add Rapheal, a python code for DWBA

This commit is contained in:
Ryan Tang 2025-02-18 18:46:09 -05:00
parent b19181d36c
commit db7943aa9a
4 changed files with 297 additions and 66 deletions

37
Raphael/assLegendreP.py Executable file
View File

@ -0,0 +1,37 @@
#!/usr/bin/env python3
import numpy as np
def associated_legendre_polynomials_single_angle(L, M, theta_deg):
# Convert theta from degrees to radians
theta = np.radians(theta_deg)
x = np.cos(theta)
P = np.zeros((L + 1, M + 1))
# P^m_l for m = 0, l = 0
P[0, 0] = 1.0
# P^m_l for m = 0, l > 0
for l in range(1, L + 1):
P[l, 0] = ((2*l - 1) * x * P[l-1, 0] - (l - 1) * P[l-2, 0]) / l
# P^m_l for m > 0 (using recursion)
for m in range(1, M + 1):
# P^m_m
P[m, m] = (1 - 2*m) * P[m-1, m-1]
P[m, m] *= np.sqrt(1 - x**2)
for l in range(m + 1, L + 1):
# P^m_l for m < l
P[l, m] = ((2*l - 1) * x * P[l-1, m] - (l + m - 1) * P[l-2, m]) / (l - m)
return P
# Example usage
#L = 15 # Maximum l degree
#M = 5 # Maximum m order
#legendre_polynomials = associated_legendre_polynomials_single_angle(L, M, 45)
#print(legendre_polynomials)

14
Raphael/coulombWave.py Executable file
View File

@ -0,0 +1,14 @@
#!/usr/bin/env python3
import numpy as np
from mpmath import coulombf, coulombg
L = 20
eta = 2.0
rho = 30
f_values = coulombf(L, eta, rho)
g_values = coulombg(L, eta, rho)
print(f_values)
print(g_values)

