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1. General Description of DWUCKA4

The computer code DWUCK4 calculates the scattering and reaction observables for binary nuclear
reactions using the distorted wave Born approximation (DWBA). The calculations are performed using a
zero-range interaction. This restriction is, in general, not important for inelastic scattering, however it is
an approximation for the calculation of particle transfer reactions. The spin of the projectiles may be any
combination of spin 0, spin 1/2 or spin 1. The following physics description uses the notation and formulation
of ref. [1] which describes nuclear reaction theory in detail.

The computer code calculates a transition amplitude for the reaction A(a,b)B of the form

T = J/d3rb /d3rax<_)(ﬁf,Fb)* (bB|V]aA) X (ki, Fa), (1.1)

where x(7) and x(*) are the distorted waves, T and 1y, are the relative coordinates for the systems (a,A)
and (b,B), respectively, and J is the Jacobian for the transformation to these coordinates. The quantity
<bB |V|aA> is the form factor for the reaction and must contain a delta-function between the coordinates
ra and 1. The distorted waves X<i>(f£, ) asymptotically describe a plane wave of momentum Kk plus an

outgoing (or incoming) spherical scattered wave which in the case of no Coulomb potential has the form,

)T = i eLikr

- (1.2)

The final distorted wave which has an incoming scattered wave condition is related to the solution with the
outgoing waves by
X7k, 1) = P (<K, D). (1.3)

When the initial and final projectiles have spin the distorted waves are matrices in spin space,

XE K s = > Xyt (K. ) (1.4)

where the 7 ,, are spin functions,
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and the df,, are the rotation functions for integer spin [2]. The radial part of the distorted waves satisfies

~~

the equation,
d? L(L+1) 2u X
<W L k% - ?[U(T) + Ue(r) + ULS(’I’)L.SDXJLS(]C,T) =0. (1.6)



Here U is a central potential with real and imaginary parts, U, is a Coulomb potential for a uniform charge
distribution of radius R, and Ups is a spin-orbit potential. The radial functions xrs(k,r) satisfy the

boundary conditions y srs(k,0) = 0 at the origin and
i - io
Xors(k,r) — SHp (kr) - npHf (kr)] €'t (1.7)

for large r (where U and Ug can be neglected). Here Hi (kr) = G (kr)£iFy(kr) are the outgoing (4) and
the incoming (—) Coulomb waves, 7 is the elastic scattering S matrix and oy, is the Coulomb phase shift.
The form factor (bB|V]aA) contains the nuclear structure information and is expressed by

<JBMB.9bmbW\JA]WAsama> = Z Bisj(JajMaMp — My|Jg Mp)(Sq smp Mg — Mp|Sq M)
tsg (1.8)

A .
x(Ismmeg —mplj Ma — Mp) fis;(1r¢)6(rs — Era)i_lY,m(fa)*.

The quantity Bys; is a measure of the strength of the interaction and is equal to \/(2s + 1)/(2s4 + 1) Ass;
of ref. [1]. The function fi; is the radial form factor for the reaction. The details of the reaction model
are contained in f;5; and are discussed in section 2 for typical cases. In the above equation, the angular

momenta must satisfy the triangular relations,

j=Js —Ja, § =S4 — Sp, I=j-5
With the definitions of (bB|V]aA) and the distorted wave functions Xfizn,, we can write down the
transition amplitude,
TMaMpimamy ]: " > V2L +1Bigj(Jaj Ma Mp — MalJp Mp) S/, (1.9)
@ 1,5,
where the angle-dependent amplitude S is written as
Spimare = N " griname pire=mims (1.10)
Ly
The inelastic scattering amplitudes 3 are given by
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In the above expression the usual nine-j symbol, {} [2], appears. The radial integrals I are

y CB [* . A
Isajlanlb = F /0 dre XS %b (kln E”"a) flsj(”"c) X((]:%a (kavra)a (1'12)

where the mass of the form factor core is C. The radial integrals I and the scattering amplitudes 3 may be
printed in the output (see section 3 below).



The differential cross section for the reaction A(a,b)B may now be expressed in terms of the transition

amplitude T,

2
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where E, and Ej are the center of mass energies for the entrance and exit channels, respectively.
The computer program DWUCK4 computes the cross section with different normalizations depending
upon whether the case being run is an inelastic scattering or a particle transfer reaction. In the case of

inelastic excitations (where the mass of a and b are equal) we define

11k 1
lsj (0) = b m’ma’mb 1.14
75w (0) = R E B e T 2 |25 (1-14)

maempm lsj

For the case of particle transfer (where the masses a and b are unequal) we define

1 1 k 104
lsi (9) = — b_ V21 £ 187 mame 1.15
UDII’( ) A E Ep kg 25, + 1 Z Z lsj } ( : )

maempm lsj

These choices are convenient for (p,p’) and (d,p) reactions respectively (see section 2). The cross sections
are computed in units of fm? /steradian where 1 fm? = 10725 ¢m?.

