PtolemyGUI/Raphael/dwba_zr.py

545 lines
22 KiB
Python
Raw Normal View History

#!/usr/bin/env python3
import sys, os
import re
import numpy as np
from scipy.integrate import simpson
from scipy.interpolate import interp1d
import matplotlib.pyplot as plt
import time
from sympy import S
from sympy.physics.quantum.cg import wigner_9j
sys.path.append(os.path.join(os.path.dirname(__file__), '../Cleopatra'))
from IAEANuclearData import IsotopeClass
from assLegendreP import associated_legendre_array
from clebschGordan import clebsch_gordan, quantum_factorial, obeys_triangle_rule
from boundState import BoundState
from solveSE import WoodsSaxonPot, CoulombPotential, SpinOrbit_Pot, WS_SurfacePot
from distortedWave import DistortedWave
import opticalPotentials as op
class DWBA_ZR:
def __init__(self, nu_A:str, nu_a:str, nu_b:str, nu_B:str, JB:str, orbital:str, ExB:float, ELabPerU:float):
iso = IsotopeClass()
A_A, Z_A = iso.GetAZ(nu_A)
A_a, Z_a = iso.GetAZ(nu_a)
A_b, Z_b = iso.GetAZ(nu_b)
A_B, Z_B = iso.GetAZ(nu_B)
self.ELab = A_a * ELabPerU
mass_A = iso.GetMassFromSym(nu_A)
mass_a = iso.GetMassFromSym(nu_a)
mass_b = iso.GetMassFromSym(nu_b)
mass_B = iso.GetMassFromSym(nu_B)
self.ExB = ExB
# sym_A = iso.GetSymbol(A_A, Z_A)
# sym_B = iso.GetSymbol(A_B, Z_B)
spin_A_str = iso.GetJpi(A_A, Z_A)
self.spin_A = float(eval(re.sub(r'[+-]', '', spin_A_str)))
self.spin_B = float(eval(re.sub(r'[+-]', '', JB)))
if A_a == 2 and Z_a == 1:
self.spin_a = 1.0
self.spin_b = 0.5
else:
self.spin_a = 0.5
self.spin_b = 1.0
#====== transfering nucleon
self.s = 1/2 # spin of x, neutron or proton
A_x = abs(A_a - A_b)
Z_x = abs(Z_a - Z_b)
mass_x = iso.GetMassFromAZ( A_x, Z_x)
#======== core
if A_A < A_B : # (d,p)
A_c = A_A
Z_c = Z_A
BindingEnergy = mass_B - mass_A - mass_x + self.ExB
else: #(p,d)
A_c = A_B
Z_c = Z_B
BindingEnergy = mass_A - mass_B - self.ExB - mass_x
#=================== digest orbital
match = re.search(r'[a-zA-Z]', orbital) # Find first letter
if match:
index = match.start() # Get position of the first letter
node = int(orbital[:index])
l_sym = orbital[index:index+1]
j_sym = orbital[index+1:]
self.j = eval(j_sym)
self.l = op.ConvertLSym(l_sym)
self.j = self.approximate_to_half_integer(self.j)
self.s = self.approximate_to_half_integer(self.s)
self.spin_a = self.approximate_to_half_integer(self.spin_a)
self.spin_b = self.approximate_to_half_integer(self.spin_b)
passJ = False
if obeys_triangle_rule(self.spin_A, self.spin_B, self.j):
passJ = True
else:
print(f"the orbital spin-J ({self.j}) does not consver J({nu_A}) + J({nu_B}) = {self.spin_A} + {self.spin_B}.")
passS = False
if obeys_triangle_rule(self.spin_a, self.spin_b, self.s):
passS = True
else:
print(f"the orbital spin-s ({self.s}) does not consver S({nu_a}) + S({nu_b}) = {self.spin_a} + {self.spin_b}.")
passL = False
if obeys_triangle_rule(self.j, self.s, self.l):
passL = True
else:
print(f"the orbital spin-L ({self.l}) does not consver J({self.j}) + S({self.s}).")
