snapshot working on DWBA
This commit is contained in:
parent
db40a2bff0
commit
05204a6934
|
@ -1,14 +1,17 @@
|
|||
#!/usr/bin/env python3
|
||||
|
||||
|
||||
from boundState import BoundState
|
||||
from solveSE import WoodsSaxonPot, CoulombPotential, SpinOrbit_Pot, WS_SurfacePot
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
# boundState = BoundState(16, 8, 1, 0, 1, 0, 0.5, -4.14)
|
||||
# boundState.SetPotential(1.10, 0.65, -6, 1.25, 0.65, 1.25)
|
||||
# boundState.FindPotentialDepth(-75, -60, 0.1)
|
||||
# # boundState.PrintWF()
|
||||
# boundState.PlotBoundState()
|
||||
boundState = BoundState(16, 8, 1, 0, 1, 0, 0.5, -3.273)
|
||||
boundState.SetPotential(1.25, 0.65, -6, 1.10, 0.65, 1.30)
|
||||
boundState.FindPotentialDepth(-75, -40, 0.1)
|
||||
# boundState.PrintWF()
|
||||
boundState.PlotBoundState()
|
||||
|
||||
exit()
|
||||
|
||||
from distortedWave import DistortedWave
|
||||
|
||||
|
@ -19,22 +22,20 @@ from distortedWave import DistortedWave
|
|||
# dw.AddPotential(SpinOrbit_Pot(-5.250 + 0.162j, 1.02, 0.590), False)
|
||||
# dw.AddPotential(CoulombPotential(1.258), False)
|
||||
|
||||
dw = DistortedWave("60Ni", "d", 60)
|
||||
dw.PrintInput()
|
||||
dw.ClearPotential()
|
||||
dw.AddPotential(WoodsSaxonPot(-81.919, 1.15, 0.768), False)
|
||||
dw.AddPotential(WoodsSaxonPot(-4.836j, 1.33, 0.464), False)
|
||||
dw.AddPotential(WS_SurfacePot(-8.994j, 1.373, 0.774), False)
|
||||
dw.AddPotential(SpinOrbit_Pot(-3.557, 0.972, 1.011), False)
|
||||
dw.AddPotential(CoulombPotential(1.303), False)
|
||||
# dw = DistortedWave("60Ni", "d", 60)
|
||||
# dw.PrintInput()
|
||||
# dw.ClearPotential()
|
||||
# dw.AddPotential(WoodsSaxonPot(-81.919, 1.15, 0.768), False)
|
||||
# dw.AddPotential(WoodsSaxonPot(-4.836j, 1.33, 0.464), False)
|
||||
# dw.AddPotential(WS_SurfacePot(-8.994j, 1.373, 0.774), False)
|
||||
# dw.AddPotential(SpinOrbit_Pot(-3.557, 0.972, 1.011), False)
|
||||
# dw.AddPotential(CoulombPotential(1.303), False)
|
||||
|
||||
|
||||
# dw.CalScatteringMatrix()
|
||||
# dw.PrintScatteringMatrix()
|
||||
|
||||
|
||||
dw.CalScatteringMatrix()
|
||||
dw.PrintScatteringMatrix()
|
||||
|
||||
dw.PlotDCSUnpolarized(180, 1)
|
||||
# dw.PlotDCSUnpolarized(180, 1)
|
||||
|
||||
# for i in range(1, 19):
|
||||
# theta = 10*i
|
||||
|
@ -46,3 +47,277 @@ dw.PlotDCSUnpolarized(180, 1)
|
|||
# # dsc = dw.DCSUnpolarized(theta, 14)
|
||||
# # print(f"{theta:3.0f}, {nuAmp1:15.5f}, {nuAmp2:15.5f}, {dsc:10.6f}, {ruth:10.6f}")
|
||||
# print(f"{theta:3.0f}, {nuAmp1:15.5f}, {nuAmp2:15.5f}")
|
||||
|
||||
|
||||
import sys, os
|
||||
import re
|
||||
import numpy as np
|
||||
|
||||
sys.path.append(os.path.join(os.path.dirname(__file__), '../Cleopatra'))
|
||||
from IAEANuclearData import IsotopeClass
|
||||
|
||||
# Woods-Saxon
|
||||
v = 0
|
||||
r0 = 0
|
||||
a = 0
|
||||
vi = 0
|
||||
ri0 = 0
|
||||
ai = 0
|
||||
# Woods-Saxon Surface
|
||||
vsi = 0
|
||||
rsi0 = 0
|
||||
asi = 0
|
||||
# Spin-orbit
|
||||
vso = 0
|
||||
rso0 = 0
|
||||
aso = 0
|
||||
vsoi = 0
|
||||
rsoi0 = 0
|
||||
asoi = 0
|
||||
# Coulomb
|
||||
rc0 = 0
|
||||
|
||||
def AnCai(A : int, Z : int, E : float):
|
||||
global v, r0, a, vi, ri0, ai, vsi, rsi0, asi, vso, rso0, aso, vsoi, rsoi0, asoi, rc0
|
||||
|
||||
A3 = A**(1./3.)
