added distortedWave.py class, need to work on the elastics cross section

This commit is contained in:
Ryan Tang 2025-02-19 17:12:00 -05:00
parent 6c73ed6341
commit bd74ebdddd
4 changed files with 292 additions and 75 deletions

View File

@ -1,12 +1,7 @@
#!/usr/bin/env python3
from boundState import BoundState
from solveSE import WoodsSaxonPot, CoulombPotential, SpinOrbit_Pot, WS_SurfacePot, SolvingSE
from mpmath import coulombf, coulombg
import numpy as np
from scipy.special import gamma
from solveSE import WoodsSaxonPot, CoulombPotential, SpinOrbit_Pot, WS_SurfacePot
# boundState = BoundState(16, 8, 1, 0, 1, 0, 0.5, -4.14)
# boundState.SetPotential(1.10, 0.65, -6, 1.25, 0.65, 1.25)
@ -14,19 +9,9 @@ from scipy.special import gamma
# # boundState.PrintWF()
# boundState.PlotBoundState()
def SevenPointsSlope(data, n):
return (-data[n + 3] + 9 * data[n + 2] - 45 * data[n + 1] + 45 * data[n - 1] - 9 * data[n - 2] + data[n - 3]) / 60
from distortedWave import DistortedWave
def FivePointsSlope(data, n):
return ( data[n + 2] - 8 * data[n + 1] + 8 * data[n - 1] - data[n - 2] ) / 12
dw = SolvingSE("60Ni", "p", 30)
dw.SetRange(0, 0.1, 300)
dw.SetLJ(0, 0.5)
dw.dsolu0 = 1
dw.CalCMConstants()
dw.PrintInput()
dw = DistortedWave("60Ni", "p", 30)
dw.ClearPotential()
dw.AddPotential(WoodsSaxonPot(-47.937-2.853j, 1.20, 0.669), False)
@ -34,47 +19,10 @@ dw.AddPotential(WS_SurfacePot(-6.878j, 1.28, 0.550), False)
dw.AddPotential(SpinOrbit_Pot(-5.250 + 0.162j, 1.02, 0.590), False)
dw.AddPotential(CoulombPotential(1.258), False)
rpos = dw.rpos
solU = dw.SolveByRK4()
dw.CalScatteringMatrix()
solU /= dw.maxSolU
dw.PrintScatteringMatrix()
# for r, u in zip(rpos, solU):
# print(f"{r:.3f} {np.real(u):.6f} {np.imag(u):.6f}")
# dw.PlotScatteringMatrix()
def CoulombPhaseShift(L, eta):
return np.angle(gamma(L+1+1j*eta))
sigma = CoulombPhaseShift(dw.L, dw.eta)
# find pahse shift by using the asymptotic behavior of the wave function
r1 = rpos[-2]
f1 = float(coulombf(dw.L, dw.eta, dw.k*r1))
g1 = float(coulombg(dw.L, dw.eta, dw.k*r1))
u1 = solU[-2]
r2 = rpos[-1]
f2 = float(coulombf(dw.L, dw.eta, dw.k*r2))
g2 = float(coulombg(dw.L, dw.eta, dw.k*r2))
u2 = solU[-1]
det = f2*g1 - f1*g2
A = (f2*u1 - u2*f1) / det
B = (u2*g1 - g2*u1) / det
print(f"A = {np.real(A):.6f} + {np.imag(A):.6f} I")
print(f"B = {np.real(B):.6f} + {np.imag(B):.6f} I")
ScatMatrix = (B + A * 1j)/(B - A * 1j)
print(f"Scat Matrix = {np.real(ScatMatrix):.6f} + {np.imag(ScatMatrix):.6f} I")
solU = np.array(solU, dtype=np.complex128)
solU *= np.exp(1j * sigma)/(B-A*1j)
from matplotlib import pyplot as plt
plt.plot(rpos, np.real(solU), label="Real")
plt.plot(rpos, np.imag(solU), label="Imaginary")
plt.legend()
plt.show(block=False)
input("Press Enter to continue...")
dw.PlotDCSUnpolarized()