self.isSpinBalanced = passJ * passS * passL
if self.isSpinBalanced == False :
print("Fail angular momentum conservation.")
return
else:
print("All Spin are balance.")
self.reactionStr = f"{nu_A}({spin_A_str})({nu_a},{nu_b}){nu_B}({ExB:.3f}|{JB}, {orbital}) @ {ELabPerU:.1f} MeV/u"
print("==================================================")
print(self.reactionStr)
self.Q_value = mass_A + mass_a - mass_b - mass_B - ExB
print(f"Transfer Orbtial : {orbital}")
print(f"Q-value : {self.Q_value:10.6f} MeV")
print(f"Binding : {BindingEnergy:10.6f} MeV")
print("====================== Bound state ")
self.boundState = BoundState(A_c, Z_c, A_x, Z_x, node, self.l, self.j, BindingEnergy)
self.boundState.SetPotential(1.10, 0.65, -6, 1.25, 0.65, 1.30)
print("====================== Incoming wave function ")
op.AnCai(A_A, Z_A, self.ELab)
self.dwI = DistortedWave(nu_A, nu_a, self.ELab)
self.dwI.PrintInput()
self.dwI.ClearPotential()
self.dwI.AddPotential(WoodsSaxonPot( -op.v, op.r0, op.a), False)
self.dwI.AddPotential(WoodsSaxonPot(-1j*op.vi, op.ri0, op.ai), False)
self.dwI.AddPotential(WS_SurfacePot(-1j*op.vsi, op.rsi0, op.asi), False)
self.dwI.AddPotential(SpinOrbit_Pot( -op.vso, op.rso0, op.aso), False)
self.dwI.AddPotential(SpinOrbit_Pot(-1j*op.vsoi, op.rsoi0, op.asoi), False)
self.dwI.AddPotential(CoulombPotential( op.rc0), False)
self.dwI.PrintPotentials()
self.mass_I = self.dwI.mu # reduced mass of incoming channel
self.k_I = self.dwI.k # wave number of incoming channel
self.maxL1 = self.dwI.maxL
self.maxL2 = self.maxL1 + self.l
Ecm_I = self.dwI.Ecm
Ecm_O = Ecm_I + self.Q_value
Eout = ((Ecm_O + mass_b + mass_B + self.ExB)**2 - (mass_b + mass_B + ExB)**2)/2/mass_B
print("====================== Outgoing wave function ")
op.Koning(A_B, Z_B, self.ELab + self.Q_value - ExB, Z_b)
self.dwO = DistortedWave(nu_B, nu_b, Eout)
self.dwO.spin_A = self.spin_B
self.dwO.maxL = self.maxL2
self.dwO.PrintInput()
self.dwO.ClearPotential()
self.dwO.AddPotential(WoodsSaxonPot( -op.v, op.r0, op.a), False)
self.dwO.AddPotential(WoodsSaxonPot(-1j*op.vi, op.ri0, op.ai), False)
self.dwO.AddPotential(WS_SurfacePot(-1j*op.vsi, op.rsi0, op.asi), False)
self.dwO.AddPotential(SpinOrbit_Pot( -op.vso, op.rso0, op.aso), False)
self.dwO.AddPotential(SpinOrbit_Pot(-1j*op.vsoi, op.rsoi0, op.asoi), False)
self.dwO.AddPotential(CoulombPotential( op.rc0), False)
self.dwO.PrintPotentials()
self.radialInt = None
mass_I = self.dwI.mu
k_I = self.dwI.k
mass_O = self.dwO.mu # reduced mass of outgoing channel
k_O = self.dwO.k # wave number of outgoing channel
D0 = 1.55e+4 # for (d,p)
self.massBoverMassA = A_B/A_A
self.ffactor = np.sqrt(4*np.pi)/k_I /k_O
self.xsecScalingfactor = D0 * mass_I * mass_O / np.pi / self.dwI.hbarc**4 / k_I**3 / k_O * (2*self.spin_B + 1) / (2*self.spin_A+1) / (2*self.spin_a +1)