The physical cross sections which include reaction strengths and sums over the spin indices are

do'*1(0)  2Jp+12l+1
Q. 2J4+125+1

|Bis; 2050, (0) for equal masses, (1.16)

and ;
do'=1(0) 2Jp+1 1 | Bys;|? Isj

ds - 2J4 +1 2,] +1 104 Opw

In addition to the cross sections, DWUCK4 calculates certain spin observables. If we define a general

@ for unequal masses. (1.17)

spin operator T gy, imym, then the program will also calculate the expectation value of the spin operator

by the following expression,

@ mm m
(o) = 2 immamy Loy Sty (O ) mamymymg Siaj b. (1.18)
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The spin operator for the polarization of the final state projectile is

_ iy L
(Uz/)mamg;mbm; = (Ug,)mbmgtsma,m;l for spin 5

and
(U,U)mam[l:mbm;) = (Sy)m,bm,;(sm,a,m(’l for Spin 1.

Similarly, the spin operator for the polarization of the initial state projectile is

_ e 1
(Uy)mam;;mbm; = (O'y)'m,a'm,’a(srm,b,m;) for spin 5

and

(Uy)mam;:,mbmg = (Sy)mam;(smbsmg for spin 1.
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In the case of the initial state the polarization is also the asymmetry observable.
For the case of spin-one particles, tensor analyzing powers are also calculated. The operators for these

quantities are defined elsewhere [4] and will not be given here.
2. Specific Cases of Reactions.

a) Inelastic excitation using a collective nuclear model.
To first order in the deformation (3; the interaction V' can be written as,

=2 YR 0), 21

V(r,0) e

where © = (r — Ro)/a, V(x) is the projectile-nucleus potential, and 6 is the angle between the radius vector
of the projectile and the nuclear symmetry axis. If we take the strong coupling form for the initial and final

wave functions for the nucleus [3],

; [2J+1, * s *
w?]]ﬂK - W[d)JKDIJ&JV[ (O@/)’g}/) + (*I)J JQS]—KDiK,JVI (0‘7/))7’7)}’ (2'2)

we can write

RodV(z) [274+1
JepMpsymp|VI|JaMasseme) = —i—
(JsMpsymy|V|JaMasqma) o p— 55 11 (2.3)
) (Ja LK O1Jp K)(Jal Ma Mg — Ma|Jg Mp)Y™ (8)".

This form of the interaction gives the strength as,

2J4+1
Bioi = B1y| ———(JA Il K0|Jg K 2.4
101 /1\/2']B+1( A |/g K), (2.4)

do's (9)
a0

and the resulting cross section is,

= BE(JAl K0T K)?0'Sh,(6). (2.5)

In many cases the inelastic scattering cross section is strongly affected by the Coulomb portion of the
interaction between the projectile and target nucleus. This effect may be incorporated by a non-zero value
of the parameter COUEX in input block 4 (see section 3 below). An additional contribution is added to the
form factor during computation of the radial integrals of the form
. 2 pl
% Ij’fﬁl for r > Reoul
=0 forr < Reous »

flCOOlulomb (’I") — COUEX

where the parameters Z, ZT, and Reou; = T0c MT% are the charges and charge radius from the kinematic
input line in input block 7. In this way the radius of the charge distribution for the form factor can be
different from the charge radius used for the distorted waves. A value of COUEX = 1.0 will normalize
the Coulomb amplitude in the conventional manner [1]. In order to calculate the integrals accurately to
large radii, the program automatically uses an integration along an imaginary radius line beginning at the

maximum radius specified in the input.



b) The (d,p) stripping reaction.
The matrix element for a stripping reaction A(a,b)B where a = b4+x and B = A + x may be written as,

<JB]WBsbmb\V\JAZV[Asa’m,a> = Z SjélRﬂ(TmA)(l smp—mljp)(sp smyme — mp|Sq M)
T (2.6)
X(,]AjMA ]WB — MA‘JB MB)D(I‘xb)Ylm*(f‘xA)

1
where S 118 the spectroscopic amplitude, R;;(r;4) is the radial wave function for the transferred particle x
in the target nucleus B and D(ryp) is the product of the projectile internal function times the interaction
potential between the projectile components x and b. In order to evaluate the DWBA matrix element one

makes use of the zero-range approximation,
D(Txb) = Dob(Fx — Th). (2.7)
The reaction strength factor B;s; becomes for this case,

1
Bysj = 55, Do, (2.8)

1
2

where S5 is the spectroscopic amplitude. If the radial form factor in DWUCK4 is

fis; = Rji(rza), (2.9)
then the resulting cross section is written as

do'i(0)  2Jg+1 Si; DE g
_ 55 Do J1si gy 2.10
a0 27ar125 1110800 () (2.10)

Typical deuteron models [1] give a value D3 ~ 1.5 x 10* MeV-fm?.
A first order correction to the zero range approximation for single particle transfer reactions may be

made by multiplying the form factor f;s; by the function

Wer(r) =1+ A(r)]! Hulthén form
= exp[—A(r)] Gaussian form
where

2 mymy
K2 mg

A(T) = RQ[Eb - ‘/b(Tb) + E; — VGL’(TGL’) — B, + Va(ra)]'

Here R is the finite range parameter and E,, E;, E; and V,, V,, V,, are the energies and potentials with
respect to the target core for the light particles a, b and x. A positive value of the finite range parameter
FNRNG in input block 4 will select the Hulthén form while a negative value will select the Gaussian form.
Again typical models for the (d,p) reaction [1] give R & 0.70 fm.