246
Raphael/solveSE.py Executable file
View File

@ -0,0 +1,246 @@
#!/usr/bin/env python3
import math
import numpy as np
import sys, os
sys.path.append(os.path.join(os.path.dirname(__file__), '../Cleopatra'))
from IAEANuclearData import IsotopeClass
class Coulomb:
def __init__(self, rc):
self.rc = rc
self.id = 0
self.ee = 1.43996 # MeV.fm
def setA(self, A):
self.Rc = self.rc * math.pow(A, 1/3)
def setAa(self, A, a):
self.Rc = self.rc * (math.pow(A, 1/3) + math.pow(a, 1/3))
def setCharge(self, Z):
self.Charge = Z
def output(self, x):
if x >self.Rc:
return (self.Charge * self.ee) / (x + 1e-20) # Add a small value to avoid division by zero
else:
return (self.Charge * self.ee) / (2 * self.Rc) * (3 - (x / self.Rc)**2)
class WS:
def __init__(self, V0, r0, a0) :
self.V0 = V0
self.r0 = r0
self.a0 = a0
self.id = 1
def setA(self, A):
self.R0 = self.r0 * math.pow(A, 1/3)
def setAa(self, A, a):
self.R0 = self.r0 * (math.pow(A, 1/3) + math.pow(a, 1/3))
def output(self, x):
return self.V0/(1 + math.exp((x-self.R0)/self.a0))
class SO:
def __init__(self, VSO, rSO, aSO) :
# the LS factor is put in the SolvingSE Class
self.VSO = VSO
self.rSO = rSO
self.aSO = aSO
self.id = 2
def setA(self, A):
self.RSO = self.rSO * math.pow(A, 1/3)
def setAa(self, A, a):
self.RSO = self.rSO * (math.pow(A, 1/3) + math.pow(a, 1/3))
def output(self, x):
if x > 0 :
return 4*(self.VSO * math.exp((x-self.RSO)/self.aSO))/(self.aSO*math.pow(1+math.exp((x-self.RSO)/self.aSO),2))/x
else :
return 4*1e+19
class WSSurface:
def __init__(self, V0, r0, a0):
self.V0 = V0
self.r0 = r0
self.a0 = a0
self.id = 3
def setA(self, A):
self.R0 = self.r0 * math.pow(A, 1/3)
def setAa(self, A, a):
self.R0 = self.r0 * (math.pow(A, 1/3) + math.pow(a, 1/3))
def output(self, x):
exponent = (x - self.R0) / self.a0
return self.V0 * math.exp(exponent) / (1 + math.exp(exponent))**2
#========================================
class SolvingSE:
#grid setting
rStart = 0.0
dr = 0.05
nStep = 600*5
rpos = np.arange(rStart, rStart+nStep*dr, dr)
SolU = []
maxSolU = 0.0
WF = np.empty([nStep], dtype=float) # radial wave function
maxWF = 0.0
#constant
mn = 939.56539 #MeV/c2
amu = 931.494 #MeV/c2
hbarc = 197.326979 #MeV.fm
ee = 1.43996 # MeV.fm
#RK4 constants
parC = [0, 1./2, 1./2, 1.]
parD = [1./6, 2./6, 2./6, 1./6]
#inital condition
solu0 = 0.0
dsolu0 = 0.0001
potential_List = []
def PrintInput(self):
print(f" A : ({self.A:3d}, {self.ZA:3d})")
print(f" a : ({self.a:3d}, {self.Za:3d})")
print(f" Elab : {self.Energy : 10.3f} MeV")
print(f" mu : {self.mu: 10.3f} MeV/c2")
# print(f" Ecm : {self.Ecm: 10.3f} MeV")
# print(f" k : {self.k: 10.3f} MeV/c")
# print(f" eta : {self.eta: 10.3f}")
# print(f" L : {self.L}, maxL : {self.maxL}")
print(f" dr : {self.dr} fm, nStep : {self.nStep}")
print(f"rStart : {self.rStart} fm, rMax : {self.nStep * self.dr} fm")
print(f"spin-A : {self.sA}, spin-a : {self.sa} ")
def __init__(self, A, ZA, a, Za, Energy):
self.A = A
self.a = a
self.ZA = ZA
self.Za = Za
self.Z = ZA * Za
self.sA = 0
self.sa = 0
self.L = 0
self.S = 0
self.J = 0
haha = IsotopeClass()
self.mass_A = haha.GetMassFromAZ(self.A, self.ZA)
self.mass_a = haha.GetMassFromAZ(self.a, self.Za)
#self.mu = (A * a)/(A + a) * self.amu
self.mu = (self.mass_A * self.mass_a)/(self.mass_A + self.mass_a)
self.Energy = Energy
self.Ecm = self.Energy
# self.E_tot = math.sqrt(math.pow((a+A)*self.amu,2) + 2 * A * self.amu * eng_Lab)
# self.Ecm = self.E_tot - (a + A) * self.amu
# self.k = math.sqrt(self.mu * 2 * abs(self.Ecm)) / self.hbarc
# self.eta = self.Z * self.ee * math.sqrt( self.mu/2/self.Ecm ) / self.hbarc
# self.maxL = int(self.k * (1.4 * (self.A**(1/3) + self.a**(1/3)) + 3))
def SetSpin(self, sA, sa):
self.sA = sA
self.sa = sa
self.S = self.sa
def SetLJ(self, L, J):
self.L = L
self.J = J
def LS(self, L = None, J = None) :
if L is None:
L = self.L
if J is None:
J = self.J
return (J*(J+1)-L*(L+1)-self.S*(self.S))/2.
# set the range in fm
def SetRange(self, rStart, dr, nStep):
self.rStart = rStart
self.dr = dr
self.nStep = nStep
self.WF=np.empty([nStep], dtype=float)
self.rpos = np.arange(self.rStart, self.rStart+self.nStep*dr, self.dr)
self.WF = np.empty([self.nStep], dtype=float)
self.maxWF = 0.0
self.SolU = []
self.maxSolU = 0.0
def ClearPotential(self):
self.potential_List = []
def AddPotential(self, pot, useBothMass : bool = False):
if pot.id == 0:
pot.setCharge(self.Z)
if useBothMass:
pot.setAa(self.A, self.a)
else:
pot.setA(self.A)
self.potential_List.append(pot)
def __PotentialValue(self, x):
value = 0
for pot in self.potential_List:
if pot.id == 2:
value = value + self.LS() * pot.output(x)
else:
value = value + pot.output(x)
return value
def GetPotentialValue(self, x):
return self.__PotentialValue(x)
# The G-function, u''[r] = G[r, u[r], u'[r]]
def __G(self, x, y, dy):
#return -2*x*dy -2*y # solution of gaussian
if x > 0 :
return 2*self.mu/math.pow(self.hbarc,2)*(self.__PotentialValue(x) - self.Ecm)*y + self.L*(1+self.L)/x/x*y
else:
return 0
# Using Rungu-Kutta 4th method to solve u''[r] = G[r, u[r], u'[r]]
def SolveByRK4(self):
#initial condition
self.SolU = [self.solu0]
dSolU = [self.dsolu0]
dyy = np.array([1., 0., 0., 0., 0.], dtype= complex)
dzz = np.array([1., 0., 0., 0., 0.], dtype= complex)
self.maxSolU = 0.0
for i in range(self.nStep-1):
r = self.rStart + self.dr * i
y = self.SolU[i]
z = dSolU[i]
for j in range(4):
dyy[j + 1] = self.dr * (z + self.parC[j] * dzz[j])
dzz[j + 1] = self.dr * self.__G(r + self.parC[j] * self.dr, y + self.parC[j] * dyy[j], z + self.parC[j] * dzz[j])
dy = sum(self.parD[j] * dyy[j + 1] for j in range(4))
dz = sum(self.parD[j] * dzz[j + 1] for j in range(4))
self.SolU.append(y + dy)
dSolU.append(z + dz)
return self.SolU
def normalize_boundState(self):
pass

