snapshot, finial step for DWBA_ZR

This commit is contained in:
Ryan@Home 2025-02-22 20:26:56 -05:00
parent 5313494e9c
commit 3b67db12e2
8 changed files with 418 additions and 97 deletions

3
.gitignore vendored
View File

@ -14,5 +14,8 @@ IAEA_NuclearData.csv
*.in
*.out
*.prof
test.py
DWUCK4

View File

@ -136,7 +136,7 @@ class IsotopeClass:
except:
return "unknown"
def GetJpi(self, A : int, Z : int):
def GetJpi(self, A : int, Z : int) -> str:
try:
dudu = self.data[(self.data['z']==Z) & (self.data['A']==A)]
return dudu['jp'].iloc[0]

View File

@ -43,4 +43,6 @@
#10Be(t,p)12Be 0 1L=0 0+ 0.000 5MeV/u lA #two-nucleon_transfer
#32Si(t,p)34Si 0 0L=0 0+ 0.000 8MeV/u lA #two-nucleon_transfer
#133Sb(t,3He)133Sn 7/2 0g7/2 0+ 0.000 8.5MeV/u Ax .... cannot cal
#12C(6Li,d)16O 0 nL=2 2+ 0.0 10MeV/u 6K
#12C(6Li,d)16O 0 nL=2 2+ 0.0 10MeV/u 6K
16O(d,p)17O 0 1s1/2 1/2+ 0.87 10MeV/u AK

