snapshot. xsec scaling factor problem...

This commit is contained in:
Ryan Tang 2025-02-25 18:19:09 -05:00
parent c911e604eb
commit b1433f3d98
6 changed files with 140 additions and 296 deletions

View File

@ -1 +0,0 @@
../Cleopatra/IAEANuclearData.py

View File

@ -9,8 +9,8 @@ import time
from sympy import S
from sympy.physics.quantum.cg import wigner_9j
# sys.path.append(os.path.join(os.path.dirname(__file__), '../Cleopatra'))
# from IAEANuclearData import IsotopeClass
sys.path.append(os.path.join(os.path.dirname(__file__), '../Cleopatra'))
from IAEANuclearData import IsotopeClass
from assLegendreP import associated_legendre_array
from clebschGordan import clebsch_gordan, quantum_factorial, obeys_triangle_rule
@ -21,9 +21,9 @@ import opticalPotentials as op
from reactionData import approximate_to_half_integer, ReactionData
class DWBA_ZR:
def __init__(self, nu_A:str, nu_a:str, nu_b:str, nu_B:str, JB:str, orbital:str, ExB:float, ELabPerU:float):
def __init__(self, nu_A:str, nu_a:str, nu_b:str, JB:str, orbital:str, ExB:float, ELabPerU:float):
self.reactDigest = ReactionData(nu_A, nu_a, nu_b, nu_B, JB, orbital, ExB, ELabPerU)
self.reactDigest = ReactionData(nu_A, nu_a, nu_b, JB, orbital, ExB, ELabPerU)
if self.reactDigest.SpinBalanced == False :
return
@ -106,20 +106,37 @@ class DWBA_ZR:
self.dwO.PrintPotentials()
#---------------------------------------- other constants
print("========================================")
D0 = 1.55e+4 # for (d,p)
mass_I = self.dwI.mu
mass_O = self.dwO.mu
k_I = self.dwI.k
mass_O = self.dwO.mu
k_O = self.dwO.k # wave number of outgoing channel
# print(f" mu(I) : {mass_I}")
# print(f" k(I) : {k_I}")
# print(f" mu(O) : {mass_O}")
# print(f" k(O) : {k_O}")
self.massBoverMassA = A_B/A_A
self.ffactor = np.sqrt(4*np.pi)/k_I /k_O
self.xsecScalingfactor = D0 * mass_I * mass_O / np.pi / self.dwI.hbarc**4 / k_I**3 / k_O * (2*self.spin_B + 1) / (2*self.spin_A+1) / (2*self.spin_a +1)
# print(f"spin A : {self.spin_A}")
# print(f"spin a : {self.spin_a}")
# print(f"spin B : {self.spin_B}")
# self.spinFactor = (2*self.spin_B + 1) / (2*self.spin_A+1) / (2*self.s +1)
self.spinFactor = (2*self.spin_B + 1) / (2*self.spin_A+1) / (2*self.spin_a +1)
# print(f" spin factor : {self.spinFactor}")
self.xsecScalingfactor = D0 * mass_I * mass_O / np.pi / self.dwI.hbarc**4 / k_I**3 / k_O * self.spinFactor
self.radialInt = None
print(f"Xsec Scaling factor : {self.xsecScalingfactor:.6f}")
self.PreCalNineJ()
self.PreCalClebschGordan()
@ -132,7 +149,7 @@ class DWBA_ZR:
return f"{int(2*spin):+d}/2"
def FindBoundState(self):
self.boundState.FindPotentialDepth(-70, -45, 0.5)
self.boundState.FindPotentialDepth(-80, -45, 0.5)
def ConvertLJ2RadialIndex(self, L1:int, J1, L2:int, J2):
index1 = int(J1 - L1 + self.spin_a)
@ -200,6 +217,7 @@ class DWBA_ZR:
pf2 = np.exp(1j*self.dwO.CoulombPhaseShift(L2))
integral = simpson (bs*wf1*wf2, dx=self.boundState.dr)
indexL2 = int(L2 - L1 + self.l)
# product = integral * pf1 * pf2
product = integral * pf1 * pf2 * self.massBoverMassA
self.radialInt[L1][index1][indexL2][index2] = product
# if J1 == L1 + self.spin_a and L2 == L1 + 1 and J2 == L2 - self.spin_b:
@ -279,10 +297,10 @@ class DWBA_ZR:
plt.show(block=False)
input("Press Enter to continue...")
def PlotScatteringMatrix(self, isIncoming):
if isIncoming :
def PlotIncomingScatteringMatrix(self):
self.dwI.PlotScatteringMatrix()
else:
def PlotOutgoingScatteringMatrix(self):
self.dwO.PlotScatteringMatrix()
def PlotIncomingDistortedWave(self, L, J, maxR = None):
@ -344,8 +362,8 @@ class DWBA_ZR:
stop_time = time.time()
print(f"Total time for pre-cal all CG {(stop_time - start_time) * 1000:.2f} msec")
print(f"self.maxL1, maxJ1, maxJ2, maxJ3")
print(self.CG.shape)
print(f"max(L1 J1, L2, J2) = {self.maxL1}, {maxJ1}, {maxJ2}, {maxJ3}")
print("CG shape : ",self.CG.shape)
def GetPreCalCG(self, j1, m1, j2, m2, j3, m3):
return self.CG[int(2*j1), int(2*m1 + 2*self.maxJ1+1),
@ -462,9 +480,14 @@ class DWBA_ZR:
stop_time = time.time()
print(f"\nTotal time {(stop_time - start_time) :.2f} sec")
def PrintAngDist(self):
def PrintAngDist(self, step:int = 1):
count = 0
for th, xs in zip(self.angList, self.angDist):
print(f"{th:6.1f}, {xs:13.10f}")
if step > 1 and count % step != 0:
count += 1
continue
print(f"{{{th:6.1f}, {xs:13.10f}}},")
count += 1
def PlotAngDist(self, angMin = None, angMax = None):
plt.plot(self.angList, self.angDist)

