#!/usr/bin/env python3 from boundState import BoundState from solveSE import WoodsSaxonPot, CoulombPotential, SpinOrbit_Pot, WS_SurfacePot import matplotlib.pyplot as plt # boundState = BoundState(16, 8, 1, 0, 1, 0, 0.5, -3.273) # boundState.SetPotential(1.25, 0.65, -6, 1.10, 0.65, 1.30) # boundState.FindPotentialDepth(-75, -40, 0.1) # # boundState.PrintWF() # boundState.PlotBoundState() # exit() from distortedWave import DistortedWave dw = DistortedWave("60Ni", "p", 30) dw.ClearPotential() dw.AddPotential(WoodsSaxonPot(-47.937-2.853j, 1.20, 0.669), False) dw.AddPotential(WS_SurfacePot(-6.878j, 1.28, 0.550), False) dw.AddPotential(SpinOrbit_Pot(-5.250 + 0.162j, 1.02, 0.590), False) dw.AddPotential(CoulombPotential(1.258), False) # dw = DistortedWave("60Ni", "d", 60) # dw.PrintInput() # dw.ClearPotential() # dw.AddPotential(WoodsSaxonPot(-81.919, 1.15, 0.768), False) # dw.AddPotential(WoodsSaxonPot(-4.836j, 1.33, 0.464), False) # dw.AddPotential(WS_SurfacePot(-8.994j, 1.373, 0.774), False) # dw.AddPotential(SpinOrbit_Pot(-3.557, 0.972, 1.011), False) # dw.AddPotential(CoulombPotential(1.303), False) dw.CalScatteringMatrix() # dw.PrintScatteringMatrix() dw.PlotDCSUnpolarized(180, 1) exit() # for i in range(1, 19): # theta = 10*i # # ruth = dw.RutherFord(theta) # # coulAmp = dw.CoulombScatterintAmp(theta) # dw.CalLegendre(theta) # nuAmp1 = dw.NuclearScatteringAmp(-0.5, 0.5, 14) # nuAmp2 = dw.NuclearScatteringAmp(0.5, -0.5, 14) # # dsc = dw.DCSUnpolarized(theta, 14) # # print(f"{theta:3.0f}, {nuAmp1:15.5f}, {nuAmp2:15.5f}, {dsc:10.6f}, {ruth:10.6f}") # print(f"{theta:3.0f}, {nuAmp1:15.5f}, {nuAmp2:15.5f}") import sys, os import re import numpy as np sys.path.append(os.path.join(os.path.dirname(__file__), '../Cleopatra')) from IAEANuclearData import IsotopeClass # Woods-Saxon v = 0 r0 = 0 a = 0 vi = 0 ri0 = 0 ai = 0 # Woods-Saxon Surface vsi = 0 rsi0 = 0 asi = 0 # Spin-orbit vso = 0 rso0 = 0 aso = 0 vsoi = 0 rsoi0 = 0 asoi = 0 # Coulomb rc0 = 0 def AnCai(A : int, Z : int, E : float): global v, r0, a, vi, ri0, ai, vsi, rsi0, asi, vso, rso0, aso, vsoi, rsoi0, asoi, rc0 A3 = A**(1./3.) v = 91.85 - 0.249*E + 0.000116*pow(E,2) + 0.642 * Z / A3 r0 = 1.152 - 0.00776 / A3 a = 0.719 + 0.0126 * A3 vi = 1.104 + 0.0622 * E ri0 = 1.305 + 0.0997 / A3 ai = 0.855 - 0.1 * A3 vsi = 10.83 - 0.0306 * E rsi0 = 1.334 + 0.152 / A3 asi = 0.531 + 0.062 * A3 vso = 3.557 rso0 = 0.972 aso = 1.011 vsoi = 0.0 rsoi0 = 0.0 asoi = 0.0 rc0 = 1.303 def Koning(A : int, Z : int, E : float, Zproj : float): global v, r0, a, vi, ri0, ai, vsi, rsi0, asi, vso, rso0, aso, vsoi, rsoi0, asoi, rc0 N = A-Z A3 = A**(1./3.) vp1 = 59.3 + 21.