Merge remote-tracking branch 'origin'
This commit is contained in:
commit
d0b359859f
|
@ -380,8 +380,8 @@ C
|
|||
Q=E
|
||||
E=(ECM(1)+Q)*(FM(2)+FMA(2))/FMA(2)
|
||||
ENDIF
|
||||
IS(N)=FS(N)
|
||||
NS(N)=IS(N)+1
|
||||
IS(N)=FS(N) ! 2*spin, FS(N) will divided by 2 later
|
||||
NS(N)=IS(N)+1 ! 2*spin+1, number of m-state
|
||||
IF(AMASS.EQ.0.0) AMASS=FMA(1)
|
||||
IF(IK.EQ.0) DR(N)=DRF*AMASS/FMA(N)
|
||||
KMXX=KMAX
|
||||
|
|
|
@ -269,96 +269,163 @@ c***********************************************************************
|
|||
5 ,(DTEMP(1201),GP),(DTEMP(1601),S ),(DTEMP(2001),C )
|
||||
DATA ETA3/10.E+00/
|
||||
C
|
||||
|
||||
IWORD=0
|
||||
JT=NS(1)+NS(2)
|
||||
NP=LPL2*JT
|
||||
JT=NS(1)+NS(2) ! NS(1) is number of J-state in incoming channel, similar for NS(2), for (d,p), JT = 5
|
||||
NP=LPL2*JT ! LPLUS = LMAX + 1, LPL2 = 2*LPLUS, NP = 2*(LMAX+1)*JT, for LMAX = 15 (d,p) NP = 160, NP= number of partial wave, real + imag
|
||||
I=0
|
||||
DO 30 N=1,2
|
||||
DR2(N)=DR(N)**2/12.0
|
||||
c-------------------------------------- loop incoming and outgoing channel
|
||||
DO 30 N=1,2 !N = 1 : incoming channel, 2 : outgoing
|
||||
DR2(N)=DR(N)**2/12.0 ! this is for the Numerov method
|
||||
R(N)=0.0
|
||||
JS=NS(N)
|
||||
DO 29 ISS=1,JS
|
||||
I=I+1
|
||||
LM(I)=0
|
||||
JS=NS(N) ! number of J-state in N-channel
|
||||
c------------------------------- loop all J-state
|
||||
DO 29 ISS=1,JS ! loop all J-state
|
||||
I=I+1
|
||||
LM(I)=0 ! all LM(I) = 0
|
||||
29 CONTINUE
|
||||
30 CONTINUE
|
||||
DO 40 IQ=1,NP
|
||||
F1(IQ)=0.0
|
||||
F2(IQ)=0.0
|
||||
c------------------------------- end of J_state loop
|
||||
30 CONTINUE ! end of loop N
|
||||
c---------------------------------------- end of channel loop
|
||||
c Nemerov method
|
||||
c y''(r) = g(r) y(r)
|
||||
c k(n+1)y(n+1) = (12 - 10*k(n))*y(n+1) - k(n-1)*y(n-1)
|
||||
c k(n) = 1 + dr^2/12 * g(n)
|
||||
c F2 = distorted wave = y(n)
|
||||
c Q2 = k(n)*y(n)
|
||||
DO 40 IQ=1,NP ! initial distorted wave, have NP partial wave
|
||||
F1(IQ)=0.0 !
|
||||
F2(IQ)=0.0 ! F1 is n-1 of F2
|
||||
Q1(IQ)=0.0
|
||||
Q2(IQ)=0.0
|
||||
Q2(IQ)=0.0 ! Q1 is n-1 of Q2
|
||||
40 CONTINUE
|
||||
C
|
||||
DO 100 M=1,K
|
||||
MK=M+M-1
|
||||
IX=0
|
||||
I=0
|
||||
DO 90 N=1,2
|
||||
|
||||
WRITE(6,*) 'Debug: K=', K, ', NP=', NP
|
||||
c============================================== loop radial grids
|
||||
DO 100 M=1,K ! K = ABS(RMAX)/DRF + 1.0E-08
|
||||
MK=M+M-1 ! 2*M-1, odd number from 1 to K, odd for real, even for imag
|
||||
IX=0 ! loop from 1 to 128, step 32 = 2*LPLUS, each group of 32 is all L-states for a J-state
|
||||
I=0 ! loop from 1 to 5, total J-state in incoming and outgoing channel
|
||||
c------------------------------------ loop channels
|
||||
DO 90 N=1,2 ! looping incoming and outgoing channel
|
||||
R(N)=R(N)+DR(N)
|
||||
DRR2(N)=DR2(N)/R(N)**2
|
||||
Q(1)=1.0+DR2(N)*U(MK ,N)
|
||||
Q(2)= DR2(N)*U(MK+1,N)
|
||||
LTEMP=2.0*FK(N)*R(N)+ETA3
|
||||
LTEMP=MIN0(LTEMP,LPLUS)
|
||||
FI=-FS(N)
|
||||
JS=NS(N)
|
||||
SFACT=FS(N)**2+FS(N)
|
||||
DO 89 ISS=1,JS
|
||||
I=I+1
|
||||
FL=0.0
|
||||
DO 80 LL=1,LPLUS
|
||||
FJ=FL+FI
|
||||
IX1=IX+LL+LL-1
|
||||