View File

@ -1,66 +0,0 @@
#!/usr/bin/env python3
import numpy as np
from scipy.special import lpmv
def lgndr(mplus, lplus, thet):
"""
Calculates Legendre polynomials Plm
Parameters:
mplus : int
Number of m's > 0
lplus : int
Number of l's > 0
thet : float
Angle in degrees
Returns:
plm : list
List containing Legendre polynomials
"""
theta = np.radians(thet)
y = np.cos(theta)
z = np.sin(theta)
plm = np.zeros(459, dtype=np.float64)
ix = 0
for m in range(1, mplus + 1): # For MPLUS = 1, LPLUS = 16
lx = m - 1 # LX = 0
l2 = 0 # L2 = 0
p3 = 1.0 # P3 = 1.0
fl1 = float(lx) # FL1 = 0
if lx != 0:
for lt in range(1, lx + 1):
fl1 += 1.0
p3 *= fl1 * z / 2.0
p2 = 0.0 # P2 = 0.0
fl2 = fl1 + 1.0 # FL2 = 1.0
fl3 = 1.0 # FL3 = 1.0
for lt in range(1, lplus + 1): # Loop Lb
ix1 = ix + lt
if l2 < lx:
plm[ix1] = 0.0
else:
if l2 > lx:
p3 = (fl2 * y * p2 - fl1 * p1) / fl3
fl1 += 1.0
fl2 += 2.0
fl3 += 1.0
plm[ix1] = p3
print(f'PLM, {lx:3d}, {l2:3d}, {ix1:3d}, {plm[ix1]:15.10f}')
p1, p2 = p2, p3
l2 += 1
ix += lplus
return plm
plm = lgndr(3, 16, 1)