View File

@ -1,6 +1,7 @@
#!/usr/bin/env python3
import re
# sys.path.append(os.path.join(os.path.dirname(__file__), '../Cleopatra'))
import sys, os
sys.path.append(os.path.join(os.path.dirname(__file__), '../Cleopatra'))
from IAEANuclearData import IsotopeClass
from clebschGordan import obeys_triangle_rule
@ -12,33 +13,39 @@ def approximate_to_half_integer(value):
return round(value * 2) / 2
class ReactionData:
def __init__(self, nu_A:str, nu_a:str, nu_b:str, nu_B:str, JB:str, orbital:str, ExB:float, ELabPerU:float):
self.SpinBalanced = self.ReactionDigestion(nu_A, nu_a, nu_b, nu_B, JB, orbital, ExB, ELabPerU)
def __init__(self, nu_A:str, nu_a:str, nu_b:str, JB:str, orbital:str, ExB:float, ELabPerU:float):
self.SpinBalanced = self.ReactionDigestion(nu_A, nu_a, nu_b, JB, orbital, ExB, ELabPerU)
def ReactionDigestion(self, nu_A:str, nu_a:str, nu_b:str, nu_B:str, JB:str, orbital:str, ExB:float, ELabPerU:float):
def ReactionDigestion(self, nu_A:str, nu_a:str, nu_b:str, JB:str, orbital:str, ExB:float, ELabPerU:float):
iso = IsotopeClass()
self.A_A, self.Z_A = iso.GetAZ(nu_A)
self.A_a, self.Z_a = iso.GetAZ(nu_a)
self.A_b, self.Z_b = iso.GetAZ(nu_b)
self.A_B, self.Z_B = iso.GetAZ(nu_B)
self.A_B = self.A_A + self.A_a - self.A_b
self.Z_B = self.Z_A + self.Z_a - self.Z_b
self.ELab = self.A_a * ELabPerU
mass_A = iso.GetMassFromSym(nu_A)
mass_a = iso.GetMassFromSym(nu_a)
mass_b = iso.GetMassFromSym(nu_b)
mass_B = iso.GetMassFromSym(nu_B)
mass_B = iso.GetMassFromAZ(self.A_B, self.Z_B)
ExB = ExB
# sym_A = iso.GetSymbol(A_A, Z_A)
# sym_B = iso.GetSymbol(A_B, Z_B)
self.sym_A = iso.GetSymbol(self.A_A, self.Z_A)
self.sym_B = iso.GetSymbol(self.A_B, self.Z_B)
nu_B = f"{self.A_B}{self.sym_B}"
# print(nu_B)
spin_A_str = iso.GetJpi(self.A_A, self.Z_A)
self.spin_A = float(eval(re.sub(r'[+-]', '', spin_A_str)))
self.spin_B = float(eval(re.sub(r'[+-]', '', JB)))
print("-------- spin_B",self.spin_B)
if self.A_a == 2 and self.Z_a == 1:
self.spin_a = 1.0
self.spin_b = 0.5
@ -69,10 +76,10 @@ class ReactionData:
index = match.start() # Get position of the first letter
self.node = int(orbital[:index])
l_sym = orbital[index:index+1]
self.l_sym = orbital[index:index+1]
j_sym = orbital[index+1:]
self.j = eval(j_sym)
self.l = op.ConvertLSym(l_sym)
self.l = op.ConvertLSym(self.l_sym)
self.j = approximate_to_half_integer(self.j)
self.s = approximate_to_half_integer(self.s)
@ -109,11 +116,16 @@ class ReactionData:
self.Q_value = mass_A + mass_a - mass_b - mass_B - ExB
self.dwI = DistortedWave(nu_A, nu_a, self.ELab)
self.mass_I = self.dwI.mu
self.k_I = self.dwI.k
Ecm_I = self.dwI.Ecm
Ecm_O = Ecm_I + self.Q_value
Ecm_O = Ecm_I + self.Q_value
self.Eout = ((Ecm_O + mass_b + mass_B + ExB)**2 - (mass_b + mass_B + ExB)**2)/2/(mass_B + ExB)
self.dwO = DistortedWave(nu_B, nu_b, self.Eout)
self.mass_O = self.dwO.mu
Eout2 = self.ELab + self.Q_value #this is incorrec, but used in ptolmey infileCreator
print("==================================================")

