#!/usr/bin/env python3 import sys import os if len(sys.argv) < 7: print("Error: Not enough arguments provided.") print("Usage: ./{sys.argv[0]} reaction target_gs-spin orbital spin-pi Ex ELab[Mev/u]") sys.exit(1) reaction = sys.argv[1] JA_pi = sys.argv[2] orbital = sys.argv[3] JB_pi = sys.argv[4] Ex = float(sys.argv[5]) ELab = float(sys.argv[6]) sys.path.append(os.path.join(os.path.dirname(__file__), '../Cleopatra')) sys.path.append(os.path.join(os.path.dirname(__file__), '../Raphael')) from IAEANuclearData import IsotopeClass import opticalPotentials as op from reactionData import ReactionData ##################################################### # only for (d,p) or (p,d) using An & Cai, Kronning ##################################################### import re #================== digest reaction nuclei = re.split(r'[(),]', reaction) nu_A = nuclei[0] nu_a = nuclei[1] nu_b = nuclei[2] nu_B = nuclei[3] reactionData = ReactionData(nu_A, nu_a, nu_b, JB_pi, orbital, Ex, ELab) sym_A = reactionData.sym_A A_A = reactionData.A_A Z_A = reactionData.Z_A A_a = reactionData.A_a Z_a = reactionData.Z_a A_B = reactionData.A_B Z_B = reactionData.Z_B A_b = reactionData.A_b Z_b = reactionData.Z_b A_x = reactionData.A_x Z_x = reactionData.Z_x A_c = reactionData.A_c Z_c = reactionData.Z_c node = reactionData.node l_sym = reactionData.l_sym spin_a = reactionData.spin_a spin_b = reactionData.spin_b l = reactionData.l j = reactionData.j Q_value = reactionData.Q_value BindingEnergy = reactionData.BindingEnergy #=================== outfile name fileOutName = str(sym_A) + str(A_A) + "_" + str(nu_a) + str(nu_b) + "_" \ + str(node) + str(l_sym) + str(int(2*j)) + "_" + str(Ex) + "_" + str(ELab) + "_" + JB_pi +".in" #=================== find the maximum L for partial wave mass_I = reactionData.mass_I # reduced mass of incoming channel k_I = reactionData.k_I # wave number of incoming channel touching_Radius = 1.25*(A_A**(1./3) + A_a**(1./3)) + 10 # add 10 fm maxL = int(touching_Radius * k_I) # maximum partial wave print(f"file out : {fileOutName}") print(f" max L : {maxL}") #=================== create outfile with open(fileOutName, "w") as file: file.write("10001310500100000 " + reaction + "(" + str(Ex) + "," + orbital + ")" + " @ " + str(ELab) + " MeV/u\n") file.write("+181. +00. +01.0\n") file.write(f"+{maxL}+01+{l:02d}+{int(2*j):02d}\n") file.write(f"{0.1:+08.4f}{15:+08.4f}\n") #===== Block 5 if A_a == 2 : op.AnCai(A_A, Z_A, A_a*ELab) else: op.Koning(A_A, Z_A, A_a*ELab, Z_a) file.write(f"{A_a*ELab:+08.4f}") file.write(f"{A_a:+08.4f}") file.write(f"{Z_a:+08.4f}") file.write(f"{A_A:+08.4f}") file.write(f"{Z_A:+08.4f}") file.write(f"{op.rc0:+08.4f}") file.write(f"{"":8s}") file.write(f"{"":8s}") file.write(f"{2*spin_a:+08.4f}\n") # Woods-Saxon file.write(f"{1:+08.4f}") file.write(f"{-op.v:+08.4f}") # real