A non-local correction factor may also be needed by the use of a local equivalent potential for the
distorted waves and for the transfered particle bound state. This factor again multiplies the form factor and

for each particle is given by
32 9m;
Wi (1) = expl 22 Vi)

where (3; is the non-locality parameter for particle i and is input on the kinematics input line as PNLOC in

input blocks 5, 6 and 7.
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In addition the program will properly compute the (d,p) crossection when the final nuclear state is
unbound. The technique used is due to Vincent and Fortune [5]. This option is entered automatically when
a positive energy is detected for the binding of the transfered particle to the target.

c) The (p,d) pickup reaction.

The pickup reaction is the inverse of the stripping reaction described in the preceding section. Hence we
may write the cross section for the (p,d) reaction in terms of the (d,p) reaction cross section, using detailed
balance, as , ,

dol](0) 204 +12s,+1k2 dogl(0)
dQ  2Jp+12s,+1kF dQ

_ 3 Sy D a7 (6)

22541104 PWYR

(2.11)

where UZDS{V is the output from DWUCK4 with protons in the incident channel and deuterons in the exit
channel.
d) Microscopic Interaction Model for Inelastic Scattering.

1) Central Interactions

This model considers the potential between the projectile and one of the nucleons in the target nucleus.

It is convenient to expand this interaction in a Legendre polynomial series,

V(E—F1)=Vo » (20 + Du(r,r)R(E - 1)
I

=47V Y wilr,r) > Y E)Y (£1).

l

(2.12)

Using this form of the interaction we find for the matrix element of V,
<,]BMBsbmb\V(F —T) |.]AMAsama> =

47V Z(JA I M Mg — Ma|Jg Mg){Jg||vi(r,71)i'Yi(#1)]]a)
l
1

V2Jg +1

X (8581 Mg — Mp|Sq e )(—1) Y™ (F)

(2.13)
The program DWUCK4 calculates the following expression for the radial factor [see eq (1.8],
fi(r) = 4nVo/2Ja + 1(j1 42| Yi(E1)|j1d2 T a) / Ry g (r)vi(r, 7o) Ry g, (r1)ridry, (2.14)

where the R;;(r1) are normalized radial functions for the initial and final states of the nucleon in the target
with angular momentum / and total angular momentum j and (54 jaJp||Yi(£1)||j172J4) is the reduced matrix
element as defined by Edmonds [2]. The angular momentum ja is the coupled angular momentum of the A—1
spectator nucleons. The program prints out [RME in the output] the quantity, V4w (5] j2.J5|Yi(#1)]|j15274)-

If there is more than one particle in each configuration then the form factor must be scaled by the
amplitude of that configuration and by the counting factor which takes into account the number of identical
particles in the configuration. Thus, the strength of the reaction Bjg; is

n

Buou(§1d20 83 J1d2T4) = 0510050505005 Y (G15278]1Yi(F5)| 1274 ) (5152 T |[Yi(R1)|j1d2Ta) - (2.15)
i=1
Here, a;;; are the amplitudes of the initial and final configurations which involve the factor for the n
identical particles in the shell. If the strength of each configuration is scaled by By, then the cross section
is

do'(0) .
T — ol (6) (216)



2) Spin dependent oj - 05 interaction

The interaction for this situation is given by the following form,

V(F—T1)os- 05 =47Vo Y _w(r,r) > Vit ®)Vi," (1), (2.17)
Iy Iz
where
Vi) = (Lsmp —mljp)i'Y™ (0, )k, (2.18)

., . . . . . “ . .
and ¢ is the spin operator for spin s and projection m’. The matrix element for the transition amplitude

then becomes

(JsMpsymp|V (r = 11)|JaMasama) = 47Vo » (JajMaMp — MalJs Mp)(Jallvi(r,r1)i' Vi (F1)]]Ja)
ljp

X (=1)22¢/s5(5q + 1) (I s 1 — m|sq myg)

1
X (S 81 Mg — Mp|Sq a)(—1) Y™ (F)

vV2Jg + 1’

(2.19)
where for the usual microscopic interaction, s = 1 and s, = sp.
The program DWUCK4 computes the form factor,
fiss (1) = 2/5aCoa T D3 35l () Ve (F)l e ) | ot (220)
’ ’ (27 +1)(2Ja+ 1)

In the above expression we have used the reduced matrix element [2]

(sallo||sa) =21/ Sa(sa + 1). (2.21)

If the spin of the projectile changes such as in the (°Li,®He) reaction, then the matrix elements must be
scaled by the factor,
(spllo]]sa)
2/ 8a(5q +1).