View File

@ -6,7 +6,7 @@ import re
import sys, os
import matplotlib.pyplot as plt
# sys.path.append(os.path.join(os.path.dirname(__file__), '../Cleopatra'))
sys.path.append(os.path.join(os.path.dirname(__file__), '../Cleopatra'))
from IAEANuclearData import IsotopeClass
class PotentialForm:

View File

@ -289,7 +289,8 @@ def plot_Xsec(data, isRuth = False):
global plotID
x_data, y_data = data
plt.figure(figsize=(8, 5))
# plt.figure(figsize=(8, 5))
plt.figure()
plt.plot(x_data, y_data, linestyle="-", color="b", label="Extracted Data")
plt.xlabel("Angle [deg]")
if isRuth:
@ -390,18 +391,19 @@ extract_LmaxSaSb() ## must be run first
bs_data = extract_BoundState()
# plot_BoundState(bs_data)
# sAmpIn, sAmpOut = extract_ScatAmp()
# plot_SMatrix(sAmpIn, sa)
# plot_SMatrix(sAmpOut, sb)
sAmpIn, sAmpOut = extract_ScatAmp()
plot_SMatrix(sAmpIn, sa)
plot_SMatrix(sAmpOut, sb)
# elXsec_data = extract_ElasticXsec()
# plot_Xsec(elXsec_data)
xsec_data = extract_Xsec()
plot_Xsec(xsec_data)
x_data, y_data = xsec_data
for i, r in enumerate(x_data):
if i % 5 != 0:
continue
print(f"{{{r:7.3f}, {y_data[i]:10.7f}}},")
def plot_RadialMatrix2(ma:float, mb:float, isPlot:bool=True):
@ -425,8 +427,6 @@ def plot_RadialMatrix2(ma:float, mb:float, isPlot:bool=True):
return radmat
rList, dwIn, dwOut = extract_DistortedWave()
def plot_DW(isIncoming:bool, L:int, m:float):
if isIncoming :
@ -444,7 +444,6 @@ def CoulombPS(L, eta):
r_list, bsW = bs_data
interp_radial = interp.interp1d(r_list, bsW, kind='cubic')
def CalRadialIntgeral(L, ma, mb, isPlot:bool = True, verbose:int = 1):
if isPlot :

