SOLARIS_Analysis/working/Monitors.C

893 lines
33 KiB
C++
Raw Normal View History

#define Monitors_cxx
#include <TH2.h>
#include <TH1.h>
#include <TF1.h>
#include <TStyle.h>
#include <TCutG.h>
#include <TGraph.h>
#include <TMath.h>
#include <TMultiGraph.h>
#include <TString.h>
#include <TLatex.h>
#include <TSystem.h>
#include <TMacro.h>
#include <TLine.h>
#include <TStopwatch.h>
#include <TCanvas.h>
#include <TBox.h>
#include <TDatime.h>
#include <TMD5.h>
#include <TObjArray.h>
#include <fstream>
#include <vector>
#include "../Cleopatra/Isotope.h"
#include "Mapping.h"
using namespace std;
//############################################ User setting
ULong64_t maxNumberEvent = 1000000000;
//---histogram setting
int rawEnergyRange[2] = { 100, 4000}; /// share with e, xf, xn
int energyRange[2] = { 0, 10}; /// in the E-Z plot
int rdtDERange[2] = { 0, 80};
int rdtERange[2] = { 0, 80};
int thetaCMRange[2] = {0, 80};
double exRange[3] = { 100, -2, 10}; /// bin [keV], low[MeV], high[MeV]
int coinTimeRange[2] = { -200, 200};
int timeRangeUser[2] = {0, 99999999}; /// min, use when cannot find time, this set the min and max
bool isUseArrayTrace = false;
bool isUseRDTTrace = false;
//---Gate
bool isTimeGateOn = true;
int timeGate[2] = {-20, 12}; /// min, max, 1 ch = 10 ns
double eCalCut[2] = {0.5, 50}; /// lower & higher limit for eCal
int dEgate[2] = { 500, 1500};
int Eresgate[2] = { 1000, 4000};
double thetaCMGate = 10; /// deg
double xGate = 0.9; ///cut out the edge
vector<int> skipDetID = {11, 16, 23} ;//{2, 11, 17}
TString rdtCutFile1 = "";
TString rdtCutFile2 = "";
TString ezCutFile = "";//"ezCut.root";
//############################################ end of user setting
/******************************************************************
* variable and histogram naming rules *
* name are case sensitive, so as any C/C++ code *
* *
* ID is dettector ID *
* *
* raw data from gen_tree are e, xf, xn, ring. *
* the x from raw data is x *
* *
* xf + xn = xs, s for sum *
* *
* calibrated data are eCal, xfCal, xnCal, ringCal. *
* the x from cal data is xCal *
* *
* xfCal + xnCal = xsCal *
* *
* since the z is always from xCal, so it calls z. *
* *
* Excitation energy calls Ex *
* *
* *
* TH2D is always using "V" to seperate 2 variables, like eVx *
* *
* histogram with TCutG, add suffix "GC" for Graphical-Cut. *
* *
*******************************************************************/
//======== raw data
TH1F** he;
TH1F** hxf;
TH1F** hxn;
TH2F** hxfVxn;
TH2F** heVxs;
TH1F* hMultiHit;
TH2F** heVx; // e vs (xf-xn)/e
TH2F* heVID;
TH2F* hxfVID;
TH2F* hxnVID;
//====== cal data
TH1F** heCal;
TH2F** hxfCalVxnCal;
TH2F** heVxsCal; // raw e vs xf
TH2F** heCalVxCal; // eCal vs xCal
TH2F** heCalVxCalG; // eCal vs xCal
TH2F* heCalID; // e vs detID
TH2F* heCalVz;
TH2F* heCalVzGC;
TH2F** hecalVzRow;
//====== Ex data
TH1F* hEx;
TH1F** hExi;
TH2F** hExVxCal;
TH2F* hExThetaCM;
TH1F* hExCut1;
TH1F* hExCut2;
//======= Recoil
TH2F* hrdtID;
TH1F** hrdt; // single recoil
TH1F** hrdtg;
TH2F** hrdt2D;
TH2F** hrdt2Dg;
TH2F** hrdt2Dsum;
TH1F* hrdtRate1;
TH1F* hrdtRate2;
//======= multi-Hit
TH2I *hmult;
TH1I *hmultEZ;
TH2I *hArrayRDTMatrix;
TH2I *hArrayRDTMatrixG;
//======= ARRAY-RDT time diff
TH1I *htdiff;
TH1I *htdiffg;
/***************************
***************************/
double zRange[2] = {-1000, 0}; // zMin, zMax
double Ex, thetaCM;
int padID = 0;
TLatex text;
int numCol, numRow;
ULong64_t NumEntries = 0;
ULong64_t ProcessedEntries = 0;
Float_t Frac = 0.1; ///Progress bar
TStopwatch StpWatch;
//======= Canvas
TCanvas *cCanvas;
TString canvasTitle;
int lastRunID;
bool contFlag;
double runTime=0;
//======= Recoil Cut