|
||||
v = 91.85 - 0.249*E + 0.000116*pow(E,2) + 0.642 * Z / A3
|
||||
r0 = 1.152 - 0.00776 / A3
|
||||
a = 0.719 + 0.0126 * A3
|
||||
|
||||
vi = 1.104 + 0.0622 * E
|
||||
ri0 = 1.305 + 0.0997 / A3
|
||||
ai = 0.855 - 0.1 * A3
|
||||
|
||||
vsi = 10.83 - 0.0306 * E
|
||||
rsi0 = 1.334 + 0.152 / A3
|
||||
asi = 0.531 + 0.062 * A3
|
||||
|
||||
vso = 3.557
|
||||
rso0 = 0.972
|
||||
aso = 1.011
|
||||
|
||||
vsoi = 0.0
|
||||
rsoi0 = 0.0
|
||||
asoi = 0.0
|
||||
|
||||
rc0 = 1.303
|
||||
|
||||
def Koning(A : int, Z : int, E : float, Zproj : float):
|
||||
global v, r0, a, vi, ri0, ai, vsi, rsi0, asi, vso, rso0, aso, vsoi, rsoi0, asoi, rc0
|
||||
|
||||
N = A-Z
|
||||
A3 = A**(1./3.)
|
||||
|
||||
vp1 = 59.3 + 21.*(N-Z)/A - 0.024*A
|
||||
vn1 = 59.3 - 21.*(N-Z)/A - 0.024*A
|
||||
|
||||
vp2 = 0.007067 + 0.00000423*A
|
||||
vn2 = 0.007228 - 0.00000148*A
|
||||
|
||||
vp3 = 0.00001729 + 0.00000001136 * A
|
||||
vn3 = 0.00001994 - 0.00000002 * A
|
||||
|
||||
vp4 = 7e-9 # = vn4
|
||||
vn4 = vp4
|
||||
|
||||
wp1 = 14.667 + 0.009629*A
|
||||
wn1 = 12.195 + 0.0167*A
|
||||
|
||||
wp2 = 73.55 + 0.0795*A # = wn2
|
||||
wn2 = wp2
|
||||
|
||||
dp1 = 16 + 16.*(N-Z)/A
|
||||
dn1 = 16 - 16.*(N-Z)/A
|
||||
|
||||
dp2 = 0.018 + 0.003802/(1 + np.exp((A-156.)/8)) # = dn2
|
||||
dn2 = dp2
|
||||
|
||||
dp3 = 11.5 # = dn3
|
||||
dn3 = dp3
|
||||
|
||||
vso1 = 5.922 + 0.003 * A
|
||||
vso2 = 0.004
|
||||
|
||||
wso1 = -3.1
|
||||
wso2 = 160
|
||||
|
||||
epf = -8.4075 + 0.01378 *A
|
||||
enf = -11.2814 + 0.02646 *A
|
||||
|
||||
rc = 1.198 + 0.697/pow(A3,2) + 12.995/pow(A3,5)
|
||||
vc = 1.73/rc * Z / A3
|
||||
|
||||
v = vp1*(1 - vp2*(E-epf) + vp3*pow(E-epf,2) - vp4*pow(E-epf,3)) + vc * vp1 * (vp2 - 2*vp3*(E-epf) + 3*vp4*pow(E-epf,2))
|
||||
#neutron
|
||||
if Zproj == 0 :
|
||||
v = vn1*(1 - vn2*(E-enf) + vn3*pow(E-enf,2) - vn4*pow(E-enf,3))
|
||||
|
||||
r0 = 1.3039 - 0.4054 / A3
|
||||
a = 0.6778 - 0.000148 * A
|
||||
|
||||
vi = wp1 * pow(E-epf,2)/(pow(E-epf,2) + pow(wp2,2))
|
||||
if Zproj == 0 :
|
||||
vi = wn1 * pow(E-enf,2)/(pow(E-enf,2) + pow(wn2,2))
|
||||
|
||||
ri0 = 1.3039 - 0.4054 / A3
|
||||
ai = 0.6778 - 0.000148 * A
|
||||
|
||||
vsi = dp1 * pow(E-epf,2)/(pow(E-epf,2)+pow(dp3,2)) * np.exp(-dp2*(E-epf))
|
||||
if Zproj == 0 :
|
||||
vsi = dn1 * pow(E-enf,2)/(pow(E-enf,2)+pow(dn3,2)) * np.exp(-dn2*(E-enf))
|
||||
|
||||
rsi0 = 1.3424 - 0.01585 * A3
|
||||