FLFACT=FL**2+FL
|
||||
FACT=DR2(N)*(FJ**2+FJ-FLFACT-SFACT)*0.5
|
||||
DRR2(N)=DR2(N)/R(N)**2 ! for L(L+1)/r^2 term in the potential
|
||||
Q(1)=1.0+DR2(N)*U(MK ,N) ! for real part , seem to be the Numerov k_n
|
||||
Q(2)= DR2(N)*U(MK+1,N) ! for imag part
|
||||
LTEMP=2.0*FK(N)*R(N)+ETA3 ! ETA3 = 10, this is the theoritic maximum L
|
||||
LTEMP=MIN0(LTEMP,LPLUS) ! set the maximum acceptable L
|
||||
FI=-FS(N) ! s-state of S of channle-N, N=1 for incoming, =2 for outgoing
|
||||
JS=NS(N) ! number of J-state of S
|
||||
SFACT=FS(N)**2+FS(N) ! s * (s+1)
|
||||
c-------------------------- loop J-state
|
||||
DO 89 ISS=1,JS ! loop the J-state
|
||||
I=I+1 ! I is the id of J-state
|
||||
FL=0.0 ! FL runs from 0 to LMAX
|
||||
c---------------- loop the L-state
|
||||
DO 80 LL=1,LPLUS ! loop all L, fortan start index is 1, so need to run from 1 to LMAX + 1
|
||||
FJ=FL+FI ! J = L + S, looping possible J-state
|
||||
IX1=IX+LL+LL-1 ! index in memomry, loop from 1 to 159 odd, odd for real? even for imag?
|
||||
FLFACT=FL**2+FL
|
||||
FACT=DR2(N)*(FJ**2+FJ-FLFACT-SFACT)*0.5 ! for L(L+1)/r^2
|
||||
Q(3 )=Q(1)+FACT*V(MK ,N)-DRR2(N)*FLFACT
|
||||
Q(4 )=Q(2)+FACT*V(MK+1,N)
|
||||
IF(LL.LE.LM(I)) GO TO 70
|
||||
IF(LTEMP.LT.LL) GO TO 72
|
||||
LM(I)=LM(I)+1
|
||||
IF(FJ-ABS(FL-FS(N)).LT.0.0) GO TO 72
|
||||
c calculate approximate starting value
|
||||
LM(I)=LM(I)+1 !this control the calculateing of start value, weird but work.
|
||||
IF(FJ-ABS(FL-FS(N)).LT.0.0) GO TO 72 ! j < ||l-s|, increase FL by 1
|
||||
c........... calculate approximate starting value
|
||||
c for FL < 9, R=0.1 is set
|
||||
c for FL = 10, R=0.5 is set
|
||||
c FL = 11, R=0.89 is set
|
||||
c FL = 12, R=1.3
|
||||
c FL = 13, R=1.7
|
||||
c FL = 14, R=2.1
|
||||
c FL = 15, R=2.5
|
||||
f2(ix1 )=1.0
|
||||
do 50 ii=1,ll
|
||||
f2(ix1 )=f2(ix1 )*(fk(n)*r(n))/float(2*ii-1)
|
||||
50 continue
|
||||
|
||||
c IF(N.EQ.1 ) THEN
|
||||
c WRITE(6,*) R(N), FL, FJ, IX, IX1, f2(ix1), M
|
||||
c ENDIF
|
||||
|
||||
c IF(N.EQ.1 .AND. FL.EQ.1 .AND. FJ.EQ.1) THEN
|
||||
c WRITE(6,5678)
|
||||
c 1'Debug:',R(N),Q1(IX1),Q2(IX1),F2(IX1),
|
||||
c 2 Q1(IX1+1),Q2(IX1+1),F2(IX1+1),
|
||||
c 3 Q(3), Q(4)
|
||||
c ENDIF
|
||||
|
||||
F2(IX1+1)=0.0
|
||||
Q2(IX1 )=Q(3)*f2(ix1 )
|
||||
Q2(IX1+1)=Q(4)*f2(ix1 )
|
||||
C
|
||||
C EVALUATE Q AT ORIGIN FOR L=1
|
||||
C
|
||||
IF(LL.EQ.2) Q1(IX+3)=-f2(ix1 )/6.0
|
||||
IF(LL.EQ.2) Q1(IX+3)=-f2(ix1 )/6.0 ! when LL is 2 or FL = 1
|
||||
GO TO 72
|
||||
c........... end of starting value
|
||||
70 CONTINUE
|
||||
c
|
||||
c Step equations forward by dr(n) via Numerov-Fox-Goodwin-Milne method
|
||||
c
|
||||
CTEMP(1)=12.*F2(IX1 )-10.*Q2(IX1 )-Q1(IX1 )
|
||||
|
||||
c IF(N.EQ.1 .AND. FL.EQ.1 .AND. FJ.EQ.1) THEN
|
||||
c WRITE(6,5678)
|
||||
c 1'Debug:',R(N),Q1(IX1),Q2(IX1),F2(IX1),
|
||||
c 2 Q1(IX1+1),Q2(IX1+1),F2(IX1+1),
|
||||
c 3 Q(3), Q(4)
|
||||
c 5678 FORMAT(A, F7.3, F10.6, F10.6, F10.6, F10.6,
|
||||
c 1 F10.6, F10.6, F10.6, F10.6)
|
||||
c ENDIF
|
||||
c
|
||||
c Q2 (n+1) = 12 * y (n) - 10 * Q2 (n) - Q2 (n-1) for real
|
||||
c Q2'(n+1) = 12 * y'(n) - 10 * Q2'(n) - Q2'(n-1) for imag
|
||||
c a(n) = Q(3) = k(n) for real ?