file.write(f"{op.r0:+08.4f}") # file.write(f"{op.a:+08.4f}") # file.write(f"{"":8s}") # spin-orbit skipped file.write(f"{-op.vi:+08.4f}") # imag file.write(f"{op.ri0:+08.4f}") # file.write(f"{op.ai:+08.4f}\n") # # Woods-Saxon surface file.write(f"{2:+08.4f}") file.write(f"{"":8s}") # real file.write(f"{"":8s}") # file.write(f"{"":8s}") # file.write(f"{"":8s}") # spin-orbit skipped file.write(f"{4*op.vsi:+08.4f}") # imag file.write(f"{op.rsi0:+08.4f}") # file.write(f"{op.asi:+08.4f}\n") # # Spin-Orbit file.write(f"{-4:+08.4f}") file.write(f"{-4*op.vso:+08.4f}") # real file.write(f"{op.rso0:+08.4f}") # file.write(f"{op.aso:+08.4f}") # file.write(f"{"":8s}") # spin-orbit skipped file.write(f"{-4*op.vsoi:+08.4f}") # imag file.write(f"{op.rsoi0:+08.4f}") # file.write(f"{op.asoi:+08.4f}\n") # #===== Block 6 if A_a == 2 : op.Koning(A_B, Z_B, A_a*ELab + Q_value - Ex, Z_b) else: op.AnCai(A_B, Z_B, A_a*ELab + Q_value - Ex) file.write(f"{Q_value:+08.4f}") file.write(f"{A_b:+08.4f}") file.write(f"{Z_b:+08.4f}") file.write(f"{A_B:+08.4f}") file.write(f"{Z_B:+08.4f}") file.write(f"{op.rc0:+08.4f}") file.write(f"{"":8s}") file.write(f"{"":8s}") file.write(f"{2*spin_b:+08.4f}\n") # Woods-Saxon file.write(f"{1:+08.4f}") file.write(f"{-op.v:+08.4f}") # real file.write(f"{op.r0:+08.4f}") # file.write(f"{op.a:+08.4f}") # file.write(f"{"":8s}") # spin-orbit skipped file.write(f"{-op.vi:+08.4f}") # imag file.write(f"{op.ri0:+08.4f}") # file.write(f"{op.ai:+08.4f}\n") # # Woods-Saxon surface file.write(f"{2:+08.4f}") file.write(f"{"":8s}") # real file.write(f"{"":8s}") # file.write(f"{"":8s}") # file.write(f"{"":8s}") # spin-orbit skipped file.write(f"{4*op.vsi:+08.4f}") # imag file.write(f"{op.rsi0:+08.4f}") # file.write(f"{op.asi:+08.4f}\n") # # Spin-Orbit file.write(f"{-4:+08.4f}") file.write(f"{-4*op.vso:+08.4f}") # real file.write(f"{op.rso0:+08.4f}") # file.write(f"{op.aso:+08.4f}") # file.write(f"{"":8s}") # spin-orbit skipped file.write(f"{-4*op.vsoi:+08.4f}") # imag file.write(f"{op.rsoi0:+08.4f}") # file.write(f"{op.asoi:+08.4f}\n") # #====== bound state file.write(f"{BindingEnergy:+08.4f}") file.write(f"{A_x:+08.4f}") file.write(f"{Z_x:+08.4f}") file.write(f"{A_c:+08.4f}") file.write(f"{Z_c:+08.4f}") file.write(f"{1.30:+08.4f}") # Coulomb radius file.write(f"{"":8s}") # file.write(f"{"":8s}") # file.write(f"{1:+08.4f}\n") # neutron spin x 2 # Woods-Saxon file.write(f"{-1:+08.4f}") file.write(f"{-1:+08.4f}") # real file.write(f"{1.1:+08.4f}") # file.write(f"{0.65:+08.4f}") # file.write(f"{24:+8.4f}\n") # spin-orbit # orbital file.write(f"{node:+08.4f}") file.write(f"{l:+08.4f}") file.write(f"{2*j:+08.4f}") file.write(f"{1:+08.4f}") # 2 x nuetron spin file.write(f"{58:+08.4f}\n") #======== end of input file.write("9 end of input card")