self.PreCalNineJ()
self.PreCalClebschGordan()
#========== end of contructor
def FormatSpin(self, spin : float) -> str:
if int(2*spin) % 2 == 0 :
return f"{int(spin):+d}"
else:
return f"{int(2*spin):+d}/2"
def FindBoundState(self):
self.boundState.FindPotentialDepth(-70, -45, 0.5)
def ConvertLJ2RadialIndex(self, L1:int, J1, L2:int, J2):
index1 = int(J1 - L1 + self.spin_a)
indexL2 = int(L2 - L1 + self.l)
index2 = int(J2 - L2 + self.spin_b)
return [L1, index1, indexL2, index2]
def ConvertRadialIndex2LJ(self, in1:int, in2:int, in3:int, in4:int):
L1 = in1
J1 = L1 + in2 - self.spin_a
L2 = in3 + L1 - self.l
J2 = L2 + in4 - self.spin_b
return [L1, J1, L2, J2]
###########################################################
def CalRadialIntegral(self):
start_time = time.time()
sm_I, wfu_I = self.dwI.CalScatteringMatrix()
self.dwI.PrintScatteringMatrix()
sm_O, wfu_O_temp = self.dwO.CalScatteringMatrix()
self.dwO.PrintScatteringMatrix()
#============ rescale the outgoing wave
print("====================== Scaling the outgoing wave")
rpos_O_temp = self.dwO.rpos * self.massBoverMassA
self.rpos_O = []
rpos_O_filled = False
self.wfu_O = []
for L2 in range(0, self.maxL2 + 1):
temp_wfu_L = []
for k in range(0, int(2*self.spin_b)+1):
wfu_O_inter_real = interp1d(rpos_O_temp, np.real(wfu_O_temp[L2][k]), kind='cubic')
wfu_O_inter_imag = interp1d(rpos_O_temp, np.imag(wfu_O_temp[L2][k]), kind='cubic')
temp_wfu = []
for r in self.dwI.rpos:
if r > max(rpos_O_temp) :
break
if rpos_O_filled == False:
self.rpos_O.append(r)
temp_wfu.append(wfu_O_inter_real(r) + 1j * wfu_O_inter_imag(r))
rpos_O_filled = True
temp_wfu_L.append(temp_wfu)
self.wfu_O.append(temp_wfu_L)
print("====================== Calculating Radial integrals")
self.radialInt = np.zeros((self.maxL1+1, int(2*self.spin_a+1), int(2*self.l+1), int(2*self.spin_b+1)), dtype=complex)
bs = self.boundState.GetBoundStateWF()
for L1 in range(0, self.maxL1+1):
for J1 in np.arange(L1-self.spin_a, L1 + self.spin_a + 1, 1):
if J1 < 0 :
continue
index1 = int(J1 - L1 + self.spin_a)
wf1 = wfu_I[L1][index1]
for L2 in np.arange(L1 - self.l, L1 + self.l + 1, 1):
if L2 < 0 :
continue
for J2 in np.arange(L2 - self.spin_b, L2 + self.spin_b + 1, 1):
if J2 < 0:
continue
index2 = int(J2 - L2 + self.spin_b)
wf2 = self.wfu_O[int(L2)][index2]
pf1 = np.exp(1j*self.dwI.CoulombPhaseShift(L1))
pf2 = np.exp(1j*self.dwO.CoulombPhaseShift(L2))
integral = simpson (bs*wf1*wf2, dx=self.boundState.dr)
indexL2 = int(L2 - L1 + self.l)
product = integral * pf1 * pf2 * self.massBoverMassA
self.radialInt[L1][index1][indexL2][index2] = product