|
||||
c b(n) = Q(4) = k(n) for imag ?
|
||||
c y (n+1) = [ Q2(n+1)*a(n) + Q2'(n+1)*b(n) ] / (a(n)^2 + b(n)^2)
|
||||
c y'(n+1) = [ -Q2(n+1)*b(n) + Q2'(n+1)*a(n) ] / (a(n)^2 + b(n)^2)
|
||||
c
|
||||
CTEMP(1)=12.*F2(IX1 )-10.*Q2(IX1 )-Q1(IX1 ) ! k(n+1)y(n+1) = (12 - 10*k(n))*y(n+1) - k(n-1)*y(n-1)
|
||||
CTEMP(2)=12.*F2(IX1+1)-10.*Q2(IX1+1)-Q1(IX1+1)
|
||||
F1(IX1 )=F2(IX1 )
|
||||
F1(IX1 )=F2(IX1 ) ! save the old f2 to f1
|
||||
F1(IX1+1)=F2(IX1+1)
|
||||
DET=Q(3)**2+Q(4)**2
|
||||
F2(IX1 )=(CTEMP(1)*Q(3 )+CTEMP(2)*Q(4 ))/DET
|
||||
DET=Q(3)**2+Q(4)**2 ! real^2 + imag^2
|
||||
F2(IX1 )=(CTEMP(1)*Q(3 )+CTEMP(2)*Q(4 ))/DET ! new f2 =
|
||||
F2(IX1+1)=(CTEMP(2)*Q(3 )-CTEMP(1)*Q(4 ))/DET
|
||||
Q1(IX1 )=Q2(IX1 )
|
||||
Q1(IX1+1)=Q2(IX1+1)
|
||||
Q2(IX1 )=CTEMP(1)
|
||||
Q2(IX1+1)=CTEMP(2)
|
||||
|
||||
c IF(N.EQ.1 .AND. FL.EQ.1 .AND. FJ.EQ.1) THEN
|
||||
c WRITE(6,'(A, F7.3, F10.6, F10.6, F10.6, F10.6, F10.6, F10.6)')
|
||||
c 1'Debug:',R(N),Q1(IX1),Q2(IX1),F2(IX1),
|
||||
c 2 Q1(IX1+1),Q2(IX1+1),F2(IX1+1)
|
||||
c ENDIF
|
||||
|
||||
72 CONTINUE
|
||||
FL=FL+1.0
|
||||
80 CONTINUE
|
||||
c---------------- end of loop the L-state
|
||||
FI=FI+1.0
|
||||
IX=IX+LPL2
|
||||
IX=IX+LPL2 ! after L-state loop, go to next index
|
||||
89 CONTINUE
|
||||
c-------------------------- end of loop J-state
|
||||
90 CONTINUE
|
||||
c------------------------------------ end of loop channels
|
||||
C
|
||||
C WRITE RADIAL WAVE FUNCTIONS ON TAPE 4
|
||||
C
|
||||
WRITE(4)(F2(J),J=1,NP)
|
||||
100 CONTINUE
|
||||
c============================================== end of loop radial grids
|
||||
|
||||
LX=1
|
||||
drrc = 0.1
|
||||
|
||||
DO 120 N=1,2
|
||||
R2=FK(N)*R(N)
|
||||
R1=R2-DR(N)*FK(N)
|
||||
|
@ -383,8 +450,8 @@ c
|
|||
DO 200 N=1,2
|
||||
JS=NS(N)
|
||||
FI=-FS(N)
|
||||
ARG=S(LX)-S(LX-LL+1)
|
||||
Q(1)=COS(ARG)
|
||||
ARG=S(LX)-S(LX-LL+1) ! Coulomb phase shift ?
