PtolemyGUI/dwuck4/inFileCreatorDW.py
2025-02-20 00:39:22 -05:00

381 lines
10 KiB
Python
Executable File

#!/usr/bin/env python3
import sys
import os
reaction = sys.argv[1]
JA_pi = sys.argv[2]
orbital = sys.argv[3]
JB_pi = sys.argv[4]
Ex = float(sys.argv[5])
ELab = float(sys.argv[6])
if len(sys.argv) < 7:
print("Error: Not enough arguments provided.")
print("Usage: ./{sys.argv[0]} reaction target_gs-spin orbital spin-pi Ex ELab[Mev/u]")
sys.exit(1)
sys.path.append(os.path.join(os.path.dirname(__file__), '../Cleopatra'))
from IAEANuclearData import IsotopeClass
#####################################################
# only for (d,p) or (p,d) using An & Cai, Kronning
#####################################################
import numpy as np
import re
import matplotlib.pyplot as plt
# Woods-Saxon
v = 0
r0 = 0
a = 0
vi = 0
ri0 = 0
ai = 0
# Woods-Saxon Surface
vsi = 0
rsi0 = 0
asi = 0
# Spin-orbit
vso = 0
rso0 = 0
aso = 0
vsoi = 0
rsoi0 = 0
asoi = 0
# Coulomb
rc0 = 0
def AnCai(A : int, Z : int, E : float):
global v, r0, a, vi, ri0, ai, vsi, rsi0, asi, vso, rso0, aso, vsoi, rsoi0, asoi, rc0
A3 = A**(1./3.)
v = 91.85 - 0.249*E + 0.000116*pow(E,2) + 0.642 * Z / A3
r0 = 1.152 - 0.00776 / A3
a = 0.719 + 0.0126 * A3
vi = 1.104 + 0.0622 * E
ri0 = 1.305 + 0.0997 / A3
ai = 0.855 - 0.1 * A3
vsi = 10.83 - 0.0306 * E
rsi0 = 1.334 + 0.152 / A3
asi = 0.531 + 0.062 * A3
vso = 3.557
rso0 = 0.972
aso = 1.011
vsoi = 0.0
rsoi0 = 0.0
asoi = 0.0
rc0 = 1.303
def Koning(A : int, Z : int, E : float, Zproj : float):
global v, r0, a, vi, ri0, ai, vsi, rsi0, asi, vso, rso0, aso, vsoi, rsoi0, asoi, rc0
N = A-Z
A3 = A**(1./3.)
vp1 = 59.3 + 21.*(N-Z)/A - 0.024*A
vn1 = 59.3 - 21.*(N-Z)/A - 0.024*A
vp2 = 0.007067 + 0.00000423*A
vn2 = 0.007228 - 0.00000148*A
vp3 = 0.00001729 + 0.00000001136 * A
vn3 = 0.00001994 - 0.00000002 * A
vp4 = 7e-9 # = vn4
vn4 = vp4
wp1 = 14.667 + 0.009629*A
wn1 = 12.195 + 0.0167*A
wp2 = 73.55 + 0.0795*A # = wn2
wn2 = wp2
dp1 = 16 + 16.*(N-Z)/A
dn1 = 16 - 16.*(N-Z)/A
dp2 = 0.018 + 0.003802/(1 + np.exp((A-156.)/8)) # = dn2
dn2 = dp2
dp3 = 11.5 # = dn3
dn3 = dp3
vso1 = 5.922 + 0.003 * A
vso2 = 0.004
wso1 = -3.1
wso2 = 160
epf = -8.4075 + 0.01378 *A
enf = -11.2814 + 0.02646 *A
rc = 1.198 + 0.697/pow(A3,2) + 12.995/pow(A3,5)
vc = 1.73/rc * Z / A3
v = vp1*(1 - vp2*(E-epf) + vp3*pow(E-epf,2) - vp4*pow(E-epf,3)) + vc * vp1 * (vp2 - 2*vp3*(E-epf) + 3*vp4*pow(E-epf,2))
#neutron
if Zproj == 0 :
v = vn1*(1 - vn2*(E-enf) + vn3*pow(E-enf,2) - vn4*pow(E-enf,3))
r0 = 1.3039 - 0.4054 / A3
a = 0.6778 - 0.000148 * A
vi = wp1 * pow(E-epf,2)/(pow(E-epf,2) + pow(wp2,2))
if Zproj == 0 :
vi = wn1 * pow(E-enf,2)/(pow(E-enf,2) + pow(wn2,2))
ri0 = 1.3039 - 0.4054 / A3
ai = 0.6778 - 0.000148 * A
vsi = dp1 * pow(E-epf,2)/(pow(E-epf,2)+pow(dp3,2)) * np.exp(-dp2*(E-epf))
if Zproj == 0 :
vsi = dn1 * pow(E-enf,2)/(pow(E-enf,2)+pow(dn3,2)) * np.exp(-dn2*(E-enf))
rsi0 = 1.3424 - 0.01585 * A3
asi = 0.5187 + 0.0005205 * A
if Zproj == 0:
asi = 0.5446 - 0.0001656 * A
vso = vso1 * np.exp(-vso2 * (E-epf))
if Zproj == 0:
vso = vso1 * np.exp(-vso2 * (E-enf))