View File

@ -1,13 +1,13 @@
#!/usr/bin/env python3
from boundState import BoundState
from solveSE import WoodsSaxonPot, CoulombPotential, SpinOrbit_Pot, WS_SurfacePot
import matplotlib.pyplot as plt
# boundState = BoundState(16, 8, 1, 0, 1, 0, 0.5, -3.273)
# boundState.SetPotential(1.25, 0.65, -6, 1.10, 0.65, 1.30)
# boundState.FindPotentialDepth(-75, -40, 0.1)
# boundState = BoundState(16, 8, 1, 0, 0, 2, 2.5, -4.14)
# boundState.SetPotential(1.10, 0.65, -6, 1.25, 0.65, 1.30)
# boundState.FindPotentialDepth(-75, -50, 0.1)
# # boundState.PrintWF()
# boundState.PlotBoundState()
@ -15,12 +15,12 @@ import matplotlib.pyplot as plt
from distortedWave import DistortedWave
dw = DistortedWave("60Ni", "p", 30)
dw.ClearPotential()
dw.AddPotential(WoodsSaxonPot(-47.937-2.853j, 1.20, 0.669), False)
dw.AddPotential(WS_SurfacePot(-6.878j, 1.28, 0.550), False)
dw.AddPotential(SpinOrbit_Pot(-5.250 + 0.162j, 1.02, 0.590), False)
dw.AddPotential(CoulombPotential(1.258), False)
# dw = DistortedWave("60Ni", "p", 30)
# dw.ClearPotential()
# dw.AddPotential(WoodsSaxonPot(-47.937-2.853j, 1.20, 0.669), False)
# dw.AddPotential(WS_SurfacePot(-6.878j, 1.28, 0.550), False)
# dw.AddPotential(SpinOrbit_Pot(-5.250 + 0.162j, 1.02, 0.590), False)
# dw.AddPotential(CoulombPotential(1.258), False)
# dw = DistortedWave("60Ni", "d", 60)
# dw.PrintInput()
@ -32,12 +32,12 @@ dw.AddPotential(CoulombPotential(1.258), False)
# dw.AddPotential(CoulombPotential(1.303), False)
dw.CalScatteringMatrix()
# dw.CalScatteringMatrix()
# dw.PrintScatteringMatrix()
dw.PlotDCSUnpolarized(180, 1)
# dw.PlotDCSUnpolarized(180, 1)
exit()
# exit()
# for i in range(1, 19):
# theta = 10*i
@ -54,10 +54,15 @@ exit()
import sys, os
import re
import numpy as np
from scipy.integrate import simpson
import matplotlib.pyplot as plt
sys.path.append(os.path.join(os.path.dirname(__file__), '../Cleopatra'))
from IAEANuclearData import IsotopeClass
from clebschGordan import clebsch_gordan, quantum_factorial, obeys_triangle_rule
from sympy.physics.quantum.cg import wigner_9j
# Woods-Saxon
v = 0
r0 = 0
@ -220,9 +225,12 @@ nu_b = "p"
nu_B = "17O"
ELabPreU = 10 # MeV/u
Ex = 0.87
J_B = 0.5
J_B = "1/2+"
orbital = "1s1/2"
import time
start_time = time.time() # Start the timer
iso = IsotopeClass()
A_A, Z_A = iso.GetAZ(nu_A)
@ -252,6 +260,12 @@ else: #(p,d)
sym_A = iso.GetSymbol(A_A, Z_A)
sym_B = iso.GetSymbol(A_B, Z_B)
spin_A_str = iso.GetJpi(A_A, Z_A)
spin_B_str = J_B
spin_A = float(eval(re.sub(r'[+-]', '', spin_A_str)))
spin_B = float(eval(re.sub(r'[+-]', '', J_B)))
if A_a == 2 and Z_a == 1:
spin_a = 1.0
spin_b = 0.5
@ -259,10 +273,7 @@ else:
spin_a = 0.5
spin_b = 1.0
Q_value = mass_A + mass_a - mass_b - mass_B - Ex
print(f"Q-value : {Q_value:10.6f} MeV")
print(f"Binding : {BindingEnergy:10.6f} MeV")
s = 0.5 # spin of x, neutron or proton
#=================== digest orbital
match = re.search(r'[a-zA-Z]', orbital) # Find first letter
@ -275,6 +286,39 @@ j_sym = orbital[index+1:]
j = eval(j_sym)
l = ConvertLSym(l_sym)
#==== check the angular conservasion
passJ = False
if obeys_triangle_rule(spin_A, spin_B, j):
passJ = True
else:
print(f"the orbital spin-J ({j}) does not consver J({nu_A}) + J({nu_B}) = {spin_A} + {spin_B}.")
passS = False
if obeys_triangle_rule(spin_a, spin_b, s):
passS = True
else:
print(f"the orbital spin-s ({s})does not consver S({nu_a}) + S({nu_b}) = {spin_a} + {spin_b}.")
passl = False
if obeys_triangle_rule(j, s, l):
passl = True
else:
print(f"the orbital spin-l ({l})does not consver J({j}) + J({s}).")
if passJ == False or passS == False or passl == False :
print("Fail angular momentum conservation.")
exit()
reactionStr = f"{nu_A}({spin_A_str})({nu_a},{nu_b}){nu_B}({Ex:.3f}|{spin_B_str}, {orbital}) @ {ELabPreU:.1f} MeV/u"
print("==================================================")
print(reactionStr)
Q_value = mass_A + mass_a - mass_b - mass_B - Ex
print(f"Transfer Orbtial : {orbital}")
print(f"Q-value : {Q_value:10.6f} MeV")
print(f"Binding : {BindingEnergy:10.6f} MeV")
#=================== find the maximum L for partial wave
mass_I = mass_A * mass_a / (mass_A + mass_a) # reduced mass of incoming channel
hbarc = 197.3269788 # MeV.fm
@ -284,17 +328,22 @@ maxL = int(touching_Radius * k_I) # maximum partial wave
print(f"max L : {maxL}")
#================== Bound state
print("====================== Bound state ")
boundState = BoundState(A_c, Z_c, A_x, Z_x, node, l, j, BindingEnergy)
boundState.SetPotential(1.25, 0.65, -6, 1.10, 0.65, 1.30)