|
||||
Q(1)=COS(ARG)
|
||||
Q(2)=SIN(ARG)
|
||||
Q(3)=Q(1)**2-Q(2)**2
|
||||
Q(4)=2.0*Q(1)*Q(2)
|
||||
|
@ -392,14 +459,14 @@ c
|
|||
FJ=FL+FI
|
||||
I=I+1
|
||||
DET=F(LX)*GP(LX)-FP(LX)*G(LX)
|
||||
A(1)=(F1(IX1 )*GP(LX)-F2(IX1 )*G (LX))/DET
|
||||
A(2)=(F1(IX1+1)*GP(LX)-F2(IX1+1)*G (LX))/DET
|
||||
B(1)=(F2(IX1 )*F (LX)-F1(IX1 )*FP(LX))/DET
|
||||
B(2)=(F2(IX1+1)*F (LX)-F1(IX1+1)*FP(LX))/DET
|
||||
A(1)=(F1(IX1 )*GP(LX)-F2(IX1 )*G (LX))/DET ! real part of F
|
||||
A(2)=(F1(IX1+1)*GP(LX)-F2(IX1+1)*G (LX))/DET ! imag part of F
|
||||
B(1)=(F2(IX1 )*F (LX)-F1(IX1 )*FP(LX))/DET ! real part of G
|
||||
B(2)=(F2(IX1+1)*F (LX)-F1(IX1+1)*FP(LX))/DET ! imag part of G
|
||||
IF(LL.LE.LM(I).and.FJ-ABS(FL-FS(N)).ge.0.0) then
|
||||
DET=(A(1)+B(2))**2+(A(2)-B(1))**2
|
||||
CTEMP(1)=(A(1)+B(2))/DET
|
||||
CTEMP(2)=(B(1)-A(2))/DET
|
||||
DET=(A(1)+B(2))**2+(A(2)-B(1))**2 ! this is the normalization
|
||||
CTEMP(1)=(A(1)+B(2))/DET ! CTEMP(1) = cos(sigma)/sqrt(DET)
|
||||
CTEMP(2)=(B(1)-A(2))/DET ! = - sin(sigma)/sqrt(DET)
|
||||
else
|
||||
CTEMP(1)=0.0
|
||||
CTEMP(2)=0.0
|
||||
|
@ -407,13 +474,22 @@ c
|
|||
C
|
||||
C C=NORMALIZATION CONSTANTS
|
||||
C
|
||||
C(IX1 )=Q(1)*CTEMP(1)-Q(2)*CTEMP(2)
|
||||
C(IX1+1)=Q(1)*CTEMP(2)+Q(2)*CTEMP(1)
|
||||
C(IX1 )=Q(1)*CTEMP(1)-Q(2)*CTEMP(2) ! cos(sigma)^2 + sin(sigma)^2 = 1/ sqrt(DET)
|
||||
C(IX1+1)=Q(1)*CTEMP(2)+Q(2)*CTEMP(1) ! 0 ?
|
||||
|
||||
C
|
||||
C E=PARTIAL WAVE SCATTERING AMPLITUDES
|
||||
C E=PARTIAL WAVE SCATTERING AMPLITUDES, ScatAmp = (S-1)/2i
|
||||
C
|
||||
E(2*I-1)=B(1)*CTEMP(1)-B(2)*CTEMP(2)
|
||||
E(2*I )=B(1)*CTEMP(2)+B(2)*CTEMP(1)
|
||||
E(2*I-1)=B(1)*CTEMP(1)-B(2)*CTEMP(2) ! real part of ScatAmp = s2/2
|
||||
E(2*I )=B(1)*CTEMP(2)+B(2)*CTEMP(1) ! image = (1-s1)/2
|
||||
|
||||
c IF(N.EQ.1) THEN
|
||||
c WRITE(6,*) 'Norm ', FL, FJ, A(1), A(2), B(1), B(2),
|
||||
c 1 CTEMP(1), CTEMP(2),
|
||||
c 2 ARG, C(IX1), C(IX1+1), 1./DET,
|
||||
c 3 E(2*I-1), E(2*I)
|
||||
c ENDIF
|
||||
|
||||
T1 = E(2*I-1)
|
||||
T2 = E(2*I )
|
||||
if(isym(N) .and. is(N).eq.0 ) then
|
||||
|
|
|
@ -537,12 +537,13 @@ c
|
|||
igam2=.false.