rso0 = 1.1854 - 0.647/A3
aso = 0.59
vsoi = wso1 * pow(E-epf,2)/(pow(E-epf,2)+pow(wso2,2))
if Zproj == 0 :
vsoi = wso1 * pow(E-enf,2)/(pow(E-enf,2)+pow(wso2,2))
rsoi0 = 1.1854 - 0.647/A3
asoi = 0.59
rc0 = rc
def ConvertLSym(LSym :str) -> int:
if LSym == "s" :
return 0
elif LSym == "p" :
return 1
elif LSym == "d" :
return 2
elif LSym == "f" :
return 3
elif LSym == "g" :
return 4
elif LSym == "h" :
return 5
elif LSym == "i" :
return 6
elif LSym == "j" :
return 7
elif LSym == "k" :
return 8
else :
return -1
#================== digest reaction
nuclei = re.split(r'[(),]', reaction)
nu_A = nuclei[0]
nu_a = nuclei[1]
nu_b = nuclei[2]
nu_B = nuclei[3]
iso = IsotopeClass()
A_A, Z_A = iso.GetAZ(nu_A)
A_a, Z_a = iso.GetAZ(nu_a)
A_b, Z_b = iso.GetAZ(nu_b)
A_B, Z_B = iso.GetAZ(nu_B)
A_x = abs(A_a - A_b)
Z_x = abs(Z_a - Z_b)
#---- check mass number and charge number is balnaced
if A_A + A_a - A_b - A_B != 0 or Z_A + Z_a - Z_b - Z_B != 0 :
print("reaction is incorrect, mass or charge not balanced.")
exit()
#---- check is (d,p) or (p, d)
if (Z_a !=1 or Z_b != 1) or (A_a + A_b != 3) :
print("not (d,p) or (p,d) reaction. stop.")
exit()
mass_A = iso.GetMassFromSym(nu_A)
mass_a = iso.GetMassFromSym(nu_a)
mass_b = iso.GetMassFromSym(nu_b)
mass_B = iso.GetMassFromSym(nu_B)
mass_x = iso.GetMassFromAZ( A_x, Z_x)
#.... core
if A_A < A_B : # (d,p)
A_c = A_A
Z_c = Z_A
BindingEnergy = mass_B - mass_A - mass_x + Ex
else: #(p,d)
A_c = A_B
Z_c = Z_B
BindingEnergy = mass_A - mass_B - mass_x
sym_A = iso.GetSymbol(A_A, Z_A)
sym_B = iso.GetSymbol(A_B, Z_B)
if A_a == 2 and Z_a == 1:
spin_a = 1.0
spin_b = 0.5
else:
spin_a = 0.5
spin_b = 1.0
Q_value = mass_A + mass_a - mass_b - mass_B - Ex
print(f"Q-value : {Q_value:10.6f} MeV")
print(f"Binding : {BindingEnergy:10.6f} MeV")
#=================== digest orbital
match = re.search(r'[a-zA-Z]', orbital) # Find first letter
if match:
index = match.start() # Get position of the first letter
node = int(orbital[:index])
l_sym = orbital[index:index+1]
j_sym = orbital[index+1:]
j = eval(j_sym)
l = ConvertLSym(l_sym)
#=================== outfile name
fileOutName = str(sym_A) + str(A_A) + "_" + str(nu_a) + str(nu_b) + "_" \
+ str(node) + str(l_sym) + str(int(2*j)) + "_" + str(Ex) + "_" + str(ELab) + ".in"
print(fileOutName)
#=================== find the maximum L for partial wave
mass_I = mass_A * mass_a / (mass_A + mass_a) # reduced mass of incoming channel
hbarc = 197.3269788 # MeV.fm
k_I = np.sqrt(2*mass_I * A_a * ELab)/hbarc # wave number of incoming channel
touching_Radius = 1.25*(A_A**(1./3) + A_a**(1./3)) + 10 # add 10 fm
maxL = int(touching_Radius * k_I) # maximum partial wave
print(f"max L : {maxL}")
#=================== create outfile
with open(fileOutName, "w") as file:
file.write("10001310500100000 " + reaction + "(" + str(Ex) + "," + orbital + ")" + " @ " + str(ELab) + " MeV/u\n")
file.write("+181. +00. +01.0\n")
file.write(f"+{maxL}+01+{l:02d}+{int(2*j):02d}\n")
file.write(f"{0.1:+08.4f}{15:+08.4f}\n")
#===== Block 5
if A_a == 2 :
AnCai(A_A, Z_A, A_a*ELab)
