SOLARIS_Analysis/Armory/AnalysisLib.h

333 lines
8.5 KiB
C
Raw Normal View History

#ifndef ANALYSIS_LIB_H
#define ANALYSIS_LIB_H
#include <cstdio>
#include <vector>
#include <fstream>
#include <string>
#include <TMacro.h>
#include <TList.h>
#include <TFile.h>
#include <TMath.h>
#include <TObjArray.h>
#include <TCutG.h>
#include <TGraph.h>
namespace AnalysisLib {
//*######################################### TRAPEZOID
TGraph * TrapezoidFilter(TGraph * trace, int baseLineEnd = 80, int riseTime = 10, int flatTop = 20, float decayTime = 2000){
///Trapezoid filter https://doi.org/10.1016/0168-9002(94)91652-7
TGraph * trapezoid = new TGraph();
trapezoid->Clear();
///find baseline;
double baseline = 0;
for( int i = 0; i < baseLineEnd; i++){
baseline += trace->Eval(i);
}
baseline = baseline*1./baseLineEnd;
int length = trace->GetN();
double pn = 0.;
double sn = 0.;
for( int i = 0; i < length ; i++){
double dlk = trace->Eval(i) - baseline;
if( i - riseTime >= 0 ) dlk -= trace->Eval(i - riseTime) - baseline;
if( i - flatTop - riseTime >= 0 ) dlk -= trace->Eval(i - flatTop - riseTime) - baseline;
if( i - flatTop - 2*riseTime >= 0) dlk += trace->Eval(i - flatTop - 2*riseTime) - baseline;
if( i == 0 ){
pn = dlk;
sn = pn + dlk*decayTime;
}else{
pn = pn + dlk;
sn = sn + pn + dlk*decayTime;
}
trapezoid->SetPoint(i, i, sn / decayTime / riseTime);
}
return trapezoid;
}
std::vector<std::string> SplitStr(std::string tempLine, std::string splitter, int shift = 0){
std::vector<std::string> output;
size_t pos;
do{
pos = tempLine.find(splitter); /// fine splitter
if( pos == 0 ){ ///check if it is splitter again
tempLine = tempLine.substr(pos+1);
continue;
}
std::string secStr;
if( pos == std::string::npos ){
secStr = tempLine;
}else{
secStr = tempLine.substr(0, pos+shift);
tempLine = tempLine.substr(pos+shift);
}
///check if secStr is begin with space
while( secStr.substr(0, 1) == " ") secStr = secStr.substr(1);
///check if secStr is end with space
while( secStr.back() == ' ') secStr = secStr.substr(0, secStr.size()-1);
output.push_back(secStr);
///printf(" |%s---\n", secStr.c_str());
}while(pos != std::string::npos );
return output;
};
//************************************** TCutG
TObjArray * LoadListOfTCut(TString fileName, TString cutName = "cutList"){
if( fileName == "" ) return nullptr;
TObjArray * cutList = nullptr;
TFile * fCut = new TFile(fileName);
bool isCutFileOpen = fCut->IsOpen();
if(!isCutFileOpen) {
printf( "Failed to open rdt-cutfile 1 : %s\n" , fileName.Data());
}else{
cutList = (TObjArray *) fCut->FindObjectAny(cutName);
if( cutList ){
int numCut = cutList->GetEntries();
printf("=========== found %d cutG in %s \n", numCut, fCut->GetName());
for(int i = 0; i < numCut ; i++){
printf("cut name : %s , VarX: %s, VarY: %s, numPoints: %d \n",
cutList->At(i)->GetName(),
((TCutG*)cutList->At(i))->GetVarX(),
((TCutG*)cutList->At(i))->GetVarY(),
((TCutG*)cutList->At(i))->GetN()
);
}
}
}
return cutList;
}
TCutG * LoadSingleTCut( TString fileName, TString cutName = "cutEZ"){
if( fileName == "" ) return nullptr;
TCutG * cut = nullptr;
TFile * fCut = new TFile(fileName);
bool isCutFileOpen = fCut->IsOpen();
if( !isCutFileOpen) {
printf( "Failed to open E-Z cutfile : %s\n" , fileName.Data());
}else{
cut = (TCutG *) fCut->FindObjectAny(cutName);
if( cut != NULL ) {
printf("Found EZ cut| name : %s, VarX: %s, VarY: %s, numPoints: %d \n",
cut->GetName(),
cut->GetVarX(),
cut->GetVarY(),
cut->GetN()
);
}
}
return cut;
}
//************************************** Others
std::vector<std::vector<double>> combination(std::vector<double> arr, int r){
std::vector<std::vector<double>> output;
int n = arr.size();
std::vector<int> v(n);
std::fill(v.begin(), v.begin()+r, 1);