# if J1 == L1 + self.spin_a and L2 == L1 + 1 and J2 == L2 - self.spin_b:
# print(f"{L1:2d}, {J1:4.1f}({index1}), {L2:2d}({indexL2}), {J2:4.1f}({index2}), {integral * pf1 * pf2 * self.massBoverMassA:.6f}")
stop_time = time.time()
2025-02-23 15:18:30 -05:00
print(f"Total time for distorted wave and radial intergal {(stop_time - start_time) * 1000:.2f} msec")
###########################################################
def PrintRadialIntegral(self):
for index1 in range(0, int(2*self.spin_a) + 1):
for index2 in range(0, int(2*self.spin_b) + 1):
print(f"======================= J1 = L{self.FormatSpin(index1-self.spin_a)}, J2 = L{self.FormatSpin(index2-self.spin_b)}")
for L1 in range(0, self.maxL1+1):
print("{", end="")
for L2 in np.arange(L1 - self.l, L1 + self.l + 1, 1):
J1 = L1 + index1 - self.spin_a
J2 = int(L2) + index2 - self.spin_b
indexL2 = int(L2 - L1 + self.l)
print(f"{{{L1:2d}, {J1:4.1f}, {int(L2):2d}, {J2:4.1f}, {np.real(self.radialInt[L1][index1][indexL2][index2]):11.4e}+{np.imag(self.radialInt[L1][index1][indexL2][index2]):11.4e}I}}, ", end="")
print("},")
print("=========================== end of Radial Integrals.")
def PlotRadialIntegral(self):
if self.radialInt is None:
print("Radial integral not computed.")
return
spin_b = self.spin_b
spin_a = self.spin_a
2025-02-23 15:18:30 -05:00
l = self.l
maxL1 = self.maxL1
fig, axes = plt.subplots(int(2*spin_b+1)*int(2*l+1), int(2*spin_a+1), figsize=(6*int(2*spin_a+1), 4*int(2*spin_b+1)*int(2*l+1)))
for index2 in range(0, int(2*spin_b) + 1):
for index1 in range(0, int(2*spin_a) + 1):
for indexL2 in range(0, int(2*l) + 1):
haha = []
l_list = []
for L1 in range(0, maxL1+1):
# J1 = L1 + index1 - spin_a
# L2 = int(L1 - l + indexL2)
# J2 = L2 + index2 - spin_b
# [dummy, J1, L2, J2] = self.ConvertRadialIndex2LJ(L1, index2, indexL2, index2)
l_list.append(L1)
haha.append(self.radialInt[L1][index1][indexL2][index2])
axes[int(2*l+1)*index2 + indexL2, index1].plot(l_list, np.real(haha), label="Real", marker='o')
axes[int(2*l+1)*index2 + indexL2, index1].plot(l_list, np.imag(haha), label="Imag", marker='x')
axes[int(2*l+1)*index2 + indexL2, index1].legend()
axes[int(2*l+1)*index2 + indexL2, index1].set_xlabel('L1')
axes[int(2*l+1)*index2 + indexL2, index1].set_ylabel('Value')
axes[int(2*l+1)*index2 + indexL2, index1].set_title(f'Radial Int. vs L for Spin J1 = L1{self.FormatSpin(index1-spin_a)}, L2 = L1{indexL2-l:+d}, J2 = L2{self.FormatSpin(index2-spin_b)}.')
axes[int(2*l+1)*index2 + indexL2, index1].set_xlim(-1, maxL1+1)
axes[int(2*l+1)*index2 + indexL2, index1].set_xticks(np.arange(0, maxL1+1, 2))
axes[int(2*l+1)*index2 + indexL2, index1].grid()
plt.tight_layout()
plt.show(block=False)
input("Press Enter to continue...")
def PlotRadialIntegralSigle(self, dJ1, dL, dJ2):
if self.radialInt is None:
print("Radial integral not computed.")