|
||||
endif
|
||||
c
|
||||
MPLUS=JX/2+1
|
||||
IFACT=MPLUS*JR*JS
|
||||
MPLUS=JX/2+1 ! j/2 + 1, spin transfer + 1
|
||||
IFACT=MPLUS*JR*JS ! (j+1)*num of m-state of sa * num of m-state of sb
|
||||
J2K=(1.0+PHASEF(NS(2)))/2.0
|
||||
M2K=JX-MPLUS-MPLUS+2
|
||||
LX=LTR+LTR
|
||||
TEMP2=SQRT(FLOAT((JX+1)*(IS(1)+1)))*flfact
|
||||
LX=LTR+LTR
|
||||
TEMP2=SQRT(FLOAT((JX+1)*(IS(1)+1)))*flfact ! IS(1) = 2*sa, JX = 2*j, sqrt((2j+1)*(2sa+1)) * flfact, for (d,p), flfact = 100 * sqrt((2l+1)/(2j+1))
|
||||
c for (d,p), TEMP2 = 100 * sqrt((2sa+1)(2l+1))
|
||||
IF(FN.EQ.0.0) THEN
|
||||
c clear amplitude storage unless for coherent sum
|
||||
IND=2*LPLUS*IFACT
|
||||
|
@ -550,9 +551,12 @@ c clear amplitude storage unless for coherent sum
|
|||
D(M)=0.0
|
||||
10 CONTINUE
|
||||
ENDIF
|
||||
IS1=-IS(1)
|
||||
|
||||
write(6,*) 'Debug', IND
|
||||
|
||||
IS1=-IS(1) ! m-state of sa ? step +2
|
||||
DO 95 I=1,JR
|
||||
IS2=-IS(2)
|
||||
IS2=-IS(2) ! m-state of sb ? step +2
|
||||
DO 90 J=1,JS
|
||||
IF(NLTR.NE.1) GO TO 14
|
||||
IF(JR*JS.EQ.1) GO TO 15
|
||||
|
@ -565,10 +569,10 @@ C
|
|||
READ (2)(FLL(INDEX),INDEX=1,INCR)
|
||||
15 continue
|
||||
c final L loop
|
||||
DO 80 LL=1,LPLUS
|
||||
lf=LL-1
|
||||
LLX=lf+lf
|
||||
JLX=LLX+IS2
|
||||
DO 80 LL=1,LPLUS ! loop on Lb
|
||||
lf=LL-1 ! Lb = momentum transfer
|
||||
LLX=lf+lf ! 2Lb
|
||||
JLX=LLX+IS2 ! 2 Jb = 2Lb + 2sb
|
||||
IF(JLX.LT.0) GO TO 75
|
||||
if(i_sym(2)) then
|
||||
if(phasef(lf).gt.0.0) then
|
||||
|
@ -579,20 +583,20 @@ c final L loop
|
|||
else
|
||||
temp4=temp2
|
||||
endif
|
||||
TEMP4=temp4*SQRT(FLOAT(JLX+1))*float(llx+1)
|
||||
if(igam2) then
|
||||
TEMP4=temp4*SQRT(FLOAT(JLX+1))*float(llx+1) ! sqrt(2Jb+1)*(2Lb+1), (d,p) : temp4 = 100 * sqrt((2sa+1)(2l+1)(2Jb+1)) (2Lb+1)
|
||||
if(igam2) then ! skip by (d,p)
|
||||
temp4=temp4*sqrt(float(ll)/(float(lf)+1.e-6))
|
||||
1 *(z(1)+za(1)*(-fm(1)/fma(1))**lf)
|
||||
1 *(z(1)+za(1)*(-fm(1)/fma(1))**lf)
|
||||
endif
|
||||
LSTOR=lf*IFACT
|
||||
LSTOR=lf*IFACT ! num. of Lb * (2sa+1) * (2sb+1)
|
||||
LP1=IABS(LL-LTR-1)+1
|
||||
LP2=MIN0(LL+LTR,LPLUS)
|
||||
LK=0
|
||||
c initial L loop
|
||||
DO 60 LP=LP1,LP2,2
|
||||
DO 60 LP=LP1,LP2,2 ! loop for La
|
||||
li=lp-1
|
||||
LPX=LP+LP-2
|
||||
JPX=LPX+IS1
|
||||
LPX=LP+LP-2 ! 2La
|
||||
JPX=LPX+IS1 ! 2Ja
|
||||
IF(JPX.GE.0) then
|
||||
if(i_sym(1)) then
|
||||
if(phasef(li).gt.0.0) then
|
||||
|
@ -607,8 +611,18 @@ c initial L loop
|
|||
temp3=temp3*sqrt(float(lp)/(float(li)+1.e-6))
|
||||
1 *(z(2)+za(1)*(-fm(2)/fma(2))**li)
|
||||
endif
|
||||
|
||||
c write(6,*) LLX, isf, JLX, LX, ISB, JX, LPX, ISI, JPX
|
||||
|
||||
TEMP=temp3*SQRT(FLOAT(LPX+1))*PHASEF((LP-LL-LTR)/2)
|
||||
1 *VCC(LLX,LX,LPX,0,0)*WINEJ(LLX,isf,JLX,LX,ISB,JX,LPX,isi,JPX)
|
||||
1 *VCC(LLX,LX,LPX,0,0)*WINEJ(LLX,isf,JLX,LX,ISB,JX,LPX,isi,JPX) ! WINEJ = 9j, VCC = CG-coeff
|
||||
c (d,p) TEMP = temp4 * sqrt(2La+1) (-1)^{La - Lb - l} * CG[{Lb, 0}, {l, 0}, {La, 0}] * NineJ[everything is double]
|
||||
c VCC = take 2*l, 2*s, 2*j, but compute CG[{l, m}, {s, ms}, {k, m+ms}]
|
||||
c LLX,isf,JLX,LX,ISB,JX,LPX,isi,JPX
|
||||
c -> 2Lb,2sb,2Jb,2l,2s ,2j,2La,2sa,2Ja
|
||||
c TEMP = 100 * sqrt((2sa+1)(2l+1)(2Jb+1)) (2Lb+1) sqrt(2La+1) (-1)^{La - Lb - l} * CG[{Lb, 0}, {l, 0}, {La, 0}] * NineJ[everything is double]
|
||||
c
|
||||
|
||||
INDEX=LK+LL
|
||||
KT=0
|
||||
c Initial state spins
|
||||
|
@ -617,7 +631,7 @@ c Initial state spins
|
|||
c Final state spins
|
||||
MS =-IS(2)
|
||||
DO 55 MS2=1,JS
|
||||
VCP=VCC(LPX,IS(1),JPX,0,MSP)
|
||||
VCP=VCC(LPX,IS(1),JPX,0,MSP) ! CG[{La, 0}, {sa, ma}, {Ja, ma}]
|
||||
c
|
||||
DO 50 M=1,MPLUS
|
||||
MK=M+M-1
|
||||
|
@ -625,11 +639,48 @@ c
|
|||
ML2=MSP-MX-MS
|
||||
ML=IABS(ML2/2)
|
||||
IF(ML.LE.lf) then
|
||||
IND=LSTOR+KT+M
|
||||
IND=LSTOR+KT+M !