asi = 0.5187 + 0.0005205 * A
|
||||
if Zproj == 0:
|
||||
asi = 0.5446 - 0.0001656 * A
|
||||
|
||||
vso = vso1 * np.exp(-vso2 * (E-epf))
|
||||
if Zproj == 0:
|
||||
vso = vso1 * np.exp(-vso2 * (E-enf))
|
||||
|
||||
rso0 = 1.1854 - 0.647/A3
|
||||
aso = 0.59
|
||||
|
||||
vsoi = wso1 * pow(E-epf,2)/(pow(E-epf,2)+pow(wso2,2))
|
||||
if Zproj == 0 :
|
||||
vsoi = wso1 * pow(E-enf,2)/(pow(E-enf,2)+pow(wso2,2))
|
||||
|
||||
rsoi0 = 1.1854 - 0.647/A3
|
||||
asoi = 0.59
|
||||
|
||||
rc0 = rc
|
||||
|
||||
def ConvertLSym(LSym :str) -> int:
|
||||
if LSym == "s" :
|
||||
return 0
|
||||
elif LSym == "p" :
|
||||
return 1
|
||||
elif LSym == "d" :
|
||||
return 2
|
||||
elif LSym == "f" :
|
||||
return 3
|
||||
elif LSym == "g" :
|
||||
return 4
|
||||
elif LSym == "h" :
|
||||
return 5
|
||||
elif LSym == "i" :
|
||||
return 6
|
||||
elif LSym == "j" :
|
||||
return 7
|
||||
elif LSym == "k" :
|
||||
return 8
|
||||
else :
|
||||
return -1
|
||||
|
||||
#==========================================
|
||||
|
||||
nu_A = "16O"
|
||||
nu_a = "d"
|
||||
nu_b = "p"
|
||||
nu_B = "17O"
|
||||
ELabPreU = 10 # MeV/u
|
||||
Ex = 0.87
|
||||
J_B = 0.5
|
||||
orbital = "1s1/2"
|
||||
|
||||
iso = IsotopeClass()
|
||||
|
||||
A_A, Z_A = iso.GetAZ(nu_A)
|
||||
A_a, Z_a = iso.GetAZ(nu_a)
|
||||
A_b, Z_b = iso.GetAZ(nu_b)
|
||||
A_B, Z_B = iso.GetAZ(nu_B)
|
||||
|
||||
A_x = abs(A_a - A_b)
|
||||
Z_x = abs(Z_a - Z_b)
|
||||
|
||||
mass_A = iso.GetMassFromSym(nu_A)
|
||||
mass_a = iso.GetMassFromSym(nu_a)
|
||||
mass_b = iso.GetMassFromSym(nu_b)
|
||||
mass_B = iso.GetMassFromSym(nu_B)
|
||||
|
||||
mass_x = iso.GetMassFromAZ( A_x, Z_x)
|
||||
|
||||
if A_A < A_B : # (d,p)
|
||||
A_c = A_A
|
||||
Z_c = Z_A
|
||||
BindingEnergy = mass_B - mass_A - mass_x + Ex
|
||||
else: #(p,d)
|
||||
A_c = A_B
|
||||
Z_c = Z_B
|
||||
BindingEnergy = mass_A - mass_B - mass_x
|
||||
|
||||
sym_A = iso.GetSymbol(A_A, Z_A)
|
||||
sym_B = iso.GetSymbol(A_B, Z_B)
|
||||
|
||||
if A_a == 2 and Z_a == 1:
|
||||
spin_a = 1.0
|
||||
spin_b = 0.5
|
||||
else:
|
||||
spin_a = 0.5
|
||||
spin_b = 1.0
|
||||
|
||||
Q_value = mass_A + mass_a - mass_b - mass_B - Ex
|
||||
|
||||
print(f"Q-value : {Q_value:10.6f} MeV")
|
||||
print(f"Binding : {BindingEnergy:10.6f} MeV")
|
||||
|
||||
#=================== digest orbital
|
||||
match = re.search(r'[a-zA-Z]', orbital) # Find first letter
|
||||
if match:
|