return
haha = []
l_list = []
for L1 in range(0, self.maxL1+1):
l_list.append(L1)
[dummy, index1, indexL2, index2] = self.ConvertLJ2RadialIndex(L1, L1 + dJ1, L1 + dL, L1 + dL + dJ2)
haha.append(self.radialInt[L1][index1][indexL2][index2])
print(f"{L1:2d}, {L1 + dJ1:4.1f}({index1}), {L1 + dL:.0f}({indexL2}), {L1 + dL + dJ2:4.1f}({index2}), {haha[-1]:.6f}")
plt.plot(l_list, np.real(haha), label="Real", marker='o')
plt.plot(l_list, np.imag(haha), label="Imag", marker='x')
plt.xlabel("L1")
plt.title(f'Radial Int. vs L for Spin J1 = L1{self.FormatSpin(dJ1)}, L2 = L1{dL:+d}, J2 = L2{self.FormatSpin(dJ2)}.')
plt.grid()
plt.show(block=False)
input("Press Enter to continue...")
def PlotScatteringMatrix(self, isIncoming):
if isIncoming :
self.dwI.PlotScatteringMatrix()
else:
self.dwO.PlotScatteringMatrix()
def PlotIncomingDistortedWave(self, L, J, maxR = None):
self.dwI.PlotDistortedWave(L, J, maxR)
def PlotOutgoingDistortedWave(self, L, J, maxR = None):
plt.plot(self.rpos_O, np.real(self.wfu_O[L][int(J-L + self.spin_b)]), label="Real")
plt.plot(self.rpos_O, np.imag(self.wfu_O[L][int(J-L + self.spin_b)]), label="Imag")
plt.title(f"Radial wave function for L={L} and J={J}")
if maxR != None :
plt.xlim(-1, maxR)
plt.legend()
plt.grid()
plt.show(block=False)
input("Press Enter to continue...")
def approximate_to_half_integer(self, value):
return round(value * 2) / 2
def PreCalClebschGordan(self):
# stored in an array wit hindex of 2*j, 2*m
maxJ1 = self.maxL2 + self.spin_b + 1
maxJ2 = max(self.j, self.spin_a, self.spin_b) + 1
maxJ3 = maxJ1 + 1
self.maxJ1 = maxJ1
self.maxJ2 = maxJ2
self.maxJ3 = maxJ3
self.CG = np.zeros((int(2*maxJ1), int(4*maxJ1+2), int(2*maxJ2), int(4*maxJ2+2), int(2*maxJ3), int(4*maxJ3+2)) , dtype=float)
# print(maxJ1, maxJ2, maxJ3)
# print(self.CG.shape)
start_time = time.time()
for ma in np.arange(-self.spin_a, self.spin_a + 1, 1):
for mb in np.arange(-self.spin_b, self.spin_b + 1, 1):
for m in np.arange(-self.j + mb - ma, self.j + mb -ma + 1, 1):
for L1 in np.arange(0, self.maxL1+1):
for J1 in np.arange(L1 - self.spin_a, L1 + self.spin_a + 1, 1):
if J1 < 0 :
continue
for L2 in np.arange(L1 - self.l, L1 + self.l + 1, 1):
if L2 < 0:
continue
for J2 in np.arange(L2 - self.spin_b, L2 + self.spin_b + 1, 1):
if J2 < 0 :
continue
if not obeys_triangle_rule(J1, self.j, J2):
continue
if not(abs(m) <= L2):
continue
if int(L1 + L2 + self.l) % 2 != 0:
continue
if not(abs(m-mb+ma) <= self.j):
continue
if not(abs(mb-m) <= J2):
continue
# print(J2, mb-m, self.j, m-mb+ma, J1, ma,int(2*J2), int(2*(mb-m) + 2*maxJ1+1), int(2*self.j), int(2*(m-mb+ma)+ 2*maxJ2+1), int(2*J1), int(2*ma+ 2*maxJ3+1), clebsch_gordan(J2, mb-m, self.j, m-mb+ma, J1, ma))
self.CG[int(2*J2), int(2*(mb-m) + 2*maxJ1+1), int(2*self.j), int(2*(m-mb+ma)+ 2*maxJ2+1), int(2*J1), int(2*ma+ 2*maxJ3+1)] = clebsch_gordan(J2, mb-m, self.j, m-mb+ma, J1, ma)