View File

@ -2,6 +2,11 @@
import sys
import os
if len(sys.argv) < 7:
print("Error: Not enough arguments provided.")
print("Usage: ./{sys.argv[0]} reaction target_gs-spin orbital spin-pi Ex ELab[Mev/u]")
sys.exit(1)
reaction = sys.argv[1]
JA_pi = sys.argv[2]
orbital = sys.argv[3]
@ -9,176 +14,18 @@ JB_pi = sys.argv[4]
Ex = float(sys.argv[5])
ELab = float(sys.argv[6])
if len(sys.argv) < 7:
print("Error: Not enough arguments provided.")
print("Usage: ./{sys.argv[0]} reaction target_gs-spin orbital spin-pi Ex ELab[Mev/u]")
sys.exit(1)
sys.path.append(os.path.join(os.path.dirname(__file__), '../Cleopatra'))
sys.path.append(os.path.join(os.path.dirname(__file__), '../Raphael'))
from IAEANuclearData import IsotopeClass
import opticalPotentials as op
from reactionData import ReactionData
#####################################################
# only for (d,p) or (p,d) using An & Cai, Kronning
#####################################################
import numpy as np
import re
import matplotlib.pyplot as plt
# Woods-Saxon
v = 0
r0 = 0
a = 0
vi = 0
ri0 = 0
ai = 0
# Woods-Saxon Surface
vsi = 0
rsi0 = 0
asi = 0
# Spin-orbit
vso = 0
rso0 = 0
aso = 0
vsoi = 0
rsoi0 = 0
asoi = 0
# Coulomb
rc0 = 0
def AnCai(A : int, Z : int, E : float):
global v, r0, a, vi, ri0, ai, vsi, rsi0, asi, vso, rso0, aso, vsoi, rsoi0, asoi, rc0
A3 = A**(1./3.)
v = 91.85 - 0.249*E + 0.000116*pow(E,2) + 0.642 * Z / A3
r0 = 1.152 - 0.00776 / A3
a = 0.719 + 0.0126 * A3
vi = 1.104 + 0.0622 * E
ri0 = 1.305 + 0.0997 / A3
ai = 0.855 - 0.1 * A3
vsi = 10.83 - 0.0306 * E
rsi0 = 1.334 + 0.152 / A3
asi = 0.531 + 0.062 * A3
vso = 3.557
rso0 = 0.972
aso = 1.011
vsoi = 0.0
rsoi0 = 0.0
asoi = 0.0
rc0 = 1.303
def Koning(A : int, Z : int, E : float, Zproj : float):
global v, r0, a, vi, ri0, ai, vsi, rsi0, asi, vso, rso0, aso, vsoi, rsoi0, asoi, rc0
N = A-Z
A3 = A**(1./3.)
vp1 = 59.3 + 21.*(N-Z)/A - 0.024*A
vn1 = 59.3 - 21.*(N-Z)/A - 0.024*A
vp2 = 0.007067 + 0.00000423*A
vn2 = 0.007228 - 0.00000148*A
vp3 = 0.00001729 + 0.00000001136 * A
vn3 = 0.00001994 - 0.00000002 * A
vp4 = 7e-9 # = vn4
vn4 = vp4
wp1 = 14.667 + 0.009629*A
wn1 = 12.195 + 0.0167*A
wp2 = 73.55 + 0.0795*A # = wn2
wn2 = wp2
dp1 = 16 + 16.*(N-Z)/A
dn1 = 16 - 16.*(N-Z)/A
dp2 = 0.018 + 0.003802/(1 + np.exp((A-156.)/8)) # = dn2
dn2 = dp2
dp3 = 11.5 # = dn3
dn3 = dp3
vso1 = 5.922 + 0.003 * A
vso2 = 0.004
wso1 = -3.1
wso2 = 160
epf = -8.4075 + 0.01378 *A
enf = -11.2814 + 0.02646 *A
rc = 1.198 + 0.697/pow(A3,2) + 12.995/pow(A3,5)
vc = 1.73/rc * Z / A3
v = vp1*(1 - vp2*(E-epf) + vp3*pow(E-epf,2) - vp4*pow(E-epf,3)) + vc * vp1 * (vp2 - 2*vp3*(E-epf) + 3*vp4*pow(E-epf,2))
#neutron
if Zproj == 0 :
