SOLARIS_Analysis/Cleopatra/ClassHelios.h

552 lines
20 KiB
C
Raw Permalink Normal View History

#ifndef HELIOS_Library_h
#define HELIOS_Library_h
#include "TBenchmark.h"
#include "TLorentzVector.h"
#include "TVector3.h"
#include "TMath.h"
#include "TFile.h"
#include "TTree.h"
#include "TRandom.h"
#include "TMacro.h"
#include "TGraph.h"
#include <vector>
#include <fstream>
#include "../Armory/AnalysisLib.h"
#include "../Armory/ClassDetGeo.h"
#include "../Armory/ClassReactionConfig.h"
//=======================================================
//#######################################################
//Class for HELIOS
//input Lorentz vector, detector configuration
//output e, z, Ex, thetaCM, etc
//=======================================================
struct trajectory{
2024-02-15 16:36:45 -05:00
double theta, phi;
double vt, vp; // tranvser and perpendicular velocity
double rho; // orbit radius
double z0, t0; // position cycle
double x, y, z; // hit position
double t; //actual orbit time;
double R; //hit radius = sqrt(x^2+y^2);
int detID, detRowID;
int loop;
double effLoop;
void PrintTrajectory(){
printf("=====================\n");
printf(" theta : %f deg\n", theta*TMath::RadToDeg());
printf(" phi : %f deg\n", phi*TMath::RadToDeg());
printf(" vt : %f mm/ns\n", vt);
printf(" vp : %f mm/ns\n", vp);
printf(" rho : %f mm\n", rho);
printf(" z0 : %f mm\n", z0);
printf(" t0 : %f ns\n", t0);
printf("(x, y, z) : (%f, %f. %f) mm\n", x, y, z);
printf(" R : %f mm\n", R);
printf(" t : %f ns\n", t);
printf(" effLoop : %f cycle\n", effLoop);
printf(" Loop : %d cycle\n", loop);
printf(" detRowID : %d \n", detRowID);
printf(" detID : %d \n", detID);
}
void Clear(){
theta = TMath::QuietNaN();
phi = TMath::QuietNaN();
vt = TMath::QuietNaN();
vp = TMath::QuietNaN();
rho = TMath::QuietNaN();
z0 = TMath::QuietNaN();
t0 = TMath::QuietNaN();
x = TMath::QuietNaN();
y = TMath::QuietNaN();
z = TMath::QuietNaN();
effLoop = TMath::QuietNaN();
detID = -1;
detRowID = -1;
loop = -1;
}
};
class HELIOS{
public:
2024-02-15 16:36:45 -05:00
HELIOS();
HELIOS(std::string detGeoFile, unsigned short ID);
2024-02-15 16:36:45 -05:00
~HELIOS();
void SetCoincidentWithRecoil(bool TorF){ this->isCoincidentWithRecoil = TorF;}
bool GetCoincidentWithRecoil(){return this->isCoincidentWithRecoil;}
bool SetDetectorGeometry(std::string filename, unsigned short ID);
void SetBeamPosition(double x, double y) { xOff = x; yOff = y;}
void OverrideMagneticField(double BField);
void OverrideFirstPos(double firstPos);
void OverrideDetectorDistance(double perpDist);
void OverrideDetectorFacing(bool isOutside);
int CheckDetAcceptance();
int CalArrayHit(TLorentzVector Pb, bool debug = false);
int CalRecoilHit(TLorentzVector PB);
void CalTrajectoryPara(TLorentzVector P, bool isLightRecoil);
int GetNumberOfDetectorsInSamePos(){return array.rowDet;}
2024-02-15 16:36:45 -05:00
double GetEnergy()const {return e;}
double GetDetX() const {return detX;} // position in each detector, range from -1, 1
/// clockwise rotation for B-field along the z-axis, sign = 1.