View File

@ -1,14 +1,56 @@
#!/usr/bin/env python3
import numpy as np
from mpmath import coulombf, coulombg
from scipy.special import gamma
L = 20
eta = 2.0
rho = 30
def pochhammer(x, n):
"""Compute Pochhammer symbol (x)_n"""
if n == 0:
return 1.0
result = 1.0
for i in range(n):
result *= (x + i)
return result
f_values = coulombf(L, eta, rho)
g_values = coulombg(L, eta, rho)
def hyp1f1_series(a, b, z, max_terms=1000, tol=1e-10):
"""
Compute _1F_1(a, b, z) using series expansion.
print(f_values)
print(g_values)
:param a, b: Parameters of the hypergeometric function
:param z: Complex argument
:param max_terms: Maximum number of terms to sum
:param tol: Tolerance for convergence
:return: Approximation of _1F_1(a, b, z)
"""
sum = 0.0 + 0.0j
last_term = 0.0 + 0.0j
for n in range(max_terms):
term = pochhammer(a, n) / pochhammer(b, n) * z**n / np.math.factorial(n)
sum += term
if abs(term - last_term) < tol * abs(sum): # Check for convergence
return sum
last_term = term
return sum # If we reach here, we've used all terms without converging to desired tolerance
def coulomb_wave_function(L, eta, rho):
"""
Compute the regular Coulomb wave function F_L(eta, rho).
:param L: Angular momentum quantum number
:param eta: Sommerfeld parameter
:param rho: Radial coordinate scaled by k (wavenumber)
:return: F_L(eta, rho)
"""
# Compute normalization constant C_L(eta)
C_L = (2**L * np.exp(-np.pi * eta / 2) * np.abs(gamma(L + 1 + 1j * eta))) / gamma(2*L + 2)
# Compute _1F_1 using our series expansion
hyp1f1_value = hyp1f1_series(L + 1 - 1j * eta, 2*L + 2, 2j * rho)
# Return the Coulomb wave function
return C_L * (rho ** (L+1)) * np.exp(-1j * rho) * hyp1f1_value
# Example usage
#L, eta, rho = 1, 0.5, 1.0
#result = coulomb_wave_function(L, eta, rho)
#print(f"F_{L}({eta}, {rho}) = {result}")