*(N-Z)/A - 0.024*A vn1 = 59.3 - 21.*(N-Z)/A - 0.024*A vp2 = 0.007067 + 0.00000423*A vn2 = 0.007228 - 0.00000148*A vp3 = 0.00001729 + 0.00000001136 * A vn3 = 0.00001994 - 0.00000002 * A vp4 = 7e-9 # = vn4 vn4 = vp4 wp1 = 14.667 + 0.009629*A wn1 = 12.195 + 0.0167*A wp2 = 73.55 + 0.0795*A # = wn2 wn2 = wp2 dp1 = 16 + 16.*(N-Z)/A dn1 = 16 - 16.*(N-Z)/A dp2 = 0.018 + 0.003802/(1 + np.exp((A-156.)/8)) # = dn2 dn2 = dp2 dp3 = 11.5 # = dn3 dn3 = dp3 vso1 = 5.922 + 0.003 * A vso2 = 0.004 wso1 = -3.1 wso2 = 160 epf = -8.4075 + 0.01378 *A enf = -11.2814 + 0.02646 *A rc = 1.198 + 0.697/pow(A3,2) + 12.995/pow(A3,5) vc = 1.73/rc * Z / A3 v = vp1*(1 - vp2*(E-epf) + vp3*pow(E-epf,2) - vp4*pow(E-epf,3)) + vc * vp1 * (vp2 - 2*vp3*(E-epf) + 3*vp4*pow(E-epf,2)) #neutron if Zproj == 0 : v = vn1*(1 - vn2*(E-enf) + vn3*pow(E-enf,2) - vn4*pow(E-enf,3)) r0 = 1.3039 - 0.4054 / A3 a = 0.6778 - 0.000148 * A vi = wp1 * pow(E-epf,2)/(pow(E-epf,2) + pow(wp2,2)) if Zproj == 0 : vi = wn1 * pow(E-enf,2)/(pow(E-enf,2) + pow(wn2,2)) ri0 = 1.3039 - 0.4054 / A3 ai = 0.6778 - 0.000148 * A vsi = dp1 * pow(E-epf,2)/(pow(E-epf,2)+pow(dp3,2)) * np.exp(-dp2*(E-epf)) if Zproj == 0 : vsi = dn1 * pow(E-enf,2)/(pow(E-enf,2)+pow(dn3,2)) * np.exp(-dn2*(E-enf)) rsi0 = 1.3424 - 0.01585 * A3 asi = 0.5187 + 0.0005205 * A if Zproj == 0: asi = 0.5446 - 0.0001656 * A vso = vso1 * np.exp(-vso2 * (E-epf)) if Zproj == 0: vso = vso1 * np.exp(-vso2 * (E-enf)) rso0 = 1.1854 - 0.647/A3 aso = 0.59 vsoi = wso1 * pow(E-epf,2)/(pow(E-epf,2)+pow(wso2,2)) if Zproj == 0 : vsoi = wso1 * pow(E-enf,2)/(pow(E-enf,2)+pow(wso2,2)) rsoi0 = 1.1854 - 0.647/A3 asoi = 0.59 rc0 = rc def ConvertLSym(LSym :str) -> int: if LSym == "s" : return 0 elif LSym == "p" : return 1 elif LSym == "d" : return 2 elif LSym == "f" : return 3 elif LSym == "g" : return 4 elif LSym == "h" : return 5 elif LSym == "i" : return 6 elif LSym == "j" : return 7 elif LSym == "k" : return 8 else : return -1 #========================================== nu_A = "16O" nu_a = "d" nu_b = "p" nu_B = "17O" ELabPreU = 10 # MeV/u Ex = 0.87 J_B = 0.5 orbital = "1s1/2" iso = IsotopeClass() A_A, Z_A = iso.GetAZ(nu_A) A_a, Z_a = iso.GetAZ(nu_a) A_b, Z_b = iso.GetAZ(nu_b) A_B, Z_B = iso.GetAZ(nu_B) A_x = abs(A_a - A_b) Z_x = abs(Z_a - Z_b) mass_A = iso.GetMassFromSym(nu_A) mass_a = iso.GetMassFromSym(nu_a) mass_b = iso.GetMassFromSym(nu_b) mass_B = iso.GetMassFromSym(nu_B) mass_x = iso.GetMassFromAZ( A_x, Z_x) if A_A < A_B : # (d,p) A_c = A_A Z_c = Z_A BindingEnergy = mass_B - mass_A - mass_x + Ex else: #(p,d) A_c = A_B Z_c = Z_B BindingEnergy = mass_A - mass_B - mass_x sym_A = iso.GetSymbol(A_A, Z_A) sym_B = iso.GetSymbol(A_B, Z_B) if A_a == 2 and Z_a == 1: spin_a = 1.0 spin_b = 0.5 else: spin_a = 0.5 spin_b = 1.0 Q_value = mass_A + mass_a - mass_b - mass_B - Ex print(f"Q-value : {Q_value:10.6f} MeV") print(f"Binding : {BindingEnergy:10.6f} MeV") #=================== digest orbital match = re.search(r'[a-zA-Z]', orbital) # Find first letter if match: index = match.start() # Get position of the first letter node = int(orbital[:index]) l_sym = orbital[index:index+1] j_sym = orbital[index+1:] j = eval(j_sym) l = ConvertLSym(l_sym) #=================== find the maximum L for partial wave mass_I = mass_A * mass_a / (mass_A + mass_a) # reduced mass of incoming channel hbarc = 197.3269788 # MeV.fm k_I = np.sqrt(2*mass_I * A_a * ELabPreU)/hbarc # wave number of incoming channel touching_Radius = 1.25*(A_A**(1./3) + A_a**(1./3)) + 10 # add 10 fm maxL = int(touching_Radius * k_I) # maximum partial wave print(f"max L : {maxL}") #================== Bound state boundState = BoundState(A_c, Z_c, A_x, Z_x, node, l, j, BindingEnergy) boundState.SetPotential(1.25, 0.65, -6, 1.10, 0.65, 1.30) boundState.FindPotentialDepth(-70, -55, 0.1) # # boundState.PrintWF() # boundState.PlotBoundState() #================== incoming wave function AnCai(A_A, Z_A, A_a * ELabPreU) dwI = DistortedWave(nu_A, nu_a, ELabPreU * A_a) dwI.maxL = maxL dwI.ClearPotential() dwI.AddPotential(WoodsSaxonPot(-v, r0, a), False) dwI.AddPotential(WoodsSaxonPot(-1j*vi, ri0, ai), False) dwI.AddPotential(WS_SurfacePot(-1j*vsi, rsi0, asi), False) dwI.AddPotential(SpinOrbit_Pot(-vso , rso0, aso), False) dwI.AddPotential(SpinOrbit_Pot(- 1j* vsoi, rsoi0, asoi), False) dwI.AddPotential(CoulombPotential(rc0), False) sm_I, wfu_I = dwI.CalScatteringMatrix() dwI.PrintScatteringMatrix() #================= outgoing wave function Koning(A_B, Z_B, A_a*ELabPreU + Q_value - Ex, Z_b) dwO = DistortedWave(nu_B, nu_b, ELabPreU * A_a + Q_value - Ex) dwO.maxL = maxL dwO.ClearPotential() dwO.AddPotential(WoodsSaxonPot(-v, r0, a), False) dwO.AddPotential(WoodsSaxonPot(-1j*vi, ri0, ai), False) dwO.AddPotential(WS_SurfacePot(-1j*vsi, rsi0, asi), False) dwO.AddPotential(SpinOrbit_Pot(-vso , rso0, aso), False) dwO.AddPotential(SpinOrbit_Pot(- 1j* vsoi, rsoi0, asoi), False) dwO.AddPotential(CoulombPotential(rc0), False) sm_O, wfu_O = dwO.CalScatteringMatrix() dwO.PrintScatteringMatrix()