|
||||
c
|
||||
c LSTOR = l * num of total Ja, Jb states
|
||||
c KT = MPLUS state
|
||||
c
|
||||
c write(6,*) LSTOR, KT, M, IND
|
||||
|
||||
FACT=VCP*VCC(JLX,JX,JPX,MSP-MX,MX)*VCC(LLX,IS(2),JLX,ML2,MS)
|
||||
1 *SQRT(YXFCT(lf+ML,lf-ML))*TEMP
|
||||
c MSP = 2ma
|
||||
c MX = 2m
|
||||
c MS = 2mb
|
||||
c ML2 = 2(ma - m - mb)
|
||||
c VCC(JLX,JX,JPX,MSP-MX,MX) = CG[{Jb, ma - m}, {j, m}, {Ja, ma}]
|
||||
c VCC(LLX,IS(2),JLX,ML2,MS) = CG[{Lb, ma - m -mb}, {sb, mb}, {Jb, ma - m}]
|
||||
c
|
||||
c FACT = CG[{Jb, ma - m}, {j, m}, {Ja, ma}] * CG[{Lb, ma - m -mb}, {sb, mb}, {Jb, ma - m}] * sqrt((Lb+abs(ma-m-mb)!/(Lb-abs(ma-m-mb)!) * TEMP
|
||||
c temp = 100 * sqrt((2sa+1)(2l+1)(2Jb+1)) (2Lb+1) sqrt(2La+1) (-1)^{La - Lb - l} * CG[{Lb, 0}, {l, 0}, {La, 0}] * NineJ[everything is double]
|
||||
c
|
||||
|
||||
c write(6,5432) LPX/2.,JPX/2., LLX/2.,JLX/2.,
|
||||
c 1 MSP, MX, MS, TEMP, VCP, VCC(JLX,JX,JPX,MSP-MX,MX),
|
||||
c 2 VCC(LLX,IS(2),JLX,ML2,MS), SQRT(YXFCT(lf+ML,lf-ML)),
|
||||
c 3 FACT, FLL(INDEX)
|
||||
c 5432 FORMAT(F5.1, F5.1, F5.1, F5.1,
|
||||
c 1 I4, I4, I4, F15.6, F15.6, F15.6, F15.6,
|
||||
c 2 F15.6, F15.6, F15.6, F15.6)
|
||||
|
||||
D(IND)=D(IND)+FLL(INDEX)*FACT
|
||||
endif
|
||||
|
||||
c IND = (2sa+1)*(2sb+1) * (L+1) + (2sb+1)(ma+sa+1) + (mb+sb+1), loop from (-sa,-sb), (-sa, -sb+1), ...(-sa, sb), (-sa+1,-sb),....