boundState.SetPotential(1.10, 0.65, -6, 1.25, 0.65, 1.30)
boundState.FindPotentialDepth(-70, -55, 0.1)
# # boundState.PrintWF()
# boundState.PlotBoundState()
# exit()
#================== incoming wave function
print("====================== Incoming wave function ")
AnCai(A_A, Z_A, A_a * ELabPreU)
dwI = DistortedWave(nu_A, nu_a, ELabPreU * A_a)
dwI.maxL = maxL
dwI.PrintInput()
dwI.ClearPotential()
dwI.AddPotential(WoodsSaxonPot(-v, r0, a), False)
dwI.AddPotential(WoodsSaxonPot(-1j*vi, ri0, ai), False)
@ -302,12 +351,17 @@ dwI.AddPotential(WS_SurfacePot(-1j*vsi, rsi0, asi), False)
dwI.AddPotential(SpinOrbit_Pot(-vso , rso0, aso), False)
dwI.AddPotential(SpinOrbit_Pot(- 1j* vsoi, rsoi0, asoi), False)
dwI.AddPotential(CoulombPotential(rc0), False)
dwI.PrintPotentials()
sm_I, wfu_I = dwI.CalScatteringMatrix()
dwI.PrintScatteringMatrix()
# dwI.PlotDistortedWave(1, 1, 20)
# dwI.PlotScatteringMatrix()
#================= outgoing wave function
print("====================== Outgoing wave function ")
Koning(A_B, Z_B, A_a*ELabPreU + Q_value - Ex, Z_b)
dwO = DistortedWave(nu_B, nu_b, ELabPreU * A_a + Q_value - Ex)
@ -319,7 +373,102 @@ dwO.AddPotential(WS_SurfacePot(-1j*vsi, rsi0, asi), False)
dwO.AddPotential(SpinOrbit_Pot(-vso , rso0, aso), False)
dwO.AddPotential(SpinOrbit_Pot(- 1j* vsoi, rsoi0, asoi), False)
dwO.AddPotential(CoulombPotential(rc0), False)
dwO.PrintPotentials()
sm_O, wfu_O = dwO.CalScatteringMatrix()
dwO.PrintScatteringMatrix()
dwO.PrintScatteringMatrix()
# dwO.PlotDistortedWave(1, 1.5, 20)
end_time = time.time() # End the timer
print(f"Time used {(end_time - start_time) * 1000:.2f} milliseconds")
#=================== Calculate radial integral
print("====================== Calculating Radial integrals")
def FormatSpin(spin : float) -> str:
if int(2*spin) % 2 == 0 :
return f"{int(spin):+d}"
else:
return f"{int(2*spin):+d}/2"
spin_a = dwI.spin_a
spin_b = dwO.spin_a
radialInt = np.zeros((maxL+1, int(2*spin_a+1), int(2*spin_b+1)), dtype=complex)
bs = boundState.GetBoundStateWF()
for L in range(0, maxL+1):
for index1 in range(0, len(wfu_I[L])):
wf1 = wfu_I[L][index1]
for index2 in range(0, len(wfu_O[L])):
wf2 = wfu_O[L][index2]
# if L == 0 and index1 == 2 and index2 == 1 :
# for i in range(0, len(bs)):
# if i%50 == 0 :
# print(bs[i], wf1[i], wf2[i], bs[i]* wf1[i]* wf2[i])
pf1 = np.exp(1j*dwI.CoulombPhaseShift(L))
pf2 = np.exp(1j*dwI.CoulombPhaseShift(L))
integral = simpson (bs*wf1*wf2, dx=boundState.dr)
radialInt[L][index1][index2] = integral * pf1 * pf2
#print radial integral
for index1 in range(0, int(2*spin_a) + 1):
for index2 in range(0, int(2*spin_b) + 1):
print(f"======================= J1 = L{FormatSpin(index1-spin_a)}, J2 = L{FormatSpin(index2-spin_b)}")
for L in range(0, maxL+1):
J1 = L + index1 - spin_a
J2 = L + index2 - spin_b
print(f"{L:2d}, {J1:4.1f}, {J2:4.1f}, {np.real(radialInt[L][index1][index2]):12.4e} + {np.imag(radialInt[L][index1][index2]):12.4e}I")
# Plot radial integral
fig, axes = plt.subplots(int(2*spin_b+1), int(2*spin_a+1), figsize=(6*int(2*spin_a+1), 4*int(2*spin_b+1)))
for index2 in range(0, int(2*spin_b) + 1):
for index1 in range(0, int(2*spin_a) + 1):
haha = []
l_list = []
for L in range(0, maxL+1):
J1 = L + index1 - spin_a
J2 = L + index2 - spin_b
if J1 < 0 or J2 < 0 :
continue
l_list.append(L)
haha.append(radialInt[L][index1][index2])
axes[index2, index1].plot(l_list, np.real(haha), label="Real", marker='o')
axes[index2, index1].plot(l_list, np.imag(haha), label="Imag", marker='x')
axes[index2, index1].legend()
axes[index2, index1].set_xlabel('L')
axes[index2, index1].set_ylabel('Value')
axes[index2, index1].set_title(f'Radial Int. vs L for Spin J1 = L{FormatSpin(index1-spin_a)}, J2 = L{FormatSpin(index2-spin_b)}.')
axes[index2, index1].set_xlim(-1, maxL+1)
axes[index2, index1].grid()
plt.tight_layout()
plt.show(block=False)
input("Press Enter to continue...")
def Gamma(L1, J1, L2, J2, m, ma, mb):
if int(L1 + L2 + l)%2 != 0:
return 0
else:
fact0 = wigner_9j(j, l, s, J1, L1, spin_a, J2, L2, spin_b)
if fact0 == 0:
return 0
else:
fact1 = pow(-1, m) * np.power(1j, L1-L2-l) * (2*L2+1) * np.sqrt((2*l+1)*(2*s+1)*(2*L1+1)*(2*J2+1))
fact2 = np.sqrt( quantum_factorial(L2-m) / quantum_factorial(L2+m) )
fact3 = clebsch_gordan(J2, mb-m, j, m-mb+ma, J1, ma)
fact4 = clebsch_gordan(L1, 0, spin_a, ma, J1, ma)
fact5 = clebsch_gordan(L2, -m, spin_b, mb, J2, mb-m)
fact6 = clebsch_gordan(L1, 0, l, 0, L2, 0)
return fact0 * fact1 * fact2 * fact3 * fact4 * fact5 * fact6
def Beta(m, ma, mb, theta_deg):
return 0