double XPos(double Zpos, double theta, double phi, double rho, int sign){
if( TMath::IsNaN(Zpos) ) return TMath::QuietNaN();
return rho * ( TMath::Sin( TMath::Tan(theta) * Zpos / rho - sign * phi ) + sign * TMath::Sin(phi) ) + xOff;
}
double YPos(double Zpos, double theta, double phi, double rho, int sign){
if( TMath::IsNaN(Zpos) ) return TMath::QuietNaN();
return rho * sign * (TMath::Cos( TMath::Tan(theta) * Zpos / rho - sign * phi ) - TMath::Cos(phi)) + yOff;
}
double RPos(double Zpos, double theta, double phi, double rho, int sign){
2024-02-14 16:30:13 -05:00
if( TMath::IsNaN(Zpos) ) return TMath::QuietNaN();
double x = XPos(Zpos, theta, phi, rho, sign) ;
double y = YPos(Zpos, theta, phi, rho, sign) ;
return sqrt(x*x+y*y);
2024-02-15 16:36:45 -05:00
}
double GetXPos(double ZPos){ return TMath::IsNaN(ZPos) ? TMath::QuietNaN() : XPos( ZPos, orbitb.theta, orbitb.phi, orbitb.rho, detGeo.BfieldSign); }
double GetYPos(double ZPos){ return TMath::IsNaN(ZPos) ? TMath::QuietNaN() : YPos( ZPos, orbitb.theta, orbitb.phi, orbitb.rho, detGeo.BfieldSign); }
double GetR(double ZPos) { return TMath::IsNaN(ZPos) ? TMath::QuietNaN() : RPos( ZPos, orbitb.theta, orbitb.phi, orbitb.rho, detGeo.BfieldSign); }
double GetRecoilEnergy(){return eB;}
double GetRecoilXPos(double ZPos){ return TMath::IsNaN(ZPos) ? TMath::QuietNaN() : XPos( ZPos, orbitB.theta, orbitB.phi, orbitB.rho, detGeo.BfieldSign); }
double GetRecoilYPos(double ZPos){ return TMath::IsNaN(ZPos) ? TMath::QuietNaN() : YPos( ZPos, orbitB.theta, orbitB.phi, orbitB.rho, detGeo.BfieldSign); }
double GetRecoilR(double ZPos) { return TMath::IsNaN(ZPos) ? TMath::QuietNaN() : RPos( ZPos, orbitB.theta, orbitB.phi, orbitB.rho, detGeo.BfieldSign); }
void PrintGeometry() const;
2024-02-15 16:36:45 -05:00
double GetBField() const {return detGeo.Bfield;}
double GetDetRadius() const {return array.detPerpDist;}
2024-02-14 16:30:13 -05:00
2024-02-15 16:36:45 -05:00
trajectory GetTrajectory_b() const {return orbitb;}
trajectory GetTrajectory_B() const {return orbitB;}
DetGeo GetDetectorGeometry() const {return detGeo;}
Array GetArrayGeometry() const {return array;}
Auxillary GetAuxGeometry() const {return aux;}
2024-02-15 16:36:45 -05:00
TString GetHitMessage() {return hitMessage;}
TString GetAcceptanceMessage() { AcceptanceCodeToMsg(acceptanceCode); return acceptanceMsg;}
2024-02-15 16:36:45 -05:00
TString AcceptanceCodeToMsg(short code );
private:
DetGeo detGeo;
Array array;
Auxillary aux;
trajectory orbitb, orbitB;
double e,detX ; ///energy of light recoil, position X
double rhoHit; /// radius of particle-b hit on recoil detector
double eB; ///energy of heavy recoil
bool isDetReady;
TString hitMessage;
TString acceptanceMsg; //acceptance check
short acceptanceCode;
double xOff, yOff; // beam position
bool overrideDetDistance;
bool overrideFirstPos;
bool isCoincidentWithRecoil;
const double c = 299.792458; //mm/ns
2024-02-14 16:30:13 -05:00
2024-02-20 16:38:40 -05:00
void Clear();
};
HELIOS::HELIOS(){
2024-02-20 16:38:40 -05:00
Clear();
}
HELIOS::HELIOS(std::string detGeoFile, unsigned short ID){
2024-02-20 16:38:40 -05:00
Clear();
SetDetectorGeometry(detGeoFile, ID);
2024-02-20 16:38:40 -05:00
}
HELIOS::~HELIOS(){
}
void HELIOS::Clear(){
2024-02-15 16:36:45 -05:00
orbitb.Clear();
orbitB.Clear();
2024-02-15 16:36:45 -05:00
e = TMath::QuietNaN();