227
Raphael/distortedWave.py Executable file
View File

@ -0,0 +1,227 @@
#!/usr/bin/env python3
from boundState import BoundState
from solveSE import WoodsSaxonPot, CoulombPotential, SpinOrbit_Pot, WS_SurfacePot, SolvingSE
from mpmath import coulombf, coulombg
import numpy as np
from scipy.special import gamma, sph_harm, factorial
import matplotlib.pyplot as plt
def SevenPointsSlope(data, n):
return (-data[n + 3] + 9 * data[n + 2] - 45 * data[n + 1] + 45 * data[n - 1] - 9 * data[n - 2] + data[n - 3]) / 60
def FivePointsSlope(data, n):
return ( data[n + 2] - 8 * data[n + 1] + 8 * data[n - 1] - data[n - 2] ) / 12
from sympy.physics.quantum.cg import CG
from sympy import S
def clebsch_gordan(j1, m1, j2, m2, j, m):
cg = CG(S(j1), S(m1), S(j2), S(m2), S(j), S(m))
result = cg.doit()
return np.complex128(result)
def KroneckerDelta(i, j):
if i == j:
return 1
else:
return 0
class DistortedWave(SolvingSE):
def __init__(self, target, projectile, ELab):
super().__init__(target, projectile, ELab)
self.SetRange(0, 0.1, 300)
self.CalCMConstants()
self.ScatMatrix = []
self.distortedWaveU = []
def SetLJ(self, L, J):
self.L = L
self.J = J
self.dsolu0 = pow(0.1, 2*L+1)
def CoulombPhaseShift(self, L = None, eta = None):
if L is None:
L = self.L
if eta is None:
eta = self.eta
return np.angle(gamma(L+1+1j*eta))
def CalScatteringMatrix(self, maxL = None, verbose = False):
if maxL is None:
maxL = self.maxL
self.ScatMatrix = []
self.distortedWaveU = []
for L in range(0, maxL+1):
sigma = self.CoulombPhaseShift()
temp_ScatMatrix = []
temp_distortedWaveU = []
for J in np.arange(L-self.S, L + self.S+1, 1):
if J < 0:
temp_ScatMatrix.append(0)
temp_distortedWaveU.append(0)
continue
self.SetLJ(L, J)
self.SolveByRK4()
r1 = self.rpos[-2]
f1 = float(coulombf(self.L, self.eta, self.k*r1))
g1 = float(coulombg(self.L, self.eta, self.k*r1))
u1 = self.solU[-2]
r2 = self.rpos[-1]
f2 = float(coulombf(self.L, self.eta, self.k*r2))
g2 = float(coulombg(self.L, self.eta, self.k*r2))
u2 = self.solU[-1]
det = f2*g1 - f1*g2
A = (f2*u1 - u2*f1) / det
B = (u2*g1 - g2*u1) / det
ScatMatrix = (B + A * 1j)/(B - A * 1j)
if verbose:
print(f"{{{L},{J}, {np.real(ScatMatrix):10.6f} + {np.imag(ScatMatrix):10.6f}I}}")
temp_ScatMatrix.append(ScatMatrix)
dwU = np.array(self.solU, dtype=np.complex128)
dwU *= np.exp(-1j*sigma)/(B-A*1j)
temp_distortedWaveU.append(dwU)
self.ScatMatrix.append(temp_ScatMatrix)
self.distortedWaveU.append(temp_distortedWaveU)
return [self.ScatMatrix, self.distortedWaveU]
def PrintScatteringMatrix(self):
for L in range(0, len(self.ScatMatrix)):
for i in range(0, len(self.ScatMatrix[L])):
print(f"{{{L:2d},{i-self.S:4.1f}, {np.real(self.ScatMatrix[L][i]):10.6f} + {np.imag(self.ScatMatrix[L][i]):10.6f}I}}", end=" ")
print()
def GetScatteringMatrix(self, L, J):
return self.ScatMatrix[L][J-L+self.S]
def GetDistortedWave(self, L, J):
return self.distortedWaveU[L][J-L+self.S]
def PlotDistortedWave(self, L, J):
plt.plot(self.rpos, np.real(self.GetDistortedWave(L, J)), label="Real")
plt.plot(self.rpos, np.imag(self.GetDistortedWave(L, J)), label="Imaginary")
plt.legend()
plt.grid()
plt.show(block=False)
input("Press Enter to continue...")
def PlotScatteringMatrix(self):
nSpin = int(self.S*2+1)
fig, axes = plt.subplots(1, nSpin, figsize=(6*nSpin, 4))
for i in range(0, nSpin):
sm = []
l_list = []
for L in range(0, len(self.ScatMatrix)):
if i == 0 and L == 0 :
continue
l_list.append(L)
sm.append(self.ScatMatrix[L][i])
axes[i].plot(l_list, np.real(sm), label="Real", marker='o')
axes[i].plot(l_list, np.imag(sm), label="Imaginary", marker='x')
axes[i].legend()
axes[i].set_xlabel('L')
axes[i].set_ylabel('Value')
if self.S*2 % 2 == 0 :
str = f'{int(i-self.S):+d}'
else:
str = f'{int(2*(i-self.S)):+d}/2'
axes[i].set_title(f'Real and Imaginary Parts vs L for Spin J = L{str}')
axes[i].grid()
plt.tight_layout()
plt.show(block=False)
input("Press Enter to continue...")
def RutherFord(self, theta):
sin_half_theta = np.sin(theta / 2)
result = self.eta**2 / (4 * (self.k**2) * (sin_half_theta**4))
return result
def CoulombScatterintAmp(self, theta_deg):
sin_sq = pow(np.sin(np.radians(theta_deg)/2), 2)
coulPS = self.CoulombPhaseShift(0)
return - self.eta/ (2*self.k*sin_sq) * np.exp(2j*(coulPS - self.eta*np.log(sin_sq)))
def GMatrix1Spin(self, v, v0, l ) -> complex:
if self.S == 0 :
return self.ScatMatrix[l][0] - KroneckerDelta(v, v0)
else:
Jmin = l - self.S
Jmax = l + self.S
value = 0
for J in np.arange(Jmin, Jmax + 1, 1):
index = int(J - Jmin)
value += clebsch_gordan(l, 0, self.S, v0, J, v0) * clebsch_gordan(l, v0-v, self.S, v, J, v0) * self.ScatMatrix[l][index]
return value - KroneckerDelta(v, v0)
def NuclearScatteringAmp(self, v, v0, theta, phi, maxL = None ) -> complex:
value = 0
if maxL is None:
maxL = self.maxL
for l in range(0, maxL+1):
if abs(v0-v) > l :
value += 0
else:
coulPS = self.CoulombPhaseShift(l)
value += np.sqrt(2*l+1) * sph_harm(v0 - v, l, phi, theta) * np.exp(2j * coulPS)* self.GMatrix1Spin(v, v0, l)
return value * np.sqrt(4*np.pi)/ 2 / 1j / self.k
def DCSUnpolarized(self, theta, phi, maxL = None):
value = 0
for v in np.arange(-self.S, self.S + 1, 1):
for v0 in np.arange(-self.S, self.S + 1, 1):
value += abs(self.CoulombScatterintAmp(theta) * KroneckerDelta(v, v0) + self.NuclearScatteringAmp(v, v0, theta, phi, maxL))**2
value = value / (2 * self.S + 1)
return value
def PlotDCSUnpolarized(self, thetaRange = 180, thetaStepDeg = 0.2, maxL = None):
theta_values = np.linspace(0, thetaRange, int(thetaRange/thetaStepDeg))
thetaTick = 30
if thetaRange < 180:
thetaTick = 10
y_values = []
for theta in theta_values:
theta = np.deg2rad(theta)
if theta == 0:
y_values.append(1)
else:
y_values.append(self.DCSUnpolarized(theta , 0, maxL)/ self.RutherFord(theta))
print(f"{np.rad2deg(theta):6.2f}, {y_values[-1]:10.6f}")
plt.figure(figsize=(8, 6))
plt.plot(theta_values, y_values, marker='o', linestyle='-', color='blue', label='Real Part')
plt.title("Differential Cross Section (Unpolarized)")
plt.xlabel("Theta (degrees)")
plt.ylabel("Value")
plt.yscale("log")
plt.xticks(np.arange(0, thetaRange + 1, thetaTick))
plt.xlim(0, thetaRange)
plt.legend()
plt.grid()
plt.show(block=False)
input("Press Enter to continue...")