View File

@ -9,6 +9,7 @@ import numpy as np
import matplotlib.pyplot as plt
from mpmath import whitw
import mpmath
import time
mpmath.mp.dps = 15 # Decimal places of precision
@ -21,6 +22,7 @@ class BoundState(SolvingSE):
self.PrintInput()
self.node = node # number of nodes of the wave function r > 0
self.FoundBounfState = False
self.wf = None
def SetPotential(self, r0, a0, Vso, rso, aso, rc = 0.0):
self.r0 = r0
@ -36,6 +38,7 @@ class BoundState(SolvingSE):
self.AddPotential(CoulombPotential(rc), False) # not use mass number of a
def FindPotentialDepth(self, Vmin, Vmax, Vstep=1, isPathWhittaker = True):
start_time = time.time() # Start the timer
V0List = np.arange(Vmin, Vmax, Vstep)
lastSolU = []
minLastSolU = 0
@ -121,6 +124,12 @@ class BoundState(SolvingSE):
print(f"ANC : {self.ANC:10.6e}")
self.wf[rIndex:] = self.ANC * np.array(W_values[rIndex:])
end_time = time.time() # End the timer
print(f"Finding Potential Depth and Bound state took {(end_time - start_time) * 1000:.2f} milliseconds")
def GetBoundStateWF(self):
return self.wf
def PlotBoundState(self, maker=None):
if not self.FoundBounfState:
plt.plot(self.rpos[1:], self.solU[1:]/self.rpos[1:])