(2.22)

d) Two-nucleon transfer reaction

The description of a typical transfer such as the (p,t) reaction is given in ref[6]. In this article the

normalization condition gives the cross section for the reaction as,

/

da;de (0) A2 (_
A

_ 2
ds) = Di( 2 )

[N

) (T 1 Ny 1/Ta Na)o'sl, (0) /(25 + 1) (2.23)

where for A’ = A = 1.70 fm, (1A2/2)7 = 9.672 and (I3 1 Ng 1|T4 N,4) is the isospin projection factor.
For the (t,p) reaction, we have

dOls‘j(e) A% s A 2Jg +1 s

pd 2 2 6 B lsj .

=D — I 1Ng1l|TANp)(————071,(0)/(25 +1). 2.24
dQ 0( 9 ) (A) ( B B ‘ A A)(Q,] 1 DW( )/( J ) ( )

Typical values for D3 are in the range 15 — 30.
Since the two-nucleon transfer reaction is a coherent process involving the two transfered nucleons it is

important to use the proper convention for the phasing of the amplitudes of the two-nucleon wave function
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which arise from the overlap of the initial and final target states. This code DWUCK4 and the coupled
channels code CHUCK3 assume that the spherical harmonic functions carry a time-reversal phase of i‘. This

convention requires that the amplitudes will need to be multiplied by an extra phase

(7:)11+l27LTR

when they are derived from the usual nuclear structure calculations. Here, the [; are the angular momenta
for the two orbitals involved in the amplitude and LTR is the orbital angular momentum transfer. Hence,
a target overlap function between two ground states which contains components from different shells for

example will have the form,

P(ry,ra) = 01,1(171/2)2 + a9,9(g9/2)27

where the coefficients a; ; are positive and the plus sign gives the correct phasing. A standard check to make
is to examine the output of the code for a two-nucleon transfer case and make sure that for a ground state to
ground state transition that the contributions from each pair of orbitals at a large radius in the form factor

have constructive coherence. This information is listed in the output.

3. Description of the Input for DWUCK4

The input to the program is defined by seven input blocks, several of which require more than one line of
input. The first four input blocks specify the basic input to the program. The next two blocks, 5 and 6, are
multi-line blocks which specify the the initial and final distorted waves and are structured so that potentials
consisting of several terms may be “stacked” and accumulated. Finally, the seventh block describes the form
factor and its input depends on the particular reaction model chosen. The input scheme has been designed
for flexibility, hence some redundancy in the input is present and input consistency is not enforced. The
formats are presented in their FORTRAN 77 form. In many computer system applications, an abbreviated
form with comma separators is allowed, e.g. a valid form for input block 2 is 36. ,0. ,5.

Input Block 1 ICON(20), ALPHA FORMAT(2011, A60)
(1 line)
i ICON(i) Description
1 0 Do not read in input block 2 (use default or the angle data of the previous case.)
1 Read input block 2 (angle data).
9 Stop program and exit.
2 0 Collective or particle transfer nuclear model.
2 Microscopic inelastic nuclear model.
3 0 Use the same radial form factor for each I-transfer (read in only one set of input
block 7).
1 Compute a separate radial form factor for each I-transfer (read in one input block 7
for each I-transfer).
2 Same as ICON(3) = 1 except the cross section is the coherent sum of the amplitudes
from each [-transfer.
4 0 Output each radial form factor before finite range and non-local corrections.

1 Suppress output of the radial form factor.
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2 Suppress output of radial form factor and intermediate output in the two-particle
form factors.

3 Output form factor after calculation of the finite range and non-local correction

factors.

Suppress output of the elastic scattering amplitudes for the distorted waves.

Output the elastic scattering amplitude [exp(2i6;;) — 1]/21.

Suppress output of the elastic scattering cross sections for the distorted waves.

Output the elastic scattering cross sections for the distorted waves.

Suppress output of the radial matrix elements.

Output the radial matrix elements as defined in eq. (1.12).

Suppress output of the inelastic scattering amplitudes.

Output the inelastic scattering amplitudes as defined by eq. (1.11).

Suppress the output plotting of the inelastic cross section.

Output a paper plot of the inelastic cross section as a N-decade logarithmic plot.

10

The kinematics for the waves are calculated non-relativistically.

oo
= o 2 o R o o R o = o

The kinematics for the waves are caculated relativistically.