TCutG* cutG; //! //general temeprary pointer to cut
TObjArray * cutList1;
TObjArray * cutList2;
//======= Other Cuts
TCutG* EZCut;
Bool_t isEZCutFileOpen;
#include "Monitors.h"
//^###########################################################
//^ * Begin
//^###########################################################
void Monitors::Begin(TTree *tree){
TString option = GetOption();
NumEntries = tree->GetEntries();
canvasTitle = GetCanvasTitle();
lastRunID = -1;
contFlag = false;
printf("###########################################################\n");
printf("########## SOLARIS Monitors.C #########\n");
printf("###########################################################\n");
//===================================================== loading parameter
printf("################## loading parameter files\n");
AnalysisLib::LoadDetGeoAndReactionConfigFile();
AnalysisLib::LoadXNCorr();
AnalysisLib::LoadXFXN2ECorr();
AnalysisLib::LoadXScaleCorr();
AnalysisLib::LoadECorr();
AnalysisLib::LoadRDTCorr();
AnalysisLib::LoadReactionParas(true);
if( (int) AnalysisLib::xnCorr.size() < mapping::NARRAY ) { isXNCorrOK = false; printf("!!!!!!!! size of xnCorr < NARRAY .\n"); }
if( (int) AnalysisLib::xfxneCorr.size() < mapping::NARRAY ) { isXFXNCorrOK = false; printf("!!!!!!!! size of xfxneCorr < NARRAY .\n"); }
if( (int) AnalysisLib::eCorr.size() < mapping::NARRAY ) { isXScaleCorrOK = false; printf("!!!!!!!! size of eCorr < NARRAY .\n"); }
if( (int) AnalysisLib::xScale.size() < mapping::NARRAY ) { isECorrOK = false; printf("!!!!!!!! size of xScale < NARRAY .\n"); }
if( (int) AnalysisLib::rdtCorr.size() < mapping::NRDT ) { isRDTCorrOK = false; printf("!!!!!!!! size of rdtCorr < NRDT .\n"); }
numRow = AnalysisLib::detGeo.nDet;
numCol = mapping::NARRAY/numRow;
//================ Get Recoil cuts;
cutG = new TCutG();
cutList1 = AnalysisLib::LoadListOfTCut(rdtCutFile1, "cutList");
cutList2 = AnalysisLib::LoadListOfTCut(rdtCutFile2, "cutList");
//================ Get EZ cuts;
EZCut = AnalysisLib::LoadSingleTCut(ezCutFile);
//========================= Generate all of the histograms needed for drawing later on
printf("======================================== Histograms declaration\n");
gROOT->cd();
he = new TH1F * [mapping::NARRAY];
hxf = new TH1F * [mapping::NARRAY];
hxn = new TH1F * [mapping::NARRAY];
hxfVxn = new TH2F * [mapping::NARRAY];
heVxs = new TH2F * [mapping::NARRAY];
heVx = new TH2F * [mapping::NARRAY];
heCal = new TH1F * [mapping::NARRAY];
hxfCalVxnCal = new TH2F * [mapping::NARRAY];
heVxsCal = new TH2F * [mapping::NARRAY];
heCalVxCal = new TH2F * [mapping::NARRAY];
heCalVxCalG = new TH2F * [mapping::NARRAY];
for (Int_t i = 0; i < mapping::NARRAY; i++) {//array loop
he[i] = new TH1F(Form("he%d", i), Form("Raw e (ch=%d); e (channel); count", i), 2000, rawEnergyRange[0], rawEnergyRange[1]);
hxf[i] = new TH1F(Form("hxf%d", i), Form("Raw xf (ch=%d); xf (channel); count", i), 200, rawEnergyRange[0], rawEnergyRange[1]);
hxn[i] = new TH1F(Form("hxn%d", i), Form("Raw xn (ch=%d); xn (channel); count", i), 200, rawEnergyRange[0], rawEnergyRange[1]);
hxfVxn[i] = new TH2F(Form("hxfVxn%d",i), Form("Raw xf vs. xn (ch=%d);xf (channel);xn (channel)",i), 500, 0, rawEnergyRange[1], 500, 0, rawEnergyRange[1]);
heVxs[i] = new TH2F(Form("heVxs%d", i), Form("Raw e vs xf+xn (ch=%d); xf+xn (channel); e (channel)", i), 500, rawEnergyRange[0], rawEnergyRange[1], 500, rawEnergyRange[0], rawEnergyRange[1]);
heVx[i] = new TH2F(Form("heVx%d",i), Form("Raw PSD E vs. X (ch=%d);X (channel);E (channel)",i), 500, -0.1, 1.1, 500, rawEnergyRange[0], rawEnergyRange[1]);
heCal[i] = new TH1F(Form("heCal%d", i), Form("Corrected e (ch=%d); e (MeV); count", i), 2000, energyRange[0], energyRange[1]);