|
||||
c D(Lb, ma, mb, m), m > 0
|
||||
|
||||
c IF(IND.EQ.3) then
|
||||
c write(6,8765) lf, LPX, JPX, LLX, JLX, MSP, ! l, La, Ja, Lb, Jb, ma, mb, m
|
||||
c 1 MS, MX, D(IND), FACT*FLL(INDEX), FACT, FLL(INDEX)
|
||||
c 8765 FORMAT(8I4, 7F15.7)
|
||||
c ENDIF
|
||||
c
|
||||
c
|
||||
|
||||
50 CONTINUE
|
||||
KT = KT+MPLUS
|
||||
MS =MS +2
|
||||
|
@ -645,6 +696,13 @@ c
|
|||
90 CONTINUE
|
||||
IS1=IS1+2
|
||||
95 CONTINUE
|
||||
|
||||
c write(6,*) "=============", IND
|
||||
c DO 888 QQ=1,192
|
||||
c write(6,*) QQ, D(QQ)
|
||||
c 888 CONTINUE
|
||||
|
||||
|
||||
RETURN
|
||||
END
|
||||
|
||||
|
@ -702,7 +760,7 @@ c initial state average factor for Gamma ray
|
|||
FACTA=sqrt(FACTR)
|
||||
endif
|
||||
c
|
||||
M2K=(1.0-PHASEF(IS(3)))/2.0
|
||||
M2K=(1.0-PHASEF(IS(3)))/2.0 ! PHASEF = (-1)^N
|
||||
NPLUS=(JTR+IS(1)+IS(2))/2+1
|
||||
MPLUS=JTR/2+1
|
||||
IFACT = MPLUS*JR*JS
|
||||
|
@ -737,6 +795,12 @@ c
|
|||
DO 40 LL=1,LPLUS
|
||||
ML1 =ML1 +1
|
||||
SUM1 = SUM1+D(IND)*PLM(ML1)
|
||||
|
||||
c sum only for j > m > 0
|
||||
c SUM1 = sum( D(Lb, ma, mb, m) P(Lb, ma-m+mb, Cos(theta)), {ma, -sa, sa}, {mb, -sb, sb})
|
||||
|
||||
c write(6,*) MPLUS, IND, D(IND), ML1, PLM(ML1), SUM1
|
||||
|
||||
C
|
||||
C CALCULATE TOTAL INELASTIC SIGMA
|
||||
C
|
||||
|
@ -744,7 +808,7 @@ C
|
|||
L=LL-1
|
||||
ML = iabs(ML)
|
||||
if(ML.le.L) then
|
||||
FACT = conjg(D(IND))*D(IND)*YXFCT(L-ML,L+ML)/FLOAT(2*L+1)
|
||||
FACT = conjg(D(IND))*D(IND)*YXFCT(L-ML,L+ML)/FLOAT(2*L+1) !YXFCT = N!/M!
|
||||
IF(M2 .NE. 0) FACT=FACT*2.0
|
||||
TotSig=TotSig+FACT
|
||||
endif
|
||||
|
@ -757,6 +821,10 @@ C
|
|||
index2 = index2-1
|
||||
SUM(index2) = SUM1*PHAS2 *FACTA
|
||||
endif
|
||||
|
||||
c write(6,*) IS1, IS2, M, ML, SUM1, FACTA,
|
||||
c 1 index1, SUM(index1), index2, SUM(index2)
|
||||
|
||||
c if(nth.eq.2) write(*,'(a,4i3, 1p4e12.4)')
|
||||
c 1 ' Is2,Is1 M, ML :',is2,is1,M,ML,SUM(Index1),SUM(Index2)
|
||||
KT = KT+MPLUS
|
||||
|
|
16
dwuck4/DWtest2.DAT
Normal file
16
dwuck4/DWtest2.DAT
Normal file
|
@ -0,0 +1,16 @@
|
|||
10001310500100000 16O(D,P)17O G.S. d5/2 orbital
|
||||
+181. +00. +01.0
|
||||
+15+01+02+05
|
||||
+00.10 +12.
|
||||
+20.00 +02. +01. +16. +08. +01.30 +02.
|
||||
+01. -88.955 +01.149 +00.675 -02.348 +01.345 +00.603
|
||||
+02. +01.394 +00.687 +40.872 +01.394 +00.687
|
||||
-04. -14.228 +00.972 +01.011 +01.562 +00.477
|
||||
+01.92 +01. +01. +17. +08. +01.42 +01.
|
||||
+01. -49.544 +01.146 +00.675 -02.061 +01.146 +00.675
|
||||
+02. +30.680 +01.302 +00.528
|
||||
-04. -21.184 +00.934 +00.590 +00.424 +00.934 +00.590
|
||||
-04.14 +01. +00. +16. +08. +01.30 +01.
|
||||
-01. -01. +01.10 +00.65 +24.
|
||||
+00. +02. +05. +01. +58.
