2024-11-07 14:05:03 -05:00
|
|
|
#!/usr/bin/python3
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
from scipy.optimize import curve_fit
|
2024-11-07 16:17:28 -05:00
|
|
|
|
|
|
|
from PyQt6.QtWidgets import (
|
|
|
|
QVBoxLayout, QWidget
|
|
|
|
)
|
|
|
|
|
2024-11-07 14:05:03 -05:00
|
|
|
import matplotlib.pyplot as plt
|
2024-11-07 16:17:28 -05:00
|
|
|
from matplotlib.backends.backend_qtagg import NavigationToolbar2QT as NavigationToolbar
|
|
|
|
from matplotlib.backends.backend_qt5agg import FigureCanvasQTAgg as FigureCanvas
|
2024-11-07 14:05:03 -05:00
|
|
|
|
|
|
|
from ExtractXsecPy import read_DWBA
|
|
|
|
|
2024-11-07 16:17:28 -05:00
|
|
|
class FitPlotWidget(QWidget):
|
|
|
|
def __init__(self, figure):
|
|
|
|
super().__init__()
|
|
|
|
|
|
|
|
self.setWindowTitle("Fit Plot")
|
|
|
|
self.resize(800, 600)
|
|
|
|
|
|
|
|
self.canvas = FigureCanvas(figure)
|
|
|
|
self.toolbar = NavigationToolbar(self.canvas, self)
|
|
|
|
|
|
|
|
layout = QVBoxLayout(self)
|
|
|
|
layout.addWidget(self.toolbar)
|
|
|
|
layout.addWidget(self.canvas)
|
|
|
|
|
|
|
|
self.setLayout(layout)
|
|
|
|
|
|
|
|
|
|
|
|
class Fitting():
|
2024-11-07 14:05:03 -05:00
|
|
|
def __init__(self):
|
|
|
|
|
|
|
|
self.ExList = []
|
|
|
|
self.fitOption = []
|
|
|
|
self.expData = []
|
|
|
|
|
|
|
|
self.dataX = []
|
|
|
|
self.data = [] # is a 2D array
|
|
|
|
self.headers = []
|
|
|
|
|
|
|
|
def read_data(self,file_path):
|
|
|
|
self.headers, self.dataX, self.data = read_DWBA(file_path)
|
|
|
|
|
|
|
|
print(self.headers)
|
|
|
|
|
|
|
|
def read_expData(self, fileName):
|
|
|
|
self.ExList = []
|
|
|
|
self.fitOption = []
|
|
|
|
self.expData = []
|
|
|
|
|
|
|
|
current_data = []
|
|
|
|
|
|
|
|
with open(fileName, "r") as file:
|
|
|
|
for line in file:
|
|
|
|
line = line.strip()
|
|
|
|
|
|
|
|
if not line:
|
|
|
|
continue
|
|
|
|
|
|
|
|
# Check for excitation energy lines
|
2024-11-07 16:17:28 -05:00
|
|
|
if line.startswith("#="):
|
2024-11-07 14:05:03 -05:00
|
|
|
# If there's an existing data block, save it
|
|
|
|
if current_data:
|
|
|
|
self.expData.append(np.array(current_data, dtype=float))
|
|
|
|
current_data = []
|
|
|
|
|
|
|
|
# Extract excitation energy
|
|
|
|
Ex_energy = line.split()[1]
|
|
|
|
self.ExList.append(float(Ex_energy))
|
|
|
|
|
|
|
|
# Check for fit option lines
|
|
|
|
elif line.startswith("fit"):
|
|
|
|
# Add fit option parameters
|
|
|
|
fit_params = [x.strip(',') for x in line.split()[1:]]
|
|
|
|
self.fitOption.append(fit_params)
|
|
|
|
|
|
|
|
# Parse data lines
|
|
|
|
elif not line.startswith("#"):
|
|
|
|
values = [float(x) for x in line.split()]
|
|
|
|
current_data.append(values)
|
|
|
|
|
|
|
|
# Append the last block
|
|
|
|
if current_data:
|
|
|
|