eB = TMath::QuietNaN();
detX = TMath::QuietNaN();
rhoHit = TMath::QuietNaN();
xOff = 0.0;
yOff = 0.0;
isDetReady = false;
2024-02-15 16:36:45 -05:00
hitMessage = "";
acceptanceMsg = "";
acceptanceCode = 0;
2024-02-14 16:30:13 -05:00
2024-02-15 16:36:45 -05:00
overrideDetDistance = false;
overrideFirstPos = false;
isCoincidentWithRecoil = false;
}
2024-02-15 16:36:45 -05:00
void HELIOS::OverrideMagneticField(double BField){
this->detGeo.Bfield = BField;
this->detGeo.BfieldSign = BField > 0 ? 1: -1;
}
void HELIOS::OverrideFirstPos(double firstPos){
overrideFirstPos = true;
printf("------ Overriding FirstPosition to : %8.2f mm \n", firstPos);
this->array.firstPos = firstPos;
}
2024-02-15 16:36:45 -05:00
void HELIOS::OverrideDetectorDistance(double perpDist){
overrideDetDistance = true;
printf("------ Overriding Detector Distance to : %8.2f mm \n", perpDist);
this->array.detPerpDist = perpDist;
}
2024-02-15 16:36:45 -05:00
void HELIOS::OverrideDetectorFacing(bool isOutside){
this->array.detFaceOut = isOutside;
printf(" Detectors are facing %s\n", array.detFaceOut ? "outside": "inside" );
}
bool HELIOS::SetDetectorGeometry(std::string filename, unsigned short ID){
2024-02-15 16:36:45 -05:00
if( detGeo.LoadDetectorGeo(filename, false)) {
array = detGeo.array[ID];
aux = detGeo.aux[ID];
isCoincidentWithRecoil = detGeo.aux[ID].isCoincident;
isDetReady = true;
2024-02-15 16:36:45 -05:00
}else{
printf("cannot read file %s.\n", filename.c_str());
isDetReady = false;
2024-02-15 16:36:45 -05:00
}
return isDetReady;
}
void HELIOS::PrintGeometry() const{
printf("=====================================================\n");
printf(" B-field : %8.2f T, %s\n", detGeo.Bfield, detGeo.Bfield > 0 ? "out of plan" : "into plan");
printf(" Bore : %8.2f mm\n", detGeo.bore);
2024-02-15 16:36:45 -05:00
printf("----------------------------------- Detector Position \n");
array.Print();
aux.Print();
2024-02-15 16:36:45 -05:00
printf("=====================================================\n");
}
TString HELIOS::AcceptanceCodeToMsg(short code ){
switch(code){
case 3 : acceptanceMsg = "try one more loop"; break;
case 2 : acceptanceMsg = "hit less than the nearest array. increase loop"; break;
case 1 : acceptanceMsg = "GOOD!! hit Array"; break;
case 0 : acceptanceMsg = "detector geometry incomplete."; break;
case -1 : acceptanceMsg = "array at upstream, z is downstream."; break;
case -2 : acceptanceMsg = "array at downstream, z is upstream."; break;
case -3 : acceptanceMsg = "hit at the XY gap."; break;
case -4 : acceptanceMsg = "hit more upstream than the array length"; break;
case -5 : acceptanceMsg = "hit more downstream than the array length"; break;
case -6 : acceptanceMsg = "hit blocker"; break;
case -7 : acceptanceMsg = "hit array Z-gap"; break;
case -10 : acceptanceMsg = "rho is too big"; break;
case -11 : acceptanceMsg = "rho is too small"; break;
case -12 : acceptanceMsg = "light recoil blocked by recoil detector"; break;
case -13 : acceptanceMsg = "more than 3 loops."; break;
case -14 : acceptanceMsg = "heavy recoil does not hit recoil detector"; break;
case -15 : acceptanceMsg = "det Row ID == -1"; break;
default : acceptanceMsg = "unknown error."; break;
}
return acceptanceMsg;
}
2024-02-15 16:36:45 -05:00
int HELIOS::CheckDetAcceptance(){
//CalArrayHit and CalRecoilHit must be done before.