self.CG[int(2*L1), int(2*maxJ1+1), int(2*self.spin_a), int(2*ma+ 2*maxJ2+1), int(2*J1), int(2*ma+ 2*maxJ3+1)] = clebsch_gordan(L1, 0, self.spin_a, ma, J1, ma)
self.CG[int(2*L2), int(2*(-m) + 2*maxJ1+1), int(2*self.spin_b), int(2*mb+ 2*maxJ2+1), int(2*J2), int(2*(mb-m)+ 2*maxJ3+1)] = clebsch_gordan(L2, -m, self.spin_b, mb, J2, mb-m)
self.CG[int(2*L2), int(2*maxJ1+1), int(2*self.l), int(2*maxJ2+1), int(2*L1), int(2*maxJ3+1)] = clebsch_gordan(L2, 0, self.l, 0, L1, 0)
stop_time = time.time()
print(f"Total time for pre-cal all CG {(stop_time - start_time) * 1000:.2f} msec")
def GetPreCalCG(self, j1, m1, j2, m2, j3, m3):
return self.CG[int(2*j1), int(2*m1 + 2*self.maxJ1+1),
int(2*j2), int(2*m2 + 2*self.maxJ2+1),
int(2*j3), int(2*m3 + 2*self.maxJ3+1)]
def PreCalNineJ(self):
self.NineJ = np.zeros((self.maxL1+1, int(2*self.spin_a+1), (2*self.l+1), int(2*self.spin_b+1)), dtype=float)
for L1 in range(0, self.maxL1+1):
for ind1 in range(0, int(2*self.spin_a+1)):
for indL2 in range(0, 2*self.l+1):
for ind2 in range(0, int(2*self.spin_b+1)):
J1 = self.approximate_to_half_integer(L1 + ind1 - self.spin_a)
L2 = int(L1 + indL2 - self.l)
J2 = self.approximate_to_half_integer(L2 + ind2 - self.spin_b)
self.NineJ[L1, ind1, indL2, ind2] = wigner_9j(self.j, self.l, self.s, J1, L1, self.spin_a, J2, L2, self.spin_b)
def GetPreCalNineJ(self, L1:int, J1, L2:int, J2):
[dummy, ind1, indL2, ind2] = self.ConvertLJ2RadialIndex(L1, J1, L2, J2)
return self.NineJ[L1, ind1, indL2, ind2]
2025-02-23 06:05:24 -05:00
def Gamma(self, L1:int, J1, L2:int, J2, m:int, ma, mb):
if int(L1 + L2 + self.l)%2 != 0: #check if the sum of L1 + L2 + l is even
return 0
else:
fact0 = self.GetPreCalNineJ(L1, J1, L2, J2)
if fact0 == 0:
return 0
else:
fact1 = pow(-1, m) * np.power(1j, L1-L2-self.l) * (2*L2+1) * np.sqrt((2*self.l+1)*(2*self.s+1)*(2*L1+1)*(2*J2+1))
fact2 = np.sqrt( quantum_factorial(L2-abs(m)) / quantum_factorial(L2 + abs(m)) )
# fact3 = clebsch_gordan(J2, mb-m, self.j, m-mb+ma, J1, ma)
# fact4 = clebsch_gordan(L1, 0, self.spin_a, ma, J1, ma)
# fact5 = clebsch_gordan(L2, -m, self.spin_b, mb, J2, mb-m)
# fact6 = clebsch_gordan(L2, 0, self.l, 0, L1, 0)
fact3 = self.GetPreCalCG(J2, mb-m, self.j, m-mb+ma, J1, ma)
fact4 = self.GetPreCalCG(L1, 0, self.spin_a, ma, J1, ma)
fact5 = self.GetPreCalCG(L2, -m, self.spin_b, mb, J2, mb-m)
fact6 = self.GetPreCalCG(L2, 0, self.l, 0, L1, 0)
# print(f"{fact1:.5f}, {fact2:.5f}, {fact3:.5f}, {fact4:.5f}, {fact5:.5f}, {fact6:.5f}")
return fact0 * fact1 * fact2 * fact3 * fact4 * fact5 * fact6
def Beta(self, m:int, ma, mb):
if self.radialInt is None :
return
result = 0
for L1 in np.arange(0, self.maxL1+1):
for J1 in np.arange(L1 - self.spin_a, L1 + self.spin_a + 1, 1):