11 Not used
12 0 Suppress output of the radial wave functions for the distorted waves.
N Output the radial wave functions for the distorted waves at every N** radial point.
13 0 Suppress output of the inelastic cross section on a separate file.
1 Output the inelastic cross section and angles to the file FOR007.DAT.
14 Not used.
15 0 Suppress output of K (r)?2, the square of the local wave number for each distorted
wave.
1 Output K (r)?, the square of the local wave number for each distorted wave.
16 0 Suppress output plotting of the elastic scattering cross sections for the distorted
waves.
N Output a paper plot of elastic scattering cross sections for the distorted waves as a
N-decade logarithmic plot.
17 0 Suppress the output of the extended set of spin observables.
2 Outputs to diskfiles FOR020.DAT and FOR021.DAT a set of extended spin observ-
ables for the inelastic channel.
Alpha Any 60 characters (including blanks) to identify the run, beginning in column 21.
Input Block 2 N_ANGLES, ANGLE1, D_ANGLE FORMAT(3F8.4)
(1 line)
N_ANGLES Number of angles for calculating the cross sections.
ANGLE1 First angle (degrees). This may be zero.
D_ANGLE Angle increment (degrees).

The program has a default set of angle data for the interval of 0° to 180° in 5° intervals which is used

if no angle data is read in.

Input Block 3 LMAX, NLTR, (LTR(I), I=1,NLTR), (JTR(I), I=1,NLTR) FORMAT(1813)
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(1 line)
LMAX

NLTR

LTR(I)
JTR(I)

Input Block 4
(1 line)

DR

RMIN
RMAX

COUEX
FNRNG

Input Block 5

(minimum of 2 lines)

Input line 1
(Kinematic input line)
E

MP

7P

MT

7T

T'oc

AC

PNLOC

2*¥FS

Input lines (2,...)
(Potential input)
OPTION

VR

ToRr

AR

VSOR

VI

ror

Al

Maximum partial wave for the distorted waves. The limit imposed by the storage
is 400/(2s, + 2s, + 2) — 1 where s, and s, are the spins of the initial and final
projectiles.

The maximum number of angular momentum transfers to be calculated

(NLTR < 8).

The angular transfer for the I*” form factor.

Ith,

Twice the total angular momentum transfer for the radial form factor.

DR, RMIN, RMAX, COUEX, FNRNG FORMAT(10F8.4)

Integration step size for the radial coordinate (in fm).
Lower cutoff radius for the radial integrals (in fm).
Upper cutoff for the radial integrals (in fm). If RMAX is negative the automatic

resizing of RMAX in the program is overridden and the input value of |RMAX] is

used. The storage allocation in the program restricts the number of radial points
to INT(RMAX/DR) < 400.
Coulomb excitation excitation scale factor.

Finite range correction factor.

Initial distorted wave input block

E, MP, ZP, MT, ZT, 1., AC, PNLOC, 2*FS FORMAT(10F8.4)

Laboratory energy (in MeV) of the initial projectile (must be > 0).
Projectile mass (in AMU units).

Projectile charge.

Target mass (in AMU units).

Target charge.

Reduced charge radius (R, =rq, A%) in fm.

Diffuseness of charge radius (not implemented).

Nonlocality parameter.

Twice spin of the projectile.

OPTION, VR, tor, AR, VSOR, VI, 1o7, Al, VSOIL, POWER FORMAT(10F8.4)

Option number for potential shape (these options are defined below).
Strength of the real potential (in MeV).

Reduced radius of the real potential (Rg = rog A%) (in fm).
Diffuseness of the real potential (in fm).

Spin-orbit factor for the real potential.

Strength of the imaginary potential (in MeV).

Reduced radius of the imaginary potential (R; = ro; A3) (in fm).
Diffuseness of the imaginary potential (in fm).
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VSOI Spin-orbit factor for the imaginary potential.

POWER Extra parameter used in some potential and form factor options.

Any number of potential options may be used on successive lines and the resulting potential will be the
superposition of the individual potentials. If OPTION is a negative number then that option will be the last
potential. The program will then continue to the next input block. If the OPTION is zero then no potential
will be computed and the program will process the next input block.

Input Block 6 Final distorted wave input block

(minimum of 2 lines)

Input line 1 QCODE, MP, ZP, MT, ZT, ro., AC, PNLOC, 2*FS FORMAT(10F8.4)
(kinematic input line)

QCODE Q-value for the reaction (in MeV).

The remainder of the parameters on this line are interpreted in exactly the same manner as for input
block 5 but describe the kinematics and potential for the final distorted wave. The kinematic input line is

then followed by the lines (2, ...) describing the potential as in input block 5.

Input Block 7 The radial form factor for the collective model and particle transfer reactions.
(minimum of 2 lines)
Input line 1 E, MP, ZP, MT, ZT, ro., AC, PNLOC, 2*FS FORMAT(10F8.4)

(Kinematic input line)

E Binding energy of the single particle (in MeV).

MP Single particle mass (in AMU units).

7P Single particle charge.

MT Core nucleus mass (in AMU units).

7T Core nucleus charge.

Toc Reduced charge radius (Re = 1o, A%) (in fm).

AC Diffuseness of charge radius (not implemented).

PNLOC Nonlocality parameter.

2*FS Twice the spin transfer of the form factor.

Input lines(2, ...) OPTION, VR, ror, AR, VSOR, VI, ro7, AT, VSOI, POWER FORMAT(10F8.4)

(Potential lines)

These input lines have the same meaning as the same lines of input block 5.