View File

@ -13,6 +13,25 @@ from scipy.special import gamma
import numpy as np
from math import sqrt
def KroneckerDelta(i, j):
if i == j:
return 1
else:
return 0
def obeys_triangle_rule(j1, j2, j3):
"""Check if j1, j2, j3 obey the vector summation rules."""
# Ensure non-negativity (optional if inputs are guaranteed positive)
if j1 < 0 or j2 < 0 or j3 < 0:
return False
# Triangle inequalities
if (j3 < abs(j1 - j2) or j3 > j1 + j2):
return False
# Check if j1 + j2 + j3 is an integer (for half-integer j, this is automatic)
if (j1 + j2 + j3) % 1 != 0:
return False
return True
def quantum_factorial(n):
"""
Calculate factorial for integer or half-integer numbers using gamma function.
@ -87,3 +106,109 @@ def clebsch_gordan(j1, m1,j2, m2, j, m):
return prefactor * sum_result
#============ don;t use, very slow, use the sympy package
def threej(j1, m1, j2, m2, j3, m3):
if m1 + m2 + m3 != 0:
return 0
if obeys_triangle_rule(j1, j2, j3) == False:
return 0
cg = clebsch_gordan(j1, m1, j2, m2, j3, -m3)
norm = pow(-1, j1-j2-m3)/(2*j3+1)**0.5
return norm * cg
def sixj(j1, j2, j3, j4, j5, j6):
"""Compute the 6j symbol using Clebsch-Gordan coefficients."""
# Check triangle conditions
if not (obeys_triangle_rule(j1, j2, j3) and
obeys_triangle_rule(j1, j5, j6) and
obeys_triangle_rule(j4, j2, j6) and
obeys_triangle_rule(j4, j5, j3)):
return 0.0
sixj_value = 0.0
# Ranges for m values
m1_range = range(-j1, j1 + 1)
m2_range = range(-j2, j2 + 1)
m4_range = range(-j4, j4 + 1)
m5_range = range(-j5, j5 + 1)
# Sum over m values
for m1 in m1_range:
for m2 in m2_range:
m3 = - m1 - m2
for m4 in m4_range:
for m5 in m5_range:
m6 = m2 + m4
if m3 + m5 not in m4_range or m1 + m6 not in m5_range:
continue
# cg1 = threej(j1, -m1, j2, -m2, j3, -m3)
cg1 = (-1)**(j1-j2+m3) * clebsch_gordan(j1, -m1, j2, -m2, j3, m3) / (2*j3+1)**0.5
cg2 = threej(j1, m1, j5, -m5, j6, m6)
cg3 = threej(j4, m4, j2, m2, j6, -m6)
cg4 = threej(j4, -m4, j5, m5, j3, m3)
norm = pow(-1, j1-m1 + j2-m2 + j3-m3 + j4-m4 + j5-m5 + j6-m6)
sixj_value += cg1 * cg2 * cg3 * cg4 * norm
return sixj_value
def ninej(j1, j2, j3, j4, j5, j6, j7, j8, j9):
"""Compute the 9j symbol using 6j symbols."""
# Check triangle conditions for rows
if not (obeys_triangle_rule(j1, j2, j3) and
obeys_triangle_rule(j4, j5, j6) and
obeys_triangle_rule(j7, j8, j9)):
return 0.0
# Check triangle conditions for columns
if not (obeys_triangle_rule(j1, j4, j7) and
obeys_triangle_rule(j2, j5, j8) and
obeys_triangle_rule(j3, j6, j9)):
return 0.0
ninej_value = 0.0
# Determine the range of intermediate angular momentum x
x_min = max(abs(j1 - j9), abs(j4 - j8), abs(j2 - j6))
x_max = min(j1 + j9, j4 + j8, j2 + j6)
# Sum over x (must be integer or half-integer depending on inputs)
step = 1 if all(j % 1 == 0 for j in [j1, j2, j3, j4, j5, j6, j7, j8, j9]) else 0.5
for x in [x_min + i * step for i in range(int((x_max - x_min) / step) + 1)]:
# if not (obeys_triangle_rule(j1, j4, j7) and
# obeys_triangle_rule(j1, j9, x) and # j1 j9
# obeys_triangle_rule(j8, j9, j7) and
# obeys_triangle_rule(j8, j4, x) and # j8 j4
# obeys_triangle_rule(j2, j5, j8) and
# obeys_triangle_rule(j2, x, j6) and # j2 j6
# obeys_triangle_rule(j4, j5, j6) and
# obeys_triangle_rule(j4, x, j8) and # j4 j8
# obeys_triangle_rule(j3, j6, j9) and
# obeys_triangle_rule(j3, j1, j2) and
# obeys_triangle_rule( x, j6, j2) and # j2 j6
# obeys_triangle_rule( x, j1, j9)): # j1 j9
# continue
if not (obeys_triangle_rule(j1, j9, x) and # j1 j9
obeys_triangle_rule(j8, j4, x) and # j8 j4
obeys_triangle_rule(j2, x, j6)): # j1 j9
continue
sixj1 = sixj(j1, j4, j7, j8, j9, x)
sixj2 = sixj(j2, j5, j8, j4, x, j6)
sixj3 = sixj(j3, j6, j9, x, j1, j2)
phase = (-1) ** int(2 * x) # Phase factor
weight = 2 * x + 1 # Degeneracy factor
ninej_value += phase * weight * sixj1 * sixj2 * sixj3
return ninej_value