|
||||
9 END OF DATA DWUCK4 test cases
|
66
dwuck4/LGNDR.py
Executable file
66
dwuck4/LGNDR.py
Executable file
|
@ -0,0 +1,66 @@
|
|||
#!/usr/bin/env python3
|
||||
|
||||
import numpy as np
|
||||
from scipy.special import lpmv
|
||||
|
||||
def lgndr(mplus, lplus, thet):
|
||||
"""
|
||||
Calculates Legendre polynomials Plm
|
||||
|
||||
Parameters:
|
||||
mplus : int
|
||||
Number of m's > 0
|
||||
lplus : int
|
||||
Number of l's > 0
|
||||
thet : float
|
||||
Angle in degrees
|
||||
|
||||
Returns:
|
||||
plm : list
|
||||
List containing Legendre polynomials
|
||||
"""
|
||||
|
||||
theta = np.radians(thet)
|
||||
y = np.cos(theta)
|
||||
z = np.sin(theta)
|
||||
plm = np.zeros(459, dtype=np.float64)
|
||||
|
||||
ix = 0
|
||||
for m in range(1, mplus + 1): # For MPLUS = 1, LPLUS = 16
|
||||
lx = m - 1 # LX = 0
|
||||
l2 = 0 # L2 = 0
|
||||
p3 = 1.0 # P3 = 1.0
|
||||
fl1 = float(lx) # FL1 = 0
|
||||
|
||||
if lx != 0:
|
||||
for lt in range(1, lx + 1):
|
||||
fl1 += 1.0
|
||||
p3 *= fl1 * z / 2.0
|
||||
|
||||
p2 = 0.0 # P2 = 0.0
|
||||
fl2 = fl1 + 1.0 # FL2 = 1.0
|
||||
fl3 = 1.0 # FL3 = 1.0
|
||||
|
||||
for lt in range(1, lplus + 1): # Loop Lb
|
||||
ix1 = ix + lt
|
||||
|
||||
if l2 < lx:
|
||||
plm[ix1] = 0.0
|
||||
else:
|
||||
if l2 > lx:
|
||||
p3 = (fl2 * y * p2 - fl1 * p1) / fl3
|
||||
fl1 += 1.0
|
||||
fl2 += 2.0
|
||||
fl3 += 1.0
|
||||
plm[ix1] = p3
|
||||
print(f'PLM, {lx:3d}, {l2:3d}, {ix1:3d}, {plm[ix1]:15.10f}')
|
||||
p1, p2 = p2, p3
|
||||
|
||||
l2 += 1
|
||||
|
||||
ix += lplus
|
||||
|
||||
return plm
|
||||
|
||||
|
||||
plm = lgndr(3, 16, 1)
|
|
@ -12,27 +12,31 @@ c
|
|||
IMPLICIT REAL*8(A-H,O-Z)
|
||||
|
||||
DIMENSION PLM(459)
|
||||
c
|
||||
c
|
||||
c write(6, *) "========== ",MPLUS, LPLUS, THET
|
||||
c
|
||||
THETA=THET /57.295779
|
||||
Y=COS(THETA)
|
||||
Z=SIN(THETA)
|
||||
IX=0
|
||||
DO 100 M=1,MPLUS
|
||||
LX=M-1
|
||||
L2=0
|
||||
P3=1.0
|
||||
FL1=LX
|
||||
DO 100 M=1,MPLUS ! for MPLUS = 1, LPLUS = 16
|
||||
LX=M-1 ! LX = 0
|
||||
L2=0 ! L2 = 0
|
||||
P3=1.0 ! P3 = 1.0
|
||||
FL1=LX ! FL1 = 0
|
||||
IF(LX.EQ.0) GO TO 41
|
||||
DO 40 LT=1,LX
|
||||
FL1=FL1+1.0
|
||||
P3=P3*FL1*Z/2.0
|
||||
40 CONTINUE
|
||||
41 P2=0.0
|
||||
FL2=FL1+1.0
|
||||
FL3=1.0
|
||||
DO 90 LT=1,LPLUS
|
||||
IX1=IX+LT
|
||||
IF(L2-LX)50,70,60
|
||||
41 P2=0.0 ! P2 = 0.0
|
||||
FL2=FL1+1.0 !FL2 = 1.0
|
||||
FL3=1.0 ! FL3 = 1.0
|
||||
c================================= loop Lb
|
||||
DO 90 LT=1,LPLUS ! loop Lb
|
||||
IX1=IX+LT
|
||||
IF(L2-LX)50,70,60 ! if L2 < Lx -> 50; L2 == Lx -> 70; L2 > LX -> 60
|
||||
50 PLM(IX1)=0.0
|
||||
GO TO 75
|
||||
60 P3=(FL2*Y*P2-FL1*P1)/FL3
|
||||
|
@ -40,10 +44,14 @@ c
|
|||
FL2=FL2+2.0
|
||||
FL3=FL3+1.0
|
||||
70 PLM(IX1)=P3
|
||||
|
||||
c write(6, *) 'PLM, ',THETA*57.295779, IX1, PLM(IX1)
|
||||
|
||||
P1=P2
|
||||
P2=P3
|
||||
75 L2=L2+1
|
||||
90 CONTINUE
|
||||
c================================== end of Loop Lb
|
||||
IX=IX+LPLUS
|
||||
100 CONTINUE
|
||||
RETURN
|
||||
|
|
|
@ -125,6 +125,9 @@ c Calculate Tensor polarization = <Sij(final)>
|
|||
endif
|
||||
140 continue
|
||||
c
|
||||
|
||||
c write(6,*) mp, m, my, mx, sr(mp, m, my, mx)
|
||||
|
||||
Pol(1) =Pol(1) + conjg(sr(mp,m ,my,mx)) * sr(mp,m ,my,mx)
|
||||
Pol(2) =Pol(2) + conjg(sr(mp,m ,my,mx)) * a(mp,m )
|
||||
Pol(3) =Pol(3) + conjg(sr(mp,m ,my,mx)) * b(mp,m )
|
||||
|
|
Loading…
Reference in New Issue
Block a user