self.expData.append(np.array(current_data, dtype=float))
|
|
|
|
|
|
|
|
# Convert to numpy arrays
|
|
|
|
self.ExList = np.array(self.ExList)
|
|
|
|
self.expData = [np.array(data) for data in self.expData]
|
|
|
|
|
|
|
|
# Output the result
|
|
|
|
print("=========== Number of data set:", len(self.ExList))
|
|
|
|
for i in range(0, len(self.ExList)):
|
|
|
|
print("-------------------------")
|
|
|
|
print(" ExList:", self.ExList[i])
|
|
|
|
print("Fit Options:", self.fitOption[i])
|
|
|
|
print(" Data List:\n", self.expData[i])
|
|
|
|
|
|
|
|
|
|
|
|
def FitData(self):
|
|
|
|
|
2024-11-07 16:17:28 -05:00
|
|
|
figure_list = []
|
2024-11-07 14:05:03 -05:00
|
|
|
|
|
|
|
for expDataID in range(len(self.expData)):
|
2024-11-07 16:17:28 -05:00
|
|
|
|
|
|
|
print("============================================")
|
|
|
|
|
2024-11-07 14:05:03 -05:00
|
|
|
# Get the number of fit options and cross-sections
|
|
|
|
nFit = len(self.fitOption[expDataID])
|
|
|
|
nXsec = len(self.data)
|
|
|
|
|
|
|
|
# Extract experimental data (x, y, and errors)
|
|
|
|
x_exp = self.expData[expDataID][:, 0] # x positions
|
|
|
|
x_err = self.expData[expDataID][:, 1] # x uncertainties (errors)
|
|
|
|
y_exp = self.expData[expDataID][:, 2] # y positions
|
|
|
|
y_err = self.expData[expDataID][:, 3] # y errors
|
|
|
|
|
|
|
|
fitTheory = []
|
|
|
|
fitTheory_lower = []
|
|
|
|
fitTheory_upper = []
|
|
|
|
|
2024-11-07 16:17:28 -05:00
|
|
|
chi_squared = []
|
|
|
|
|
2024-11-07 14:05:03 -05:00
|
|
|
for k in range(nFit):
|
|
|
|
# Get the cross-section IDs for the current fit option and strip extra spaces
|
|
|
|
xsecIDStr = self.fitOption[expDataID][k].strip()
|
|
|
|
xsecID = [int(part.strip()) for part in xsecIDStr.split('+')] if '+' in xsecIDStr else [int(xsecIDStr)]
|
|
|
|
|
|
|
|
# Ensure all cross-section IDs are valid
|
|
|
|
processFlag = True
|
|
|
|
for id in range(len(xsecID)):
|
|
|
|
if xsecID[id] >= nXsec:
|
|
|
|
print(f"Error: Requested Xsec-{xsecID[id]} exceeds the number of available cross-sections ({nXsec})")
|
|
|
|
processFlag = False
|
|
|
|
|
|
|
|
if processFlag == False :
|
|
|
|
continue
|
|
|
|
|
|
|
|
# Define the fitting function: a weighted sum of the selected data
|
|
|
|
def fit_func(x, *scale):
|
|
|
|
y = np.zeros_like(x)
|
|
|
|
for p, id in enumerate(xsecID):
|
|
|
|
y += scale[p] * np.interp(x, self.dataX, self.data[id])
|
|
|
|
return y
|
|
|
|
|
|
|
|
|
|
|
|
lower_bounds = [1e-6] * len(xsecID) # Setting a small positive lower bound
|
|
|
|
upper_bounds = [np.inf] * len(xsecID) # No upper bound
|
|
|
|
|
|
|
|
# Perform curve fitting using the fit_func and experimental data with y-errors as weights
|
|
|
|
popt, pcov = curve_fit(fit_func, x_exp, y_exp, sigma=y_err, absolute_sigma=True,
|
|
|
|