View File

@ -17,20 +17,8 @@ def SevenPointsSlope(data, n):
def FivePointsSlope(data, n):
return ( data[n + 2] - 8 * data[n + 1] + 8 * data[n - 1] - data[n - 2] ) / 12
# from sympy.physics.quantum.cg import CG
# from sympy import S
# def clebsch_gordan(j1, m1, j2, m2, j, m):
# cg = CG(S(j1), S(m1), S(j2), S(m2), S(j), S(m))
# result = cg.doit()
# return np.complex128(result)
def KroneckerDelta(i, j):
if i == j:
return 1
else:
return 0
from clebschGordan import clebsch_gordan
from clebschGordan import clebsch_gordan, KroneckerDelta
import time
############################################################
class DistortedWave(SolvingSE):
@ -57,6 +45,8 @@ class DistortedWave(SolvingSE):
return np.angle(gamma(L+1+1j*eta))
def CalScatteringMatrix(self, maxL = None, verbose = False):
start_time = time.time() # Start the timer
if maxL is None:
maxL = self.maxL
@ -101,16 +91,28 @@ class DistortedWave(SolvingSE):
temp_ScatMatrix.append(ScatMatrix)
dwU = np.array(self.solU, dtype=np.complex128)
dwU *= np.exp(-1j*sigma)/(B-A*1j)
#dwU *= np.exp(-1j*sigma)/(B-A*1j)
dwU *= 1./(B-A*1j)
temp_distortedWaveU.append(dwU)
self.ScatMatrix.append(temp_ScatMatrix)
self.distortedWaveU.append(temp_distortedWaveU)
end_time = time.time() # End the timer
print(f"Calculate Scattering Matrixes took {(end_time - start_time) * 1000:.2f} milliseconds")
return [self.ScatMatrix, self.distortedWaveU]
def PrintScatteringMatrix(self):
print("======================= Scattering Matrix")
for L in range(0, len(self.ScatMatrix)):
if L == 0 :
print(" ", end="")
for i in range(0, len(self.ScatMatrix[L])):
print(f"{{{'L':>2s},{'J':>4s}, {'Real':>10s} + {'Imaginary':>10s}}}, ", end="")
print("")
print("{", end="")
for i in range(0, len(self.ScatMatrix[L])):
print("{", end="")
@ -125,11 +127,14 @@ class DistortedWave(SolvingSE):
return self.ScatMatrix[L][J-L+self.S]
def GetDistortedWave(self, L, J):
return self.distortedWaveU[L][J-L+self.S]
return self.distortedWaveU[L][int(J-L+self.S)]
def PlotDistortedWave(self, L, J):
def PlotDistortedWave(self, L, J, maxR = None):
plt.plot(self.rpos, np.real(self.GetDistortedWave(L, J)), label="Real")
plt.plot(self.rpos, np.imag(self.GetDistortedWave(L, J)), label="Imaginary")
plt.title(f"Radial wave function for L={L} and J={J}")
if maxR != None :
plt.xlim(-1, maxR)
plt.legend()
plt.grid()
plt.show(block=False)