else:
Koning(A_A, Z_A, A_a*ELab, Z_a)
file.write(f"{A_a*ELab:+08.4f}")
file.write(f"{A_a:+08.4f}")
file.write(f"{Z_a:+08.4f}")
file.write(f"{A_A:+08.4f}")
file.write(f"{Z_A:+08.4f}")
file.write(f"{rc0:+08.4f}")
file.write(f"{"":8s}")
file.write(f"{"":8s}")
file.write(f"{2*spin_a:+08.4f}\n")
# Woods-Saxon
file.write(f"{1:+08.4f}")
file.write(f"{-v:+08.4f}") # real
file.write(f"{r0:+08.4f}") #
file.write(f"{a:+08.4f}") #
file.write(f"{"":8s}") # spin-orbit skipped
file.write(f"{-vi:+08.4f}") # imag
file.write(f"{ri0:+08.4f}") #
file.write(f"{ai:+08.4f}\n") #
# Woods-Saxon surface
file.write(f"{2:+08.4f}")
file.write(f"{"":8s}") # real
file.write(f"{"":8s}") #
file.write(f"{"":8s}") #
file.write(f"{"":8s}") # spin-orbit skipped
file.write(f"{4*vsi:+08.4f}") # imag
file.write(f"{rsi0:+08.4f}") #
file.write(f"{asi:+08.4f}\n") #
# Spin-Orbit
file.write(f"{-4:+08.4f}")
file.write(f"{-4*vso:+08.4f}") # real
file.write(f"{rso0:+08.4f}") #
file.write(f"{aso:+08.4f}") #
file.write(f"{"":8s}") # spin-orbit skipped
file.write(f"{-4*vsoi:+08.4f}") # imag
file.write(f"{rsoi0:+08.4f}") #
file.write(f"{asoi:+08.4f}\n") #
#===== Block 6
if A_a == 2 :
Koning(A_B, Z_B, A_a*ELab + Q_value - Ex, Z_b)
else:
AnCai(A_B, Z_B, A_a*ELab + Q_value - Ex)
file.write(f"{Q_value:+08.4f}")
file.write(f"{A_b:+08.4f}")
file.write(f"{Z_b:+08.4f}")
file.write(f"{A_B:+08.4f}")
file.write(f"{Z_B:+08.4f}")
file.write(f"{rc0:+08.4f}")
file.write(f"{"":8s}")
file.write(f"{"":8s}")
file.write(f"{2*spin_b:+08.4f}\n")
# Woods-Saxon
file.write(f"{1:+08.4f}")
file.write(f"{-v:+08.4f}") # real
file.write(f"{r0:+08.4f}") #
file.write(f"{a:+08.4f}") #
file.write(f"{"":8s}") # spin-orbit skipped
file.write(f"{-vi:+08.4f}") # imag
file.write(f"{ri0:+08.4f}") #
file.write(f"{ai:+08.4f}\n") #
# Woods-Saxon surface
file.write(f"{2:+08.4f}")
file.write(f"{"":8s}") # real
file.write(f"{"":8s}") #
file.write(f"{"":8s}") #
file.write(f"{"":8s}") # spin-orbit skipped
file.write(f"{4*vsi:+08.4f}") # imag
file.write(f"{rsi0:+08.4f}") #
file.write(f"{asi:+08.4f}\n") #
# Spin-Orbit
file.write(f"{-4:+08.4f}")
file.write(f"{-4*vso:+08.4f}") # real
file.write(f"{rso0:+08.4f}") #
file.write(f"{aso:+08.4f}") #
file.write(f"{"":8s}") # spin-orbit skipped
file.write(f"{-4*vsoi:+08.4f}") # imag
file.write(f"{rsoi0:+08.4f}") #
file.write(f"{asoi:+08.4f}\n") #
#====== bound state
file.write(f"{BindingEnergy:+08.4f}")
file.write(f"{A_x:+08.4f}")
file.write(f"{Z_x:+08.4f}")
file.write(f"{A_c:+08.4f}")
file.write(f"{Z_c:+08.4f}")
file.write(f"{1.30:+08.4f}") # Coulomb radius
file.write(f"{"":8s}") #
file.write(f"{"":8s}") #
file.write(f"{1:+08.4f}\n") # neutron spin x 2
# Woods-Saxon
file.write(f"{-1:+08.4f}")
file.write(f"{-1:+08.4f}") # real
file.write(f"{1.1:+08.4f}") #
file.write(f"{0.65:+08.4f}") #
file.write(f"{24:+8.4f}\n") # spin-orbit
# orbital
file.write(f"{node:+08.4f}")
file.write(f"{l:+08.4f}")
file.write(f"{2*j:+08.4f}")
file.write(f"{1:+08.4f}") # 2 x nuetron spin
file.write(f"{58:+08.4f}\n")
#======== end of input
file.write("9 end of input card")