SOLARIS_Analysis/Armory/ClassDetGeo.h

268 lines
8.2 KiB
C
Raw Permalink Normal View History

#ifndef ClassDetGeo_H
#define ClassDetGeo_H
#include <stdio.h> /// for FILE
#include <cstdlib>
#include <string>
#include <vector>
#include <unistd.h>
#include "TMath.h"
#include "TString.h"
#include "TMacro.h"
#include "AnalysisLib.h"
struct Array{
2024-02-15 16:36:45 -05:00
bool enable;
double detPerpDist; /// distance from axis
double detWidth; /// width
double detLength; /// length
double blocker;
double firstPos; /// meter
double eSigma; /// intrinsic energy resolution MeV
double zSigma; /// intrinsic position resolution mm
bool detFaceOut; ///detector_facing_Out_or_In
std::vector<double> pos; /// realtive position in meter
int colDet, rowDet; /// colDet = number of different pos, rowDet, number of same pos
std::vector<double> detPos; ///absolute position of detector
int numDet; /// colDet * rowDet
double zMin, zMax;
void DeduceAbsolutePos(){
colDet = pos.size();
numDet = colDet * rowDet;
detPos.clear();
for(int id = 0; id < colDet; id++){
if( firstPos > 0 ) detPos.push_back(firstPos + pos[id]);
if( firstPos < 0 ) detPos.push_back(firstPos - pos[colDet - 1 - id]);
2024-02-14 16:30:13 -05:00
// printf("%d | %f, %f \n", id, pos[id], detPos[id]);
}
zMin = TMath::Min(detPos.front(), detPos.back()) - (firstPos < 0 ? detLength : 0);
zMax = TMath::Max(detPos.front(), detPos.back()) + (firstPos > 0 ? detLength : 0);
}
void Print() const{
printf("------------------------------- Array\n");
for(int i = 0; i < colDet ; i++){
if( firstPos > 0 ){
printf("%d, %8.2f mm - %8.2f mm \n", i, detPos[i], detPos[i] + detLength);
}else{
printf("%d, %8.2f mm - %8.2f mm \n", i, detPos[i] - detLength , detPos[i]);
}
}
printf(" Blocker Position: %8.2f mm \n", firstPos > 0 ? firstPos - blocker : firstPos + blocker );
printf(" First Position: %8.2f mm \n", firstPos);
printf(" number of det : %d = %d x %d (side x col) \n", numDet, rowDet, colDet);
printf(" detector facing : %s\n", detFaceOut ? "Out" : "In");
printf(" energy resol.: %f MeV\n", eSigma);
printf(" pos-Z resol.: %f mm \n", zSigma);
}
};
struct Auxillary{
//========== recoil
double detPos; //
double outerRadius;
double innerRadius;
bool isCoincident;
double detPos1 = 0; // virtual recoil
double detPos2 = 0; // virtual recoil
//========== enum
double elumPos1 = 0;
double elumPos2 = 0;
void Print() const {
printf("------------------------------- Auxillary\n");
printf(" Recoil detector pos: %8.2f mm, radius: %6.2f - %6.2f mm \n", detPos, innerRadius, outerRadius);
if( elumPos1 != 0 || elumPos2 != 0 || detPos1 != 0 || detPos2 != 0){
printf("=================================== Virtual Detectors\n");
if( elumPos1 != 0 ) printf(" Elum 1 pos.: %f mm \n", elumPos1);
if( elumPos2 != 0 ) printf(" Elum 2 pos.: %f mm \n", elumPos2);
if( detPos1 != 0 ) printf(" Recoil 1 pos.: %f mm \n", detPos1);
if( detPos2 != 0 ) printf(" Recoil 2 pos.: %f mm \n", detPos2);
printf("=====================================================\n");
}
}
};
class DetGeo {
public:
2024-02-14 16:30:13 -05:00
DetGeo(){};
DetGeo(TString detGeoTxt){ LoadDetectorGeo(detGeoTxt, false);}
DetGeo(TMacro * macro){ LoadDetectorGeo(macro, false);}
~DetGeo(){};
double Bfield; /// T
int BfieldSign ; /// sign of B-field
double bore; /// bore , mm
unsigned short numGeo;
double zMin, zMax; /// total range span of all arrays
bool LoadDetectorGeo(TString fileName, bool verbose = true);
bool LoadDetectorGeo(TMacro * macro, bool verbose = true);
//=================== array
std::vector<Array> array;
std::vector<Auxillary> aux;
void Print( int printArray = 0) ; // 0 = no print, -1 = print all, 1 = print only enabled
2024-02-20 18:15:16 -05:00
short GetArrayID(int id){
int detCount = 0;
for( int i = 0; i < numGeo; i ++ ){
detCount += array[i].numDet;
if( id < detCount ) return i;
}
return -1;
}
private:
};
inline bool DetGeo::LoadDetectorGeo(TString fileName, bool verbose){
TMacro * haha = new TMacro();