View File

@ -8,79 +8,100 @@ import sys, os
sys.path.append(os.path.join(os.path.dirname(__file__), '../Cleopatra'))
from IAEANuclearData import IsotopeClass
class CoulombPotential:
def __init__(self, rc):
self.rc = rc
self.id = 0
self.ee = 1.43996 # MeV.fm
def setA(self, A):
self.Rc = self.rc * math.pow(A, 1/3)
def setAa(self, A, a):
self.Rc = self.rc * (math.pow(A, 1/3) + math.pow(a, 1/3))
class PotentialForm:
def __init__(self):
self.V0 = -10
self.r0 = 1.3
self.a0 = 0.65
self.id = -1
def setCharge(self, Z):
self.Charge = Z
def output(self, x):
if x >self.Rc:
return (self.Charge * self.ee) / (x + 1e-20) # Add a small value to avoid division by zero
else:
return (self.Charge * self.ee) / (2 * self.Rc) * (3 - (x / self.Rc)**2)
# def setA(self, A):
# self.R0 = self.r0 * math.pow(A, 1/3)
class WoodsSaxonPot:
def setAa(self, A, a):
self.R0= self.r0 * (math.pow(A, 1/3) + math.pow(a, 1/3))
def output(self, x):
return 0
def printPot(self, msg:str):
print(f"{msg:20s} : V0 {np.real(self.V0):7.3f} + {np.imag(self.V0):7.3f} I, R0 {self.R0:6.4f}({self.r0:6.4f}), a0 {self.a0:6.4f}, ")
class CoulombPotential(PotentialForm):
def __init__(self, rc):
self.V0 = 0
self.r0 = rc
self.a0 = 0
self.id = 0
self.ee = 1.43996 # MeV.fm
def output(self, x):
if self.Charge == 0 :
return 0
else:
if x >self.R0:
return (self.Charge * self.ee) / (x + 1e-20) # Add a small value to avoid division by zero
else:
return (self.Charge * self.ee) / (2 * self.R0) * (3 - (x / self.R0)**2)
def printPot(self):
return super().printPot("Coulomb")
class WoodsSaxonPot(PotentialForm):
def __init__(self, V0, r0, a0) :
self.V0 = V0
self.r0 = r0
self.a0 = a0
self.id = 1
def setA(self, A):
self.R0 = self.r0 * math.pow(A, 1/3)
def setAa(self, A, a):
self.R0 = self.r0 * (math.pow(A, 1/3) + math.pow(a, 1/3))
def output(self, x):
return self.V0/(1 + math.exp((x-self.R0)/self.a0))
if self.V0 == 0.0:
return 0
else:
return self.V0/(1 + math.exp((x-self.R0)/self.a0))
class SpinOrbit_Pot:
def printPot(self):
return super().printPot("Woods-Saxon")
class SpinOrbit_Pot(PotentialForm):
def __init__(self, VSO, rSO, aSO) :
# the LS factor is put in the SolvingSE Class
self.VSO = VSO
self.rSO = rSO
self.aSO = aSO
self.V0 = VSO
self.r0 = rSO
self.a0 = aSO
self.id = 2
def setA(self, A):
self.RSO = self.rSO * math.pow(A, 1/3)
def setAa(self, A, a):
self.RSO = self.rSO * (math.pow(A, 1/3) + math.pow(a, 1/3))
def output(self, x):
if x > 0 :
return 4*(self.VSO * math.exp((x-self.RSO)/self.aSO))/(self.aSO*math.pow(1+math.exp((x-self.RSO)/self.aSO),2))/x
else :
return 4*1e+19
if self.V0 == 0.0 :
return 0
else:
if x > 0 :
return 4*(self.V0 * math.exp((x-self.R0)/self.a0))/(self.a0*math.pow(1+math.exp((x-self.R0)/self.a0),2))/x
else :
return 4*1e+19
class WS_SurfacePot:
def printPot(self):
return super().printPot("Spin-Orbit")
class WS_SurfacePot(PotentialForm):
def __init__(self, V0, r0, a0):
self.V0 = V0
self.r0 = r0
self.a0 = a0
self.id = 3
def setA(self, A):
self.R0 = self.r0 * math.pow(A, 1/3)
def setAa(self, A, a):
self.R0 = self.r0 * (math.pow(A, 1/3) + math.pow(a, 1/3))
def output(self, x):
exponent = (x - self.R0) / self.a0
return 4* self.V0 * math.exp(exponent) / (1 + math.exp(exponent))**2
if self.V0 == 0 :
return 0
else:
exponent = (x - self.R0) / self.a0
return 4* self.V0 * math.exp(exponent) / (1 + math.exp(exponent))**2
def printPot(self):
return super().printPot("Woods-Saxon Surface")
#========================================
class SolvingSE:
@ -205,23 +226,30 @@ class SolvingSE:
def ClearPotential(self):
self.potential_List = []
def AddPotential(self, pot, useBothMass : bool = False):
if pot.id == 0:
pot.setCharge(self.Z)
if useBothMass:
pot.setAa(self.A_A, self.A_a)
else:
pot.setAa(self.A_A, 0)
self.potential_List.append(pot)
def AddPotential(self, pot : PotentialForm, useBothMass : bool = False):
if isinstance(pot, PotentialForm):
if pot.id == 0:
pot.setCharge(self.Z)
if useBothMass:
pot.setAa(self.A_A, self.A_a)
else:
pot.setAa(self.A_A, 0)
self.potential_List.append(pot)
def __PotentialValue(self, x):
value = 0
for pot in self.potential_List:
if pot.id == 2 and self.L > 0:
value = value + self.LS() * pot.output(x)
else:
value = value + pot.output(x)
if isinstance(pot, PotentialForm):
if pot.id == 2 and self.L > 0:
value = value + self.LS() * pot.output(x)
else:
value = value + pot.output(x)
return value
def PrintPotentials(self):
for pot in self.potential_List:
if isinstance(pot, PotentialForm):
pot.printPot()
def GetPotentialValue(self, x):
return self.__PotentialValue(x)