if( isDetReady == false ) { acceptanceCode = 0; return acceptanceCode; }
// -1 ========= when recoil direction is not same side of array
if( array.firstPos < 0 && orbitb.z > 0 ) {acceptanceCode = -1; return acceptanceCode;}
// -2 ========= when recoil direction is not same side of array
if( array.firstPos > 0 && orbitb.z < 0 ) {acceptanceCode = -2; return acceptanceCode;}
// -11 ======== rho is too small
if( 2 * orbitb.rho < array.detPerpDist ) { acceptanceCode = -11; return acceptanceCode;}
// -15 ========= if detRowID == -1, should be (2 * orbitb.rho < perpDist)
if( orbitb.detRowID == -1 ) {acceptanceCode = -15; return acceptanceCode;}
// -10 =========== when rho is too big .
if( array.detFaceOut && detGeo.bore < 2 * orbitb.rho) { acceptanceCode = -10; return acceptanceCode;}
// -14 ========== check particle-B hit radius on recoil dectector
if( isCoincidentWithRecoil && orbitB.R > aux.outerRadius ) {acceptanceCode = -14; return acceptanceCode;}
//if( isCoincidentWithRecoil && (orbitB.R > rhoRecoilout || orbitB.R < rhoRecoilin) ) return -14;
// -12 ========= check is particle-b was blocked by recoil detector
rhoHit = GetR(aux.detPos);
if( orbitb.z > 0 && aux.detPos > 0 && orbitb.z > aux.detPos && rhoHit < aux.outerRadius ) { acceptanceCode = -12; return acceptanceCode;}
if( orbitb.z < 0 && aux.detPos < 0 && orbitb.z < aux.detPos && rhoHit < aux.outerRadius ) { acceptanceCode = -12; return acceptanceCode;}
// -13 ========= not more than 3 loops
if( orbitb.loop > 3 ) {acceptanceCode = -13; return acceptanceCode;}
// -3 ========= calculate the "y"-distance from detector center
if( sqrt(orbitb.R*orbitb.R - array.detPerpDist * array.detPerpDist)> array.detWidth/2 ) { acceptanceCode = -3; return acceptanceCode;}
// -4, -5 ==== when zPos further the range of whole array, more loop would not save
if( array.firstPos < 0 && orbitb.z < array.detPos[0] - array.detLength ) { acceptanceCode = -4; return acceptanceCode;}
if( array.firstPos > 0 && orbitb.z > array.detPos[array.colDet-1] + array.detLength ) { acceptanceCode = -5; return acceptanceCode;}
// -6 ======== Hit on blacker
if( array.blocker != 0 && array.firstPos > 0 && array.detPos[0] - array.blocker < orbitb.z && orbitb.z < array.detPos[0] ) {acceptanceCode = -6; return acceptanceCode;}
if( array.blocker != 0 && array.firstPos < 0 && array.detPos[array.colDet-1] < orbitb.z && orbitb.z < array.detPos[array.colDet-1] + array.blocker ) { acceptanceCode = -6; return acceptanceCode;}
// 2 ====== when zPos less then the nearest position, more loop may hit
int increaseLoopFlag = 0;
if( array.firstPos < 0 && array.detPos[array.colDet-1] < orbitb.z ) increaseLoopFlag = 2;
if( array.firstPos > 0 && array.detPos[0] > orbitb.z ) increaseLoopFlag = 2;
if (increaseLoopFlag == 2 ) {
orbitb.z += orbitb.z0;
orbitb.effLoop += 1.0;
orbitb.loop += 1;
orbitb.t = orbitb.t0 * orbitb.effLoop;
acceptanceCode = 2;
return acceptanceCode;
}
// 1 ======= check hit array z- position
if( array.firstPos < 0 ){
for( int i = 0; i < array.colDet; i++){
if( array.detPos[i] - array.detLength <= orbitb.z && orbitb.z <= array.detPos[i]) {
orbitb.detID = i;