if J1 < 0 :
continue
for L2 in np.arange(L1 - self.l, L1 + self.l + 1, 1):
if L2 < 0:
continue
for J2 in np.arange(L2 - self.spin_b, L2 + self.spin_b + 1, 1):
if J2 < 0 :
continue
if not obeys_triangle_rule(J1, self.j, J2):
continue
if not(abs(m) <= L2):
continue
if int(L1 + L2 + self.l) % 2 != 0:
continue
gg = self.Gamma(L1, J1, L2, J2, m, ma, mb)
if gg == 0:
continue
lp = self.legendrePArray[L2][int(abs(m))]
[dummy, index1, indexL2, index2] = self.ConvertLJ2RadialIndex(L1, J1, L2, J2)
ri = self.radialInt[int(L1)][index1][indexL2][index2]
# print(f"{L1:2d}, {J1:4.1f}({index1:d}), {L2:2d}({indexL2:d}), {J2:4.1f}({index2:d}), {gg:10.6f}, {ri *self.ffactor :.10f}, {lp:10.6f}")
result += gg * lp * ri
return result
def PreCalLegendreP(self, theta_deg:float, maxL:int = None, maxM:int = None):
if maxL is None:
maxL = max(self.maxL1, self.maxL2)
if maxM is None:
maxM = int(self.j + self.spin_b + self.spin_a)
self.legendrePArray = associated_legendre_array(maxL, maxM, theta_deg)
def AngDist(self, theta_deg:float) -> float:
xsec = 0
self.PreCalLegendreP(theta_deg)
for ma in np.arange(-self.spin_a, self.spin_a + 1, 1):
for mb in np.arange(-self.spin_b, self.spin_b + 1, 1):
for m in np.arange(-self.j + mb - ma, self.j + mb -ma + 1, 1):
haha = self.Beta(m, ma, mb)
xsec += np.abs(haha)**2
return xsec * self.xsecScalingfactor * 10 # factor 10 for fm^2 = 10 mb
def CalAngDistribution(self, angMin:float = 0, angMax:float = 180, angStep:float = 1):
self.angMin = angMin
self.angMax = angMax
self.angList = []
self.angDist = []
2025-02-23 15:18:30 -05:00
print(f"======== Calcalating Angular distribution from {angMin:.1f} to {angMax:.1f}, step {angStep:.1f}...")
start_time = time.time()
2025-02-23 15:18:30 -05:00
progress_time = time.time()
for i in np.arange(angMin, angMax + angStep, angStep):
self.angList.append(i)
self.angDist.append(self.AngDist(i))
if time.time() - progress_time > 1:
elapsed_time = time.time() - start_time
2025-02-23 15:18:30 -05:00
print(f"\r Time elapsed: {elapsed_time:.2f} sec, Progress: {100 * (i - angMin) / (angMax - angMin):.1f}%", end="")
progress_time = time.time()
stop_time = time.time()
print(f"\nTotal time {(stop_time - start_time) :.2f} sec")
def PrintAngDist(self):
for th, xs in zip(self.angList, self.angDist):
print(f"{th:6.1f}, {xs:13.10f}")
def PlotAngDist(self, angMin = None, angMax = None):
plt.plot(self.angList, self.angDist)
plt.title(self.reactionStr)
if angMin is None and angMax is None:
plt.xlim(-1 + self.angMin, self.angMax + 1)
if angMin is None and angMax != None:
plt.xlim(-1 + self.angMin, angMax + 1)
if angMin != None and angMax is None :
plt.xlim(-1 + angMin, self.angMax + 1)
plt.yscale("log")
plt.grid()
plt.show(block=False)
input("Press Enter to continue...")