If the parameter E in line 1 is zero then the potential defined by lines (2, ...) is taken to be the radial
form factor. This is the standard option for the inelastic scattering collective model. If the parameter K
in the first line of this block is non-zero then the program computes an eigenfunction solution using the
potential defined by lines (2, ...). In this case the additional line of input below must be added to define

the quantum numbers and other needed parameters.

Extra input line FNODE, FL, 2*¥FJ, 2*FS, VTRIAL, FISW FORMAT(10F8.4)
(Kinematic input line)
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FN

FL

2*FJ
2*FS
VTRIAL

FISW

Number of nodes in the radial function excluding the origin and infinity.

Orbital angular angular momentum for the radial function.

Twice the total angular momentum quantum number for the radial function.
Twice the intrinsic spin of the radial function.

Scaling factor for the potential defining the radial function. If VTRIAL is zero a
default value of +60.0 is used.

Search control for the integration of the radial function.

= (. Search on the strength of the potential scale factor VIRIAL keeping the
binding energy E fixed.
= 1. Search on the binding energy E keeping the potential strength VIRIAL fixed.

= 2. No search (valid for E > 0 only). The radial wave function is calculated for
the given energy E and strength VITRIAL and matched to the asymptotic solution
with the calculated phase shift.

Since the total potential is a product of VTRIAL and the forms calculated by lines (2, ...), the result

must be negative in order to give a usual bound state function, i.e. VITRIAL*VR must be less than zero

(for OPT = 1.0).

Input Block 7

Description of the radial form factor for the microscopic inelastic scattering model.

(Used when ICON(2) = 2)

Input line 1
(Option input line)
CONTROL

OPCODE

FLMU

VZERO

FJ2
FJI
FJF

CONTROL, OPCODE, FLMU, VZERO, FJ2, FJI, FJF FORMAT(10F8.4)

= 0.0, read no input blocks for the single particle and terminate the form factor
calculation.

= 1.0, read one input block 7 for the single particles and use this radial function
for both particles.

= 2.0, read two input blocks 7, one for each single particle.

= (.0, not an option.

= 1.0, calculate form factor using a Yukawa potential V (r) = Vg exp(—pr)/(pr).
= 2.0, calculate form factor using a Coulomb potential.

= 3.0, calculate form factor using a tensor force potential.

= 4.0, not used.

= 5.0, calculate a microscopic two-nucleon transfer form factor.

= 6.0, calculate a zero-range knockout form factor.

= Inverse range parameter (p) in the inelastic scattering model or rms radius of a
Gaussian wave function used in the two-nucleon transfer form factor.

= strength of the potential used in options 1, 2, and 3 above.

= amplitude of the configuration for the two-nucleon-transfer reaction of option 5.
= volume integral of the two-body potential in the zero-range knockout model in
option 6.

= Twice spin of the core (j2) to which the active single particle is coupled.

1 +Jjo| = JI (J4 in section 2a)

§y +Jj2| = JF (Jg in section 2a)

= Twice the spin of the initial nucleus

= Twice the spin of the final nucleus
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The values for the spins j; and j] are taken from the input line defining the quantum numbers in the

input block 7 specified below.

Input lines (2, ...

OPT = 1.0
OPT = 2.0
OPT = 3.0

Following input line 1 insert one or two input blocks (depending on the value of
CONTROL in line 1) defining the single particle orbitals. The input lines are
identical to those of input block 7 for the single particle transfer case. The program
will add the form factors coherently until it encounters a negative or zero value for

CONTROL.

Potential options available for input blocks 5, 6, and 7.

Volume Wood-Saxon potential
V(r)=Vrf(zr) +iVif(zr)
where
f(x;) = 1.0/[1 +exp(z;)] and where a; = (r — r;MT3)/A;.

Note that in order to have an attractive real and absorptive imaginary potentials
both VR and VI must be negative.

Surface Wood-Saxon (or derivative) potential.
V(r) =Vrg(zr) +iVig(z1)

with

9(@) = ==,

where x is defined the same as for OPT = 1.0. This form of the potential has no
factors of 4 in its definition so that the strength V7 is related to Wp by V; = 4Wp.
Further, in order that the potential have an attractive real and absorptive imaginary
properties, Vg and V; must be positive.

Second derivative Wood-Saxon potential.
V(r) = Vgh(zg) +iVih(xr)

where de( )
xr
M) = =g
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OPT = 4.0

OPT = 5.0
OPT = 6.0
OPT =7.0
OPT = 8.0

Input line 1
F1
F2

input lines (2, ..

)

Spin-orbit potential from a volume Wood-Saxon form.

Vis(r) = (*VR%df(T/R)

BV AC2)

dr r dr )L.S'

The above potential is defined in terms of L - s without any (h/m,c)? ~ 2 factor.
The strength Vg is about four times the strength of the forms defined with the
(h/myc)? factor and an L - o operator.