detX = ( orbitb.z - (array.detPos[i] + array.detLength/2 ))/ array.detLength * 2 ;// range from -1 , 1
acceptanceCode = 1;
return acceptanceCode;
}
}
}else{
for( int i = 0; i < array.colDet ; i++){
if( array.detPos[i] <= orbitb.z && orbitb.z <= array.detPos[i] + array.detLength) {
///printf(" %d | %f < z = %f < %f \n", i, array.detPos[i], orbitb.z, array.detPos[i]+length);
orbitb.detID = i;
detX = ( orbitb.z - (array.detPos[i] - array.detLength/2 ))/ array.detLength*2 ;// range from -1 , 1
acceptanceCode = 1;
return acceptanceCode;
}
}
}
// -7 ======== check hit array gap
if( array.firstPos < 0 ){
for( int i = 0; i < array.colDet-1 ; i++){
if( array.detPos[i] < orbitb.z && orbitb.z < array.detPos[i+1] - array.detLength ) { acceptanceCode = -7; return acceptanceCode; }//increaseLoopFlag = 3;
}
}else{
for( int i = 0; i < array.colDet-1 ; i++){
if( array.detPos[i] + array.detLength < orbitb.z && orbitb.z < array.detPos[i+1] ) { acceptanceCode = -7; return acceptanceCode; }//increaseLoopFlag = 3;
}
}
if (increaseLoopFlag == 3 ) {
orbitb.z += orbitb.z0;
orbitb.effLoop += 1.0;
orbitb.loop += 1;
orbitb.t = orbitb.t0 * orbitb.effLoop;
acceptanceCode = 3;
return acceptanceCode;
}
acceptanceCode = -20 ;
return acceptanceCode; // for unknown reason
}
2024-02-15 16:36:45 -05:00
void HELIOS::CalTrajectoryPara(TLorentzVector P, bool isLightRecoil){
2024-02-14 16:30:13 -05:00
if( isLightRecoil ){
orbitb.theta = P.Theta();
orbitb.phi = P.Phi();
2024-02-15 16:36:45 -05:00
orbitb.rho = P.Pt() / abs(detGeo.Bfield) / P.GetUniqueID() / c * 1000; //mm
orbitb.vt = P.Beta() * TMath::Sin(P.Theta()) * c ; // mm / nano-second
orbitb.vp = P.Beta() * TMath::Cos(P.Theta()) * c ; // mm / nano-second
orbitb.t0 = TMath::TwoPi() * orbitb.rho / orbitb.vt; // nano-second
orbitb.z0 = orbitb.vp * orbitb.t0;
orbitb.detID = -1;
orbitb.detRowID = -1;
2024-02-14 16:30:13 -05:00
}else{
orbitB.theta = P.Theta();
orbitB.phi = P.Phi();
2024-02-15 16:36:45 -05:00
orbitB.rho = P.Pt() / abs(detGeo.Bfield) / P.GetUniqueID() / c * 1000; //mm
orbitB.vt = P.Beta() * TMath::Sin(P.Theta()) * c ; // mm / nano-second
orbitB.vp = P.Beta() * TMath::Cos(P.Theta()) * c ; // mm / nano-second
orbitB.t0 = TMath::TwoPi() * orbitB.rho / orbitB.vt; // nano-second
orbitB.z0 = orbitB.vp * orbitB.t0;
orbitB.detID = -1;
orbitB.detRowID = -1;
}
}
2024-02-15 16:36:45 -05:00
int HELIOS::CalArrayHit(TLorentzVector Pb, bool debug){
e = Pb.E() - Pb.M();
detX = TMath::QuietNaN();
rhoHit = TMath::QuietNaN();
2024-02-15 16:36:45 -05:00
CalTrajectoryPara(Pb, true);
int targetLoop = 1;
int inOut = array.detFaceOut == true ? 1: 0; //1 = from Outside, 0 = from inside
if( debug ) {
printf("===================================\n");
printf("theta : %f deg, phi : %f deg \n", orbitb.theta * TMath::RadToDeg(), orbitb.phi * TMath::RadToDeg());
printf("z0: %f mm, rho : %f mm \n", orbitb.z0, orbitb.rho);
printf(" inOut : %d = %s \n", inOut, inOut == 1 ? "Out" : "in");
printf(" z range : %.2f - %.2f \n", detGeo.zMin, detGeo.zMax);
2024-02-14 16:30:13 -05:00
printf(" B-field sign : %d\n", detGeo.BfieldSign);
printf("-----------------------------------\n");
}
std::vector<double> zPossible;
std::vector<int> dID; //detRowID