v = vn1*(1 - vn2*(E-enf) + vn3*pow(E-enf,2) - vn4*pow(E-enf,3))
r0 = 1.3039 - 0.4054 / A3
a = 0.6778 - 0.000148 * A
vi = wp1 * pow(E-epf,2)/(pow(E-epf,2) + pow(wp2,2))
if Zproj == 0 :
vi = wn1 * pow(E-enf,2)/(pow(E-enf,2) + pow(wn2,2))
ri0 = 1.3039 - 0.4054 / A3
ai = 0.6778 - 0.000148 * A
vsi = dp1 * pow(E-epf,2)/(pow(E-epf,2)+pow(dp3,2)) * np.exp(-dp2*(E-epf))
if Zproj == 0 :
vsi = dn1 * pow(E-enf,2)/(pow(E-enf,2)+pow(dn3,2)) * np.exp(-dn2*(E-enf))
rsi0 = 1.3424 - 0.01585 * A3
asi = 0.5187 + 0.0005205 * A
if Zproj == 0:
asi = 0.5446 - 0.0001656 * A
vso = vso1 * np.exp(-vso2 * (E-epf))
if Zproj == 0:
vso = vso1 * np.exp(-vso2 * (E-enf))
rso0 = 1.1854 - 0.647/A3
aso = 0.59
vsoi = wso1 * pow(E-epf,2)/(pow(E-epf,2)+pow(wso2,2))
if Zproj == 0 :
vsoi = wso1 * pow(E-enf,2)/(pow(E-enf,2)+pow(wso2,2))
rsoi0 = 1.1854 - 0.647/A3
asoi = 0.59
rc0 = rc
def ConvertLSym(LSym :str) -> int:
if LSym == "s" :
return 0
elif LSym == "p" :
return 1
elif LSym == "d" :
return 2
elif LSym == "f" :
return 3
elif LSym == "g" :
return 4
elif LSym == "h" :
return 5
elif LSym == "i" :
return 6
elif LSym == "j" :
return 7
elif LSym == "k" :
return 8
else :
return -1
#================== digest reaction
@ -189,82 +36,46 @@ nu_a = nuclei[1]
nu_b = nuclei[2]
nu_B = nuclei[3]
iso = IsotopeClass()
reactionData = ReactionData(nu_A, nu_a, nu_b, JB_pi, orbital, Ex, ELab)
A_A, Z_A = iso.GetAZ(nu_A)
A_a, Z_a = iso.GetAZ(nu_a)
A_b, Z_b = iso.GetAZ(nu_b)
A_B, Z_B = iso.GetAZ(nu_B)
sym_A = reactionData.sym_A
A_A = reactionData.A_A
Z_A = reactionData.Z_A
A_a = reactionData.A_a
Z_a = reactionData.Z_a
A_B = reactionData.A_B
Z_B = reactionData.Z_B
A_b = reactionData.A_b
Z_b = reactionData.Z_b
A_x = reactionData.A_x
Z_x = reactionData.Z_x
A_c = reactionData.A_c
Z_c = reactionData.Z_c
node = reactionData.node
l_sym = reactionData.l_sym
A_x = abs(A_a - A_b)
Z_x = abs(Z_a - Z_b)
spin_a = reactionData.spin_a
spin_b = reactionData.spin_b
#---- check mass number and charge number is balnaced
if A_A + A_a - A_b - A_B != 0 or Z_A + Z_a - Z_b - Z_B != 0 :
print("reaction is incorrect, mass or charge not balanced.")
exit()
l = reactionData.l
j = reactionData.j
#---- check is (d,p) or (p, d)
if (Z_a !=1 or Z_b != 1) or (A_a + A_b != 3) :
print("not (d,p) or (p,d) reaction. stop.")
exit()
mass_A = iso.GetMassFromSym(nu_A)
mass_a = iso.GetMassFromSym(nu_a)
mass_b = iso.GetMassFromSym(nu_b)
mass_B = iso.GetMassFromSym(nu_B)
mass_x = iso.GetMassFromAZ( A_x, Z_x)
#.... core
if A_A < A_B : # (d,p)
A_c = A_A
Z_c = Z_A
BindingEnergy = mass_B - mass_A - mass_x + Ex
else: #(p,d)
A_c = A_B
Z_c = Z_B
BindingEnergy = mass_A - mass_B - mass_x
sym_A = iso.GetSymbol(A_A, Z_A)
sym_B = iso.GetSymbol(A_B, Z_B)