The VSOR and VSOI parameters in the input line for the OPT = 1.0 case will
also give a spin-orbit potential using the same geometry. The VSOR and VSOI are
interpreted as a non-dimensional multiplier (A in the so-called Thomas form [1]).
The potential is written as,

VSOR 1df(zxr) ... VSOIldf(xI)>
45.2 r dr 452 v dr '

VLs(’F) = (—VR

Spin-orbit potential from a surface Wood-Saxon form.

Vis(r) = (_VR% dg(zr)

1dg(x
B VA g9(xr)

dr r dr )L.S'

Volume Wood-Saxon potential with a rPOWER factor.

V(r) = (Vef(xr) +iVif(ax;))rPOWER

Surface Wood-Saxon potential with a 7POWER factor,

V(T) - (VRf(TR) +7:V]f(;[;1))TPO\VER

External potential or form factor.

A potential or form factor will be read in from the input file. In addition to the
potential option line, an additional line will specify the number of radial points and
whether the fuction is to be added to the real or imagimary part of the potential
or form factor. Then the lines containing the function will be read in. The radial
increment of the function that is read in must match that of the distorted wave or
form factor. In addition, a real function will be scaled by VR and an imaginary
function will be scaled by VI. If the VR or VI value is zero or left blank the function

will not be scaled.
F1, F2 FORMAT(10F8.4)

Number of radial points to be read in.
= 0.0 considers the function to be real.
= 1.0 considers the function to be imaginary.

(FF(I), I=1,F1) FORMAT(5E16.7)

14



OPT = 9.0

OPT = 10.0

OPT = 11.0

Extra input line
BETA

LAM

OPT = 12.0

Normalized harmonic oscillator.

I(T/TQR)Q.

V(r)=VeNL(r/ror) exp(fi

where L£(x) is a Laguerre polynomial and N is the normalization constant for the

functions such that
N* [0 o) P expl o fron) e = 1.
Jo

Note that the radius parameter is the reduced radius rgg.

Gaussian rPOWVER,

V(r) = Vg exp(—(r/rog)?)rPOWER,

Again note that the radius parameter is the reduced radius rog.

Legendre polynomial expansion of a volume Wood-Saxon potential.

Vo) = /(VRf[mR(r,e)J iV (7, 0)]) YO (0)dSh

where

1
1+ exp(a)

J(x)

and

x;=[r—Ri(1+ /)’,\Y/\O)]/ai.

Here LTR is the orbital angular transfer for this form factor, A, the value of LAM, is
the order of the multipole of the deformation and (3 is the deformation parameter.
An extra input line must follow this potential option with the values of ) and
LAM.

BETA, LAM FORMAT(2F8.4)

Value of 3, the deformation parameter.
Value of the deformation order A which can be different from LTR.

Legendre polynomial expansion of a surface Wood-Saxon potential.

Vo= [t v SR s oy

where f(x) and x have the same meanings as in option 11. In both of the options
11 and 12, the potentials for the distorted waves are calculated for LTR = 0 only,
but LAM can have any value, but when these options are used as form factors the

angular momentum transfer LTR is used and can take on any value.

Form factor options available for input block 7.

These options are generally used for the collective model cases, i.e. when ICON(2) = 0 and when the

energy parameter E = 0.0 in the first line of input block 7. These options have the same basic form as in

input blocks 5 and 6 above except for the following modifications which have been made for convenience in

treating the collective model.
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OPT =1.0 Volume Wood-Saxon potential
V(’F) — VRf(JJR)(RR/(IR)(POVVERJ'_LO) + iV]f(.T])(R[/(I/[)<POVVER+1'O).

The default value for POWER = 0.0 gives the usual factor of (R/a) in the definition

of the collective model.

OPT = 2.0, 3.0 As in the case for OPT = 1.0 the real and imaginary components of the form factor
are multiplied by their appropriate (R/a)FOWERTL0) factor,

OPT =4.0,5.0 These options are not available as form factors.

OPT = 6.0-12.0 These options give the same functional form and normalizations as in the same

numbered options in input blocks 5 and 6.

4. Sample Cases—Input and Output

Two cases of sample input are shown below. The first example describes excitation of a 3- excited state
of 3Fe by the inelastic scattering of 22.5 MeV protons using a collective model where the form factor is the
first derivative of the optical potential. Here the Coulomb excitation contribution is included. The second
case gives the input for a 4°Ca(d,p)**Ca reaction where the model assumes the stripping of a 1f7/2 neutron.
The calculation includes a finite range correction with a radius parameter of 0.70 fm. In both cases the
optical potentials for the projectiles are composed of volume-real and surface-imaginary potentials and also

include spin-orbit potentials. The final input line (beginning with a 9) signals the end of data.