p0=np.ones(len(xsecID)), # Initial guess for scale parameters
|
|
|
|
bounds=(lower_bounds, upper_bounds))
|
|
|
|
|
|
|
|
perr = np.sqrt(np.diag(pcov)) # Standard deviation of the parameters
|
2024-11-07 16:17:28 -05:00
|
|
|
|
|
|
|
# Get the fitted model values
|
|
|
|
y_fit = fit_func(x_exp, *popt)
|
|
|
|
residuals = y_exp - y_fit
|
|
|
|
chi_squared.append(np.sum((residuals / y_err) ** 2))
|
|
|
|
|
|
|
|
print(f"Fitted scale for fit {k}: {', '.join([f'{x:.3f}' for x in popt])} +/- {', '.join([f'{x:.3f}' for x in perr])} | Chi^2 : {chi_squared[-1]:.4f}")
|
|
|
|
# print(f"Fitted scale for fit {k}: {popt} +/- {perr} | Chi^2 : {chi_squared[-1]:.4f}")
|
2024-11-07 14:05:03 -05:00
|
|
|
|
|
|
|
# Append the theoretical fit for this fit option
|
|
|
|
fitTheory.append(np.zeros_like(self.dataX))
|
|
|
|
for p, id in enumerate(xsecID):
|
|
|
|
fitTheory[k] += popt[p] * np.interp(self.dataX, self.dataX, self.data[id])
|
|
|
|
|
|
|
|
# Optionally, you can plot the uncertainty as shaded regions (confidence intervals)
|
|
|
|
# Create the upper and lower bounds of the theoretical model with uncertainties
|
|
|
|
fitTheory_upper.append(np.zeros_like(self.dataX))
|
|
|
|
fitTheory_lower.append(np.zeros_like(self.dataX))
|
|
|
|
|
|
|
|
for p, id in enumerate(xsecID):
|
|
|
|
fitTheory_upper[k] += (popt[p] + perr[p]) * np.interp(self.dataX, self.dataX, self.data[id])
|
|
|
|
fitTheory_lower[k] += (popt[p] - perr[p]) * np.interp(self.dataX, self.dataX, self.data[id])
|
|
|
|
|
|
|
|
fig = plt.figure()
|
2024-11-07 16:17:28 -05:00
|
|
|
figure_list.append(fig)
|
2024-11-07 14:05:03 -05:00
|
|
|
|
|
|
|
# Plot results
|
2024-11-07 16:17:28 -05:00
|
|
|
plt.errorbar(x_exp, y_exp, xerr=x_err, yerr=y_err, fmt='x', label='Experimental Data', color='black', markersize = 15, elinewidth=2)
|
2024-11-07 14:05:03 -05:00
|
|
|
|
|
|
|
# Plot all fit theories
|
|
|
|
for i, fit in enumerate(fitTheory):
|
2024-11-07 16:17:28 -05:00
|
|
|
plt.plot(self.dataX, fit, label=f'Chi2:{chi_squared[i]:.3f} | Xsec:{self.fitOption[expDataID][i]} Fit')
|
2024-11-07 14:05:03 -05:00
|
|
|
plt.fill_between(self.dataX, fitTheory_lower[i], fitTheory_upper[i], alpha=0.2)
|
|
|
|
|
|
|
|
# Customize plot
|
|
|
|
plt.xlabel('Angle_CM [deg]')
|
|
|
|
plt.ylabel('X-Sec [a.u.]')
|
|
|
|
plt.legend()
|
|
|
|
plt.autoscale(enable=True, axis='x', tight=True)
|
|
|
|
plt.tight_layout()
|
|
|
|
plt.yscale('log')
|
|
|
|
|
|
|
|
# Replace plt.title() with plt.text() to position the title inside the plot
|
|
|
|
plt.text(0.05, 0.05, f'Fit for Exp Data : {self.ExList[expDataID]} MeV', transform=plt.gca().transAxes,
|
|
|
|
fontsize=12, verticalalignment='bottom', horizontalalignment='left', color='black')
|
|
|
|
|
|
|
|
|
2024-11-07 16:17:28 -05:00
|
|
|
|
|
|
|
return figure_list
|