||||
index = match.start() # Get position of the first letter
|
||||
|
||||
node = int(orbital[:index])
|
||||
l_sym = orbital[index:index+1]
|
||||
j_sym = orbital[index+1:]
|
||||
j = eval(j_sym)
|
||||
l = ConvertLSym(l_sym)
|
||||
|
||||
#=================== find the maximum L for partial wave
|
||||
mass_I = mass_A * mass_a / (mass_A + mass_a) # reduced mass of incoming channel
|
||||
hbarc = 197.3269788 # MeV.fm
|
||||
k_I = np.sqrt(2*mass_I * A_a * ELabPreU)/hbarc # wave number of incoming channel
|
||||
touching_Radius = 1.25*(A_A**(1./3) + A_a**(1./3)) + 10 # add 10 fm
|
||||
maxL = int(touching_Radius * k_I) # maximum partial wave
|
||||
print(f"max L : {maxL}")
|
||||
|
||||
#================== Bound state
|
||||
boundState = BoundState(A_c, Z_c, A_x, Z_x, node, l, j, BindingEnergy)
|
||||
boundState.SetPotential(1.25, 0.65, -6, 1.10, 0.65, 1.30)
|
||||
boundState.FindPotentialDepth(-70, -55, 0.1)
|
||||
# # boundState.PrintWF()
|
||||
# boundState.PlotBoundState()
|
||||
|
||||
#================== incoming wave function
|
||||
AnCai(A_A, Z_A, A_a * ELabPreU)
|
||||
|
||||
dwI = DistortedWave(nu_A, nu_a, ELabPreU * A_a)
|
||||
dwI.maxL = maxL
|
||||
dwI.ClearPotential()
|
||||
dwI.AddPotential(WoodsSaxonPot(-v, r0, a), False)
|
||||
dwI.AddPotential(WoodsSaxonPot(-1j*vi, ri0, ai), False)
|
||||
dwI.AddPotential(WS_SurfacePot(-1j*vsi, rsi0, asi), False)
|
||||
dwI.AddPotential(SpinOrbit_Pot(-vso , rso0, aso), False)
|
||||
dwI.AddPotential(SpinOrbit_Pot(- 1j* vsoi, rsoi0, asoi), False)
|
||||
dwI.AddPotential(CoulombPotential(rc0), False)
|
||||
|
||||
sm_I, wfu_I = dwI.CalScatteringMatrix()
|
||||
|
||||
dwI.PrintScatteringMatrix()
|
||||
|
||||
#================= outgoing wave function
|
||||
Koning(A_B, Z_B, A_a*ELabPreU + Q_value - Ex, Z_b)
|
||||
|
||||
dwO = DistortedWave(nu_B, nu_b, ELabPreU * A_a + Q_value - Ex)
|
||||
dwO.maxL = maxL
|
||||
dwO.ClearPotential()
|
||||
dwO.AddPotential(WoodsSaxonPot(-v, r0, a), False)
|
||||
dwO.AddPotential(WoodsSaxonPot(-1j*vi, ri0, ai), False)
|
||||
dwO.AddPotential(WS_SurfacePot(-1j*vsi, rsi0, asi), False)
|
||||
dwO.AddPotential(SpinOrbit_Pot(-vso , rso0, aso), False)
|
||||
dwO.AddPotential(SpinOrbit_Pot(- 1j* vsoi, rsoi0, asoi), False)
|
||||
dwO.AddPotential(CoulombPotential(rc0), False)
|
||||
|
||||
sm_O, wfu_O = dwO.CalScatteringMatrix()
|
||||
|
||||
dwO.PrintScatteringMatrix()
|
|