View File

@ -89,7 +89,7 @@ class SolvingSE:
dr = 0.05
nStep = 600*5
rpos = np.arange(rStart, rStart+nStep*dr, dr)
SolU = [] # raidal wave function
solU = [] # raidal wave function
maxSolU = 0.0
#constant
@ -199,7 +199,7 @@ class SolvingSE:
self.dr = dr
self.nStep = nStep
self.rpos = np.arange(self.rStart, self.rStart+self.nStep*dr, self.dr)
self.SolU = []
self.solU = []
self.maxSolU = 0.0
def ClearPotential(self):
@ -237,7 +237,7 @@ class SolvingSE:
# Using Rungu-Kutta 4th method to solve u''[r] = G[r, u[r], u'[r]]
def SolveByRK4(self):
#initial condition
self.SolU = [self.solu0]
self.solU = [self.solu0]
dSolU = [self.dsolu0]
dyy = np.array([1., 0., 0., 0., 0.], dtype= complex)
@ -247,7 +247,7 @@ class SolvingSE:
for i in range(self.nStep-1):
r = self.rStart + self.dr * i
y = self.SolU[i]
y = self.solU[i]
z = dSolU[i]
for j in range(4):
@ -257,13 +257,13 @@ class SolvingSE:
dy = sum(self.parD[j] * dyy[j + 1] for j in range(4))
dz = sum(self.parD[j] * dzz[j + 1] for j in range(4))
self.SolU.append(y + dy)
self.solU.append(y + dy)
dSolU.append(z + dz)
if np.real(self.SolU[-1]) > self.maxSolU:
self.maxSolU = abs(self.SolU[-1])
if np.real(self.solU[-1]) > self.maxSolU:
self.maxSolU = abs(self.solU[-1])
return self.SolU
return self.solU
def NearestPosIndex(self, r):
return min(len(self.rpos)-1, int((r - self.rStart) / self.dr))