:04 -05:00
self.dataName = dataName_list
self.fitOption = fitOption[ID]
self.para = para
self.perr = perr
2024-11-08 14:23:49 -05:00
self.chi_square = chi_square
2024-11-08 16:54:04 -05:00
self.xData = xData
self.yData_list = yData_list
self.headers = headers
print(self.dataName)
print(self.fitOption)
print(self.headers)
def plot_Fit(self):
self.ax.clear()
self.ax.errorbar(self.x_exp, self.y_exp, xerr=self.x_err, yerr=self.y_err,
fmt='x', label='Experimental Data', color='black', markersize = 15, elinewidth=2)
2024-11-08 14:23:49 -05:00
fitTheory = []
fitTheory_lower = []
fitTheory_upper = []
2024-11-08 16:54:04 -05:00
fitXsecID = []
fitHeaders = []
2024-11-08 14:23:49 -05:00
for k in range(len(self.fitOption)):
xsecIDStr = self.fitOption[k].strip()
xsecID = [int(part.strip()) for part in xsecIDStr.split('+')] if '+' in xsecIDStr else [int(xsecIDStr)]
fitTheory.append(np.zeros_like(self.xData))
fitTheory_upper.append(np.zeros_like(self.xData))
fitTheory_lower.append(np.zeros_like(self.xData))
2024-11-08 16:54:04 -05:00
for i, id in enumerate(xsecID):
fitXsecID.append(id)
fitHeaders.append(self.headers[id])
fitTheory[k] += self.para[k][i] * np.interp(self.xData, self.xData, self.yData_list[id])
fitTheory_upper[k] += (self.para[k][i] + self.perr[k][i]) * np.interp(self.xData, self.xData, self.yData_list[id])
fitTheory_lower[k] += (self.para[k][i] - self.perr[k][i]) * np.interp(self.xData, self.xData, self.yData_list[id])
for i, fit in enumerate(fitTheory):
self.ax.plot(self.xData, fit, label=f'Chi2:{self.chi_square[i]:.3f} | Xsec:{self.fitOption[i]}')
self.ax.fill_between(self.xData, fitTheory_lower[i], fitTheory_upper[i], alpha=0.2)
2024-11-08 16:54:04 -05:00
if self.legend_checkbox.isChecked() :
self.ax.text(0.98, 0.98 - 0.05*i, rf"Fit-{self.fitOption[i].strip()}: {', '.join([f'{x:.3f}' for x in self.para[i]])} +/- {', '.join([f'{x:.3f}' for x in self.perr[i]])} | $\chi^2$ {self.chi_square[i]:.3f}" ,
transform=plt.gca().transAxes, fontsize=12, fontfamily='monospace',
verticalalignment='top', horizontalalignment='right', color=self.default_colors[i])
2024-11-08 14:23:49 -05:00
# Replace plt.title() with plt.text() to position the title inside the plot
2024-11-08 16:54:04 -05:00
self.ax.text(0.02, 0.05, f'Exp Data : {self.dataName}', transform=plt.gca().transAxes,
2024-11-08 14:23:49 -05:00
fontsize=12, verticalalignment='bottom', horizontalalignment='left', color='black')
2024-11-08 16:54:04 -05:00
if self.legend_checkbox.isChecked() :
fitXsecID = list(dict.fromkeys(fitXsecID))
fitHeaders = list(dict.fromkeys(fitHeaders))
2024-11-08 18:15:50 -05:00
size = len(fitHeaders) - 1
2024-11-08 16:54:04 -05:00
for i , header in enumerate(fitHeaders):
2024-11-08 18:15:50 -05:00
self.ax.text(0.02, 0.10 + 0.05 * size - 0.05*i, f'Fit-{fitXsecID[i]} : {header}', transform=plt.gca().transAxes,
2024-11-08 16:54:04 -05:00
fontsize=12, verticalalignment='bottom', horizontalalignment='left', color='grey')
2024-11-08 14:23:49 -05:00
# Plot decorator
# Apply log scale for y-axis if selected
if self.log_scale_checkbox.isChecked():
self.ax.set_yscale('log')
else:
self.ax.set_yscale('linear')
2024-11-08 14:23:49 -05:00
if self.gridline_checkbox.isChecked():
self.ax.grid(True, which='both', linestyle='--', linewidth=0.5, color='gray')
else:
self.ax.grid(False)
2024-11-08 14:23:49 -05:00
self.ax.set_xlabel(r'$\theta_{cm}$ [deg]')
self.ax.set_ylabel(r'd$\sigma$/d$\Omega$ [deg]')
2024-11-08 16:54:04 -05:00
# self.ax.legend(loc='upper right', frameon=True)
2024-11-08 14:23:49 -05:00
self.ax.autoscale(enable=True, axis='x', tight=True)
self.figure.subplots_adjust(left=0.1, right=0.95, top=0.95, bottom=0.1)
2024-11-08 14:23:49 -05:00
self.canvas.draw_idle()