do {
//for( int i = 0; i < n; i++) { printf("%d ", v[i]); }; printf("\n");
std::vector<double> temp;
for (int i = 0; i < n; ++i) {
if (v[i]) {
//printf("%.1f, ", arr[i]);
temp.push_back(arr[i]);
}
}
//printf("\n");
output.push_back(temp);
} while (std::prev_permutation(v.begin(), v.end()));
return output;
}
double* sumMeanVar(std::vector<double> data){
int n = data.size();
double sum = 0;
for( int k = 0; k < n; k++) sum += data[k];
double mean = sum/n;
double var = 0;
for( int k = 0; k < n; k++) var += pow(data[k] - mean,2);
static double output[3];
output[0] = sum;
output[1] = mean;
output[2] = var;
return output;
}
double* fitSlopeIntercept(std::vector<double> dataX, std::vector<double> dataY){
double * smvY = sumMeanVar(dataY);
double sumY = smvY[0];
double meanY = smvY[1];
double * smvX = sumMeanVar(dataX);
double sumX = smvX[0];
double meanX = smvX[1];
double varX = smvX[2];
int n = dataX.size();
double sumXY = 0;
for( int j = 0; j < n; j++) sumXY += dataX[j] * dataY[j];
double slope = ( sumXY - sumX * sumY/n ) / varX;
double intercept = meanY - slope * meanX;
static double output[2];
output[0] = slope;
output[1] = intercept;
return output;
}
std::vector<std::vector<double>> FindMatchingPair(std::vector<double> enX, std::vector<double> enY){
//output[0] = fitEnergy;
//output[1] = refEnergy;
int nX = enX.size();
int nY = enY.size();
std::vector<double> fitEnergy;
std::vector<double> refEnergy;
if( nX > nY ){
std::vector<std::vector<double>> output = combination(enX, nY);
double * smvY = sumMeanVar(enY);
double sumY = smvY[0];
double meanY = smvY[1];
double varY = smvY[2];
double optRSquared = 0;
double absRSqMinusOne = 1;
int maxID = 0;
for( int k = 0; k < (int) output.size(); k++){
double * smvX = sumMeanVar(output[k]);
double sumX = smvX[0];
double meanX = smvX[1];
double varX = smvX[2];
double sumXY = 0;
for( int j = 0; j < nY; j++) sumXY += output[k][j] * enY[j];
double rSq = abs(sumXY - sumX*sumY/nY)/sqrt(varX*varY);
//for( int j = 0; j < nY ; j++){ printf("%.1f, ", output[k][j]); }; printf("| %.10f\n", rSq);
if( abs(rSq-1) < absRSqMinusOne ) {
absRSqMinusOne = abs(rSq-1);
optRSquared = rSq;
maxID = k;
}
}
fitEnergy = output[maxID];
refEnergy = enY;
printf(" R^2 : %.20f\n", optRSquared);
//calculation fitting coefficient
//double * si = fitSlopeIntercept(fitEnergy, refEnergy);
//printf( " y = %.4f x + %.4f\n", si[0], si[1]);
}else if( nX < nY ){
std::vector<std::vector<double>> output = combination(enY, nX);
double * smvX = sumMeanVar(enX);
double sumX = smvX[0];
double meanX = smvX[1];
double varX = smvX[2];
double optRSquared = 0;
double absRSqMinusOne = 1;
int maxID = 0;
for( int k = 0; k < (int) output.size(); k++){
double * smvY = sumMeanVar(output[k]);
double sumY = smvY[0];
double meanY = smvY[1];
double varY = smvY[2];
double sumXY = 0;
for( int j = 0; j < nX; j++) sumXY += output[k][j] * enX[j];
double rSq = abs(sumXY - sumX*sumY/nX)/sqrt(varX*varY);
//for( int j = 0; j < nX ; j++){ printf("%.1f, ", output[k][j]); }; printf("| %.10f\n", rSq);
if( abs(rSq-1) < absRSqMinusOne ) {
absRSqMinusOne = abs(rSq-1);
optRSquared = rSq;
maxID = k;
}
}
fitEnergy = enX;
refEnergy = output[maxID];
printf(" R^2 : %.20f\n", optRSquared);
}else{
fitEnergy = enX;
refEnergy = enY;
//if nX == nY, ther could be cases that only partial enX and enY are matched.
}
printf("fitEnergy = ");for( int k = 0; k < (int) fitEnergy.size() ; k++){ printf("%7.2f, ", fitEnergy[k]); }; printf("\n");
printf("refEnergy = ");for( int k = 0; k < (int) refEnergy.size() ; k++){ printf("%7.2f, ", refEnergy[k]); }; printf("\n");
std::vector<std::vector<double>> haha;
haha.push_back(fitEnergy);
haha.push_back(refEnergy);
return haha;
}
}
#endif