@ -77,7 +77,7 @@ class BoundState(SolvingSE):
|
|||
self.AddPotential(CoulombPotential(self.rc), False)
|
||||
|
||||
self.SolveByRK4()
|
||||
self.SolU = np.real(self.SolU)
|
||||
self.solU = np.real(self.solU)
|
||||
|
||||
# find number of node in self.SolU with in to potenital range
|
||||
# find how many time self.SolU change sign
|
||||
|
@ -85,7 +85,7 @@ class BoundState(SolvingSE):
|
|||
for i, r in enumerate(self.rpos):
|
||||
if r > self.r0 * (pow(self.A_A, 1/3) + pow(self.A_a, 1/3)) + 5 * self.a0:
|
||||
break
|
||||
if self.SolU[i] * self.SolU[i-1] < 0:
|
||||
if self.solU[i] * self.solU[i-1] < 0:
|
||||
detNode += 1
|
||||
|
||||
if detNode != self.node:
|
||||
|
@ -95,11 +95,11 @@ class BoundState(SolvingSE):
|
|||
self.FoundBounfState = True
|
||||
|
||||
# normalize the wave function
|
||||
norm = simpson(self.SolU**2) * self.dr
|
||||
self.SolU /= np.sqrt(norm)
|
||||
self.wf = np.zeros_like(self.SolU)
|
||||
self.wf[1:] = self.SolU[1:] / self.rpos[1:]
|
||||
self.wf[0] = self.SolU[0] # Handle the first element separately if needed
|
||||
norm = simpson(self.solU**2) * self.dr
|
||||
self.solU /= np.sqrt(norm)
|
||||
self.wf = np.zeros_like(self.solU)
|
||||
self.wf[1:] = self.solU[1:] / self.rpos[1:]
|
||||
self.wf[0] = self.solU[0] # Handle the first element separately if needed
|
||||
|
||||
#extrapolate wf with quadrotic from 0.2, 0.1 to 0.0
|
||||
def func(x, a, b, c):
|
||||
|
@ -123,7 +123,7 @@ class BoundState(SolvingSE):
|
|||
|
||||
def PlotBoundState(self, maker=None):
|
||||
if not self.FoundBounfState:
|
||||
plt.plot(self.rpos[1:], self.SolU[1:]/self.rpos[1:])
|
||||
plt.plot(self.rpos[1:], self.solU[1:]/self.rpos[1:])
|
||||
else:
|
||||
if maker is None:
|
||||
plt.plot(self.rpos, self.wf)
|
||||
|
|
|
@ -24,7 +24,6 @@ from IAEANuclearData import IsotopeClass
|
|||
#####################################################
|
||||
import numpy as np
|
||||
import re
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
# Woods-Saxon
|
||||
|
@ -317,7 +316,7 @@ with open(fileOutName, "w") as file:
|
|||
file.write(f"{asoi:+08.4f}\n") #
|
||||
#===== Block 6
|
||||
if A_a == 2 :
|
||||
Koning(A_B, Z_B, A_a*ELab + Q_value - Ex, Z_a)
|
||||
Koning(A_B, Z_B, A_a*ELab + Q_value - Ex, Z_b)
|
||||
else:
|
||||
AnCai(A_B, Z_B, A_a*ELab + Q_value - Ex)
|
||||
file.write(f"{Q_value:+08.4f}")
|
||||
|
|
Loading…
Reference in New Issue
Block a user