int iStart = ( detGeo.BfieldSign == 1 ? 0 : -array.rowDet );
int iEnd = ( detGeo.BfieldSign == 1 ? 2 * array.rowDet : array.rowDet );
for( int i = iStart; i < iEnd ; i++){
double phiD = TMath::TwoPi()/array.rowDet * i ;
double dphi = orbitb.phi - phiD;
double aEff = array.detPerpDist - (xOff * TMath::Cos(phiD) + yOff * TMath::Sin(phiD));
2024-02-14 16:30:13 -05:00
double hahaha = asin( aEff/ orbitb.rho - detGeo.BfieldSign * sin(dphi));
int n = 2*targetLoop + inOut;
double zP = orbitb.z0 /TMath::TwoPi() * ( detGeo.BfieldSign * dphi + n * TMath::Pi() + pow(-1, n) * hahaha );
if( debug ) {
double xP = GetXPos(zP) ;
double yP = GetYPos(zP) ;
printf("phiD: %4.0f, dphi: %6.1f, mod(pi): %6.1f, Loop : %9.5f, zHit : %8.3f mm, (x,y) = (%7.2f, %7.2f) \n",
phiD * TMath::RadToDeg(),
(orbitb.phi-phiD) * TMath::RadToDeg(),
fmod(orbitb.phi-phiD, TMath::Pi())*TMath::RadToDeg(),
zP/orbitb.z0, zP, xP, yP );
}
///Selection
2024-02-14 16:30:13 -05:00
if( !TMath::IsNaN(zP) && 0 < zP/orbitb.z0 && TMath::Max(0, targetLoop-1) < zP/orbitb.z0 && zP/orbitb.z0 < targetLoop ) {
zPossible.push_back(zP);
dID.push_back(i);
}
}
2024-02-14 16:30:13 -05:00
if( debug ) printf("-----------------------------------\n");
double dMin = 1;
for( int i = 0; i < (int) zPossible.size(); i++){
double dd = abs(zPossible[i]/orbitb.z0 - (targetLoop - (1-inOut)));
if( debug ) printf(" %d | zP : %8.3f mm; loop : %9.5f ", i, zPossible[i], zPossible[i]/orbitb.z0);
if( dd < dMin) {
orbitb.z = zPossible[i];
dMin = dd;
orbitb.effLoop = zPossible[i]/orbitb.z0;
orbitb.loop = TMath::Ceil(orbitb.effLoop);
orbitb.detRowID = (12+dID[i])%4;
orbitb.t = orbitb.t0 * orbitb.effLoop;
double phiD = TMath::TwoPi()/array.rowDet * dID[i] ;
double dphi = orbitb.phi - phiD ;
if( debug ) {
// Check is in or out
double hitDir = cos( orbitb.z/orbitb.z0 * TMath::TwoPi() - detGeo.BfieldSign * dphi );
printf(" hitDir : %4.1f ", hitDir);
if( ( inOut == 1 && hitDir > 0 ) || (inOut == 0 && hitDir < 0 ) ) {
printf(" != %f ", array.detPerpDist);
orbitb.z = TMath::QuietNaN();
orbitb.loop = -1;
orbitb.detRowID = -1;
2024-02-14 16:30:13 -05:00
hitMessage = "wrong direction.";
return - 2;
}
// this must be false, otherwise, calculation error
double xPos = GetXPos(orbitb.z ) ;
double yPos = GetYPos(orbitb.z ) ;
double a = xPos * cos(phiD) + yPos * sin(phiD);
printf(" a : %f ", a);
if( abs(a - array.detPerpDist) > 0.01) {
printf(" != %f ", array.detPerpDist);
orbitb.z = TMath::QuietNaN();
orbitb.loop = -1;
orbitb.detRowID = -1;
2024-02-14 16:30:13 -05:00
hitMessage = "not on the detector plan.";
return -3;
}
}
}
if(debug) printf("\n");
}
// calculate x, y, R
orbitb.x = GetXPos(orbitb.z) ;
orbitb.y = GetYPos(orbitb.z) ;
orbitb.R = GetR(orbitb.z);
2024-02-14 16:30:13 -05:00
hitMessage = "successful hit.";
return 1; // return 1 when OK
}
2024-02-15 16:36:45 -05:00
int HELIOS::CalRecoilHit(TLorentzVector PB){
2024-02-15 16:36:45 -05:00
CalTrajectoryPara(PB, false);
orbitB.z = aux.detPos;
orbitB.x = GetRecoilXPos(aux.detPos) ;
orbitB.y = GetRecoilYPos(aux.detPos) ;
orbitB.R = GetRecoilR(aux.detPos);
orbitB.effLoop = orbitB.z/orbitB.z0;
orbitB.t = orbitB.t0 * orbitB.effLoop ;
return 1;
}
#endif