if A_a == 2 and Z_a == 1:
spin_a = 1.0
spin_b = 0.5
else:
spin_a = 0.5
spin_b = 1.0
Q_value = mass_A + mass_a - mass_b - mass_B - Ex
print(f"Q-value : {Q_value:10.6f} MeV")
print(f"Binding : {BindingEnergy:10.6f} MeV")
#=================== digest orbital
match = re.search(r'[a-zA-Z]', orbital) # Find first letter
if match:
index = match.start() # Get position of the first letter
node = int(orbital[:index])
l_sym = orbital[index:index+1]
j_sym = orbital[index+1:]
j = eval(j_sym)
l = ConvertLSym(l_sym)
Q_value = reactionData.Q_value
BindingEnergy = reactionData.BindingEnergy
#=================== outfile name
fileOutName = str(sym_A) + str(A_A) + "_" + str(nu_a) + str(nu_b) + "_" \
+ str(node) + str(l_sym) + str(int(2*j)) + "_" + str(Ex) + "_" + str(ELab) + ".in"
print(fileOutName)
#=================== find the maximum L for partial wave
mass_I = mass_A * mass_a / (mass_A + mass_a) # reduced mass of incoming channel
hbarc = 197.3269788 # MeV.fm
k_I = np.sqrt(2*mass_I * A_a * ELab)/hbarc # wave number of incoming channel
mass_I = reactionData.mass_I # reduced mass of incoming channel
k_I = reactionData.k_I # wave number of incoming channel
touching_Radius = 1.25*(A_A**(1./3) + A_a**(1./3)) + 10 # add 10 fm
maxL = int(touching_Radius * k_I) # maximum partial wave
print(f"max L : {maxL}")
print(f"file out : {fileOutName}")
print(f" max L : {maxL}")
#=================== create outfile
with open(fileOutName, "w") as file:
@ -274,87 +85,87 @@ with open(fileOutName, "w") as file:
file.write(f"{0.1:+08.4f}{15:+08.4f}\n")
#===== Block 5
if A_a == 2 :
AnCai(A_A, Z_A, A_a*ELab)
op.AnCai(A_A, Z_A, A_a*ELab)
else:
Koning(A_A, Z_A, A_a*ELab, Z_a)
op.Koning(A_A, Z_A, A_a*ELab, Z_a)
file.write(f"{A_a*ELab:+08.4f}")
file.write(f"{A_a:+08.4f}")
file.write(f"{Z_a:+08.4f}")
file.write(f"{A_A:+08.4f}")
file.write(f"{Z_A:+08.4f}")
file.write(f"{rc0:+08.4f}")
file.write(f"{op.rc0:+08.4f}")
file.write(f"{"":8s}")
file.write(f"{"":8s}")
file.write(f"{2*spin_a:+08.4f}\n")
# Woods-Saxon
file.write(f"{1:+08.4f}")
file.write(f"{-v:+08.4f}") # real
file.write(f"{r0:+08.4f}") #
file.write(f"{a:+08.4f}") #
file.write(f"{-op.v:+08.4f}") # real
file.write(f"{op.r0:+08.4f}") #
file.write(f"{op.a:+08.4f}") #
file.write(f"{"":8s}") # spin-orbit skipped
file.write(f"{-vi:+08.4f}") # imag
file.write(f"{ri0:+08.4f}") #
file.write(f"{ai:+08.4f}\n") #
file.write(f"{-op.vi:+08.4f}") # imag
file.write(f"{op.ri0:+08.4f}") #
file.write(f"{op.ai:+08.4f}\n") #
# Woods-Saxon surface
file.write(f"{2:+08.4f}")
file.write(f"{"":8s}") # real
file.write(f"{"":8s}") #
file.write(f"{"":8s}") #
file.write(f"{"":8s}") # spin-orbit skipped