if( haha->ReadFile(fileName) > 0 ) {
if( LoadDetectorGeo(haha, verbose) ){
2024-02-14 16:30:13 -05:00
delete haha;
return true;
}else{
2024-02-14 16:30:13 -05:00
delete haha;
return false;
}
}else{
2024-02-14 16:30:13 -05:00
delete haha;
return false;
}
}
///Using TMacro to load the detectorGeo frist,
///this indrect method is good for loading detectorGeo from TMacro in root file
inline bool DetGeo::LoadDetectorGeo(TMacro * macro, bool verbose){
if( macro == NULL ) return false;
TList * haha = macro->GetListOfLines();
int numLine = (haha)->GetSize();
// for( int i = 0; i < 2 ; i++) array[i].pos.clear();
int detFlag = 0;
int detLine = 0;
for( int i = 0 ; i < numLine; i++){
std::string line = macro->GetListOfLines()->At(i)->GetName();
if( AnalysisLib::isEmptyOrSpaces(line) ) continue;
std::vector<std::string> str = AnalysisLib::SplitStr(line, " ");
2024-02-14 16:30:13 -05:00
// printf("%3d | %s\n", i, str[0].c_str());
if( str[0].find("#//") != std::string::npos ) continue;
if( str[0].find("####") != std::string::npos ) break;
if( str[0].find("#===") != std::string::npos ) {
detFlag ++;
2024-04-01 19:37:27 -04:00
array.push_back(Array());
aux.push_back(Auxillary());
detLine = 0;
continue;;
}
if( detFlag == 0 ){
if ( detLine == 0 ) {
Bfield = atof(str[0].c_str());
BfieldSign = Bfield > 0 ? 1: -1;
}
if ( detLine == 1 ) bore = atof(str[0].c_str());
}
2024-02-15 16:36:45 -05:00
if( detFlag > 0){
unsigned short ID = detFlag - 1;
if ( detLine == 0 ) array[ID].enable = str[0] == "true" ? true : false;
if ( detLine == 1 ) aux[ID].detPos = atof(str[0].c_str());
if ( detLine == 2 ) aux[ID].innerRadius = atof(str[0].c_str());
if ( detLine == 3 ) aux[ID].outerRadius = atof(str[0].c_str());
if ( detLine == 4 ) aux[ID].isCoincident = str[0] == "true" ? true : false;
if ( detLine == 5 ) aux[ID].detPos1 = atof(str[0].c_str());
if ( detLine == 6 ) aux[ID].detPos2 = atof(str[0].c_str());
if ( detLine == 7 ) aux[ID].elumPos1 = atof(str[0].c_str());
if ( detLine == 8 ) aux[ID].elumPos2 = atof(str[0].c_str());
if ( detLine == 9 ) array[ID].detPerpDist = atof(str[0].c_str());
if ( detLine == 10 ) array[ID].detWidth = atof(str[0].c_str());
if ( detLine == 11 ) array[ID].detLength = atof(str[0].c_str());
if ( detLine == 12 ) array[ID].blocker = atof(str[0].c_str());
if ( detLine == 13 ) array[ID].firstPos = atof(str[0].c_str());
if ( detLine == 14 ) array[ID].eSigma = atof(str[0].c_str());
if ( detLine == 15 ) array[ID].zSigma = atof(str[0].c_str());
if ( detLine == 16 ) array[ID].detFaceOut = str[0] == "Out" ? true : false;
if ( detLine == 17 ) array[ID].rowDet = atoi(str[0].c_str());
if ( detLine >= 18 ) array[ID].pos.push_back(atof(str[0].c_str()));
}
detLine ++;
}
2024-02-15 16:36:45 -05:00
zMin = 99999;
zMax = -99999;
numGeo = 0;
2024-04-01 19:37:27 -04:00
for( int i = 0; i < detFlag; i ++ ){
2024-02-15 16:36:45 -05:00
array[i].DeduceAbsolutePos();
if (array[i].enable ) {
numGeo ++;
2024-02-15 16:36:45 -05:00
double zmax = TMath::Max(array[i].zMin, array[i].zMax);
double zmin = TMath::Min(array[i].zMin, array[i].zMax);
if( zmax > zMax ) zMax = zmax;
if( zmin < zMin ) zMin = zmin;
}
}
if( verbose ) Print(false);
return true;
}
inline void DetGeo::Print(int printArray){
2024-02-20 18:15:16 -05:00
printf("#####################################################\n");
2024-04-01 19:37:27 -04:00
printf(" B-field : %8.2f T, %s\n", Bfield, Bfield > 0 ? "out of plan" : "into plan");
printf(" Bore : %8.2f mm\n", bore);
printf(" No. of det. Set. : %zu \n", array.size());
printf(" z-Min : %8.2f mm\n", zMin);
printf(" z-Max : %8.2f mm\n", zMax);
if( printArray != 0 ) {
for( size_t i = 0; i < array.size() ; i++){
if( printArray > 0 && !array[i].enable ) continue;
printf("================================= %zu-th Detector Info (%s)\n", i, array[i].enable ? "enabled" : "disabled");
array[i].Print();
aux[i].Print();
2024-02-15 16:36:45 -05:00
}
}
printf("#####################################################\n");
}
#endif