1000000030000000 Feb6(p,p’)Feb6™ @22.5 MeV to 4.51 MeV 3- state, Coul. exc.
+37. +00. +05.

+154+01403

+00.10 -+00. +15. +01.00

+22.5 +01.0078  +01. +56. +26. +01.25 +00. +00. +01.
+04. -28.2 +01.25 +00.735  +00. -+00. +01.25 +00.735  +00.
+01. -46.38 +01.25 +00.735  +00. -+00. +01.25 +00.735  +00.
-02. +00. +01.25 +00.437  +00. +61.4 +01.25 +00.437  +00.
-04.51 +01.0078  +01. +56. +26. +01.25 +00. +00. +01.
+04. -28.2 +01.25 +00.735  +00. +00. +01.25 +00.735  +00.
+01. -46.38 +01.25 +00.735  +00. -+00. +01.25 +00.735  +00.
-02. +00. +01.25 +00.437  +00. +61.4 +01.25 +00.437  +00.
+00. +01.0078  +01. +56. +26. +01.25 +00. +00. +00.
+02. -46.38 +01.25 +00.735  +00. +00. +01.25 +00.735  +00.
-03. +00. +01.25 +00.437  +00. +61.4 +01.25 +00.437  +00.
1000000030000000 Cad0(d,p)Cadl @13.7 MeV to 7/2- g.s. local, finite range

+37. +00. +05.

+154+014+03+07

+00.10 -+00. +12. +00. +00.70

+13.70 +02. +01. +40. +20. +01.40 +02.
+01. -97.40 +01.112  +00.875 +01.562  4+00.477

-02. +01.112  +00.875 +70.00 +01.562  4+00.477
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+06.141  +01. +01. +41. +20. +01.25 +01.
+01. -49.47 +01.18 +00.70 +24.2 +01.252  400.750

-02. +01.18 +00.70 +19.80 +01.252  400.750

-08.364 +01. +00. +40. +20. +01.25 +01.
-01. -01. +01.18 +00.70 +25.

+00. +03. +07. +01. +58.

9 End of data

The first page of the output echoes the input blocks 1-6 and displays the derived kinematical quantities
for the distorted waves such as the center-of-mass energies, wave numbers, Coulomb parameters, etc. The
second page outputs the same information for input block 7 including output of the radial form factor. The
third page gives output for the inelastic cross sections and spin observables in the first six columns; the next
six columns give the same output appropriate to the time-reversed reaction. The final two pages of output
are paper plots of the cross section and asymmetry parameter which is the polarization for the time-reversed
reaction.

Typical numbers to check in the output are the the absorption cross section REACSIG for the distorted
waves and the total inelastic cross section Tot-Sig. The correct value for REACSIG confirms that the elastic
scattering has been calculated correctly. The correct value of Tot-Sig indicates that the reaction theory part
of the program has also been entered and calculated correctly. Values of the cross sections for these two

cases are given in the table below in fm?.

Value 5Fe(p,p’)*°Fe| 9Ca(d,p)*Ca

REACSIG 1 1.1276 E4-02 1.3394E4-02

REACSIG 2 1.0931E4-02 9.9707E+01

Tot-Sig 2.9046E+01 1.8393E4-00
5. Things to Do

The user should first run the two sample cases above and verify that the output numbers check with
those in the table. Following this it might be instructive to change the (d,p) input case to other values of
say pg/o and py /o
dependence on ¢ and weak dependence on j. Similar runs can also be made for the (p,p’) case. Finally for

transferred angular momenta (¢, 7) which will illustrate the strong angular-distribution

the analytically inclined, it is possible to obtain a closed-form solution for a plane-wave ¢ = 0 case with a
harmonic-oscillator form factor (option 9 above). This check can then be exploited by the user to understand

in detail the normalization factors employed in the DWUCK4 program.
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APPENDIX

The table below shows some typical values for the normalization of various pick-up and stripping reac-
tions. Some of these values are derived from fitting reaction data and others are derived theoretically from
simple models for the light projectiles. The only values which are on a firm basis are for the (d,p) and (p,d)
reactions. Use of the others should be viewed with caution as it is important to discriminate between the
D2 values which are used with the finite range correction and those which are used without the correction.
This is because the finite range correction is large for the reactions other than the (d,p) reaction and the
renormalization of the value for D3 to approximately take into account the correction is significant and will

affect the values of the derived spectroscopic factors by by 20% to 100%.

Reaction D} FNRNG parameter
(d,p) 1.55 0.621

(3He,d) 4.42 0.770

(°H,d) 5.06 0.845

(*He,>He) (24-46) 0.7

(“He,?H) (24-46) 0.7

Reaction D2(2s, +1)/(2sp +1)| FNRNG parameter
(d,p) 2.33 0.621

(d,>He) 2.95 0.770

(d,°H) 3.33 0.845

(®He,*He) (12-23) 0.7

(°H,%*He) (12-23) 0.7

Table of reaction normalization coefficents.

The source files for this version of DWUCK4 contain a number of routines in the files DW4VAX.FOR,
DW4PC.FOR, DW4IBM.F and DW4UNIX.FOR. These files will interface the program to the time, date
and disk file opening routines in the three systems, DEC’s VMS, Microsoft’s DOS, IBM RS6000 Unix system
or the Berkeley UNIX systems. If the user’s computer system differs from any of these four, then the user
will have to code similar routines in order to have the input, output and scratch files opened properly and

the output labelled with the time and date.
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