file.write(f"{4*vsi:+08.4f}") # imag
file.write(f"{rsi0:+08.4f}") #
file.write(f"{asi:+08.4f}\n") #
file.write(f"{4*op.vsi:+08.4f}") # imag
file.write(f"{op.rsi0:+08.4f}") #
file.write(f"{op.asi:+08.4f}\n") #
# Spin-Orbit
file.write(f"{-4:+08.4f}")
file.write(f"{-4*vso:+08.4f}") # real
file.write(f"{rso0:+08.4f}") #
file.write(f"{aso:+08.4f}") #
file.write(f"{-4*op.vso:+08.4f}") # real
file.write(f"{op.rso0:+08.4f}") #
file.write(f"{op.aso:+08.4f}") #
file.write(f"{"":8s}") # spin-orbit skipped
file.write(f"{-4*vsoi:+08.4f}") # imag
file.write(f"{rsoi0:+08.4f}") #
file.write(f"{asoi:+08.4f}\n") #
file.write(f"{-4*op.vsoi:+08.4f}") # imag
file.write(f"{op.rsoi0:+08.4f}") #
file.write(f"{op.asoi:+08.4f}\n") #
#===== Block 6
if A_a == 2 :
Koning(A_B, Z_B, A_a*ELab + Q_value - Ex, Z_b)
op.Koning(A_B, Z_B, A_a*ELab + Q_value - Ex, Z_b)
else:
AnCai(A_B, Z_B, A_a*ELab + Q_value - Ex)
op.AnCai(A_B, Z_B, A_a*ELab + Q_value - Ex)
file.write(f"{Q_value:+08.4f}")
file.write(f"{A_b:+08.4f}")
file.write(f"{Z_b:+08.4f}")
file.write(f"{A_B:+08.4f}")
file.write(f"{Z_B:+08.4f}")
file.write(f"{rc0:+08.4f}")
file.write(f"{op.rc0:+08.4f}")
file.write(f"{"":8s}")
file.write(f"{"":8s}")
file.write(f"{2*spin_b:+08.4f}\n")
# Woods-Saxon
file.write(f"{1:+08.4f}")
file.write(f"{-v:+08.4f}") # real
file.write(f"{r0:+08.4f}") #
file.write(f"{a:+08.4f}") #
file.write(f"{-op.v:+08.4f}") # real
file.write(f"{op.r0:+08.4f}") #
file.write(f"{op.a:+08.4f}") #
file.write(f"{"":8s}") # spin-orbit skipped
file.write(f"{-vi:+08.4f}") # imag
file.write(f"{ri0:+08.4f}") #
file.write(f"{ai:+08.4f}\n") #
file.write(f"{-op.vi:+08.4f}") # imag
file.write(f"{op.ri0:+08.4f}") #
file.write(f"{op.ai:+08.4f}\n") #
# Woods-Saxon surface
file.write(f"{2:+08.4f}")
file.write(f"{"":8s}") # real
file.write(f"{"":8s}") #
file.write(f"{"":8s}") #
file.write(f"{"":8s}") # spin-orbit skipped
file.write(f"{4*vsi:+08.4f}") # imag
file.write(f"{rsi0:+08.4f}") #
file.write(f"{asi:+08.4f}\n") #
file.write(f"{4*op.vsi:+08.4f}") # imag
file.write(f"{op.rsi0:+08.4f}") #
file.write(f"{op.asi:+08.4f}\n") #
# Spin-Orbit
file.write(f"{-4:+08.4f}")
file.write(f"{-4*vso:+08.4f}") # real
file.write(f"{rso0:+08.4f}") #
file.write(f"{aso:+08.4f}") #
file.write(f"{-4*op.vso:+08.4f}") # real
file.write(f"{op.rso0:+08.4f}") #
file.write(f"{op.aso:+08.4f}") #
file.write(f"{"":8s}") # spin-orbit skipped
file.write(f"{-4*vsoi:+08.4f}") # imag
file.write(f"{rsoi0:+08.4f}") #
file.write(f"{asoi:+08.4f}\n") #
file.write(f"{-4*op.vsoi:+08.4f}") # imag
file.write(f"{op.rsoi0:+08.4f}") #
file.write(f"{op.asoi:+08.4f}\n") #
#====== bound state
file.write(f"{BindingEnergy:+08.4f}")
file.write(f"{A_x:+08.4f}")