hxfCalVxnCal[i] = new TH2F(Form("hxfCalVxnCal%d",i), Form("Corrected XF vs. XN (ch=%d);XF (channel);XN (channel)",i), 500, 0, rawEnergyRange[1], 500, 0, rawEnergyRange[1]);
heVxsCal[i] = new TH2F(Form("heVxsCal%d", i), Form("Raw e vs Corrected xf+xn (ch=%d); corrected xf+xn (channel); Raw e (channel)", i), 500, rawEnergyRange[0], rawEnergyRange[1], 500, rawEnergyRange[0], rawEnergyRange[1]);
heCalVxCal[i] = new TH2F(Form("heCalVxCal%d",i), Form("Cal PSD E vs. X (ch=%d);X (cm);E (MeV)",i), 500, -2.5, AnalysisLib::detGeo.detLength + 2.5, 500, energyRange[0], energyRange[1]);
heCalVxCalG[i] = new TH2F(Form("heCalVxCalG%d",i), Form("Cal PSD E vs. X (ch=%d);X (cm);E (MeV)",i), 500, -2.5, AnalysisLib::detGeo.detLength + 2.5, 500, energyRange[0], energyRange[1]);
}
heVID = new TH2F("heVID", "Raw e vs channel", mapping::NARRAY, 0, mapping::NARRAY, 500, rawEnergyRange[0], rawEnergyRange[1]);
hxfVID = new TH2F("hxfVID", "Raw xf vs channel", mapping::NARRAY, 0, mapping::NARRAY, 500, rawEnergyRange[0], rawEnergyRange[1]);
hxnVID = new TH2F("hxnVID", "Raw xn vs channel", mapping::NARRAY, 0, mapping::NARRAY, 500, rawEnergyRange[0], rawEnergyRange[1]);
heCalID = new TH2F("heCalID", "Corrected E vs detID; detID; E / 10 keV", mapping::NARRAY, 0, mapping::NARRAY, 2000, energyRange[0], energyRange[1]);
hMultiHit = new TH1F("hMultiHit", "Multi-Hit of Energy", 10, 0, 1);
//====================== E-Z plot
heCalVz = new TH2F("heCalVz", "E vs. Z;Z (mm);E (MeV)" , 400, zRange[0], zRange[1], 400, energyRange[0], energyRange[1]);
heCalVzGC = new TH2F("heCalVzGC","E vs. Z gated;Z (mm);E (MeV)", 400, zRange[0], zRange[1], 400, 0, energyRange[1]);
hecalVzRow = new TH2F * [numRow];
for( int i = 0; i < numRow; i++){
hecalVzRow[i] = new TH2F(Form("heCalVzRow%d", i), Form("E vs. Z (ch=%d-%d); Z (cm); E (MeV)", numCol*i, numCol*(i+1)-1), 500, zRange[0], zRange[1], 500, energyRange[0], energyRange[1]);
}
//===================== energy spectrum
hEx = new TH1F("hEx",Form("excitation spectrum w/ goodFlag; Ex [MeV] ; Count / %4.0f keV", exRange[0]), (int) (exRange[2]-exRange[1])/exRange[0]*1000, exRange[1], exRange[2]);
hExCut1 = new TH1F("hExCut1",Form("excitation spectrum w/ goodFlag; Ex [MeV] ; Count / %4.0f keV", exRange[0]), (int) (exRange[2]-exRange[1])/exRange[0]*1000, exRange[1], exRange[2]);
hExCut2 = new TH1F("hExCut2",Form("excitation spectrum w/ goodFlag; Ex [MeV] ; Count / %4.0f keV", exRange[0]), (int) (exRange[2]-exRange[1])/exRange[0]*1000, exRange[1], exRange[2]);
hExCut1->SetLineColor(2);
hExCut2->SetLineColor(4);
hExi = new TH1F * [mapping::NARRAY];
hExVxCal = new TH2F * [mapping::NARRAY];
for(int i = 0 ; i < mapping::NARRAY; i++){
hExi[i] = new TH1F(Form("hExi%02d", i), Form("Ex (det=%i) w/goodFlag; Ex [MeV]; Count / %4.0f keV",i, exRange[0]), (int) (exRange[2]-exRange[1])/exRange[0]*1000, exRange[1], exRange[2]);
hExVxCal[i] = new TH2F(Form("hExVxCal%d",i), Form("Ex vs X (ch=%d); X (cm); Ex (MeV)", i), 500, -0.1, 1.1, (int) (exRange[2]-exRange[1])/exRange[0]*1000, exRange[1], exRange[2]);
}
hExThetaCM = new TH2F("hExThetaCM", "Ex vs ThetaCM; ThetaCM [deg]; Ex [MeV]", 200, thetaCMRange[0], thetaCMRange[1], (int) (exRange[2]-exRange[1])/exRange[0]*1000, exRange[1], exRange[2]);
//===================== Recoils
hrdtID = new TH2F("hrdtID", "RDT vs ID; ID; energy [ch]", 8, 0, 8, 500, TMath::Min(rdtERange[0], rdtDERange[0]), TMath::Max(rdtERange[1], rdtDERange[1]));
hrdt = new TH1F * [mapping::NRDT];
hrdtg = new TH1F * [mapping::NRDT];
hrdt2D = new TH2F * [mapping::NRDT/2];
hrdt2Dg = new TH2F * [mapping::NRDT/2];
hrdt2Dsum = new TH2F * [mapping::NRDT/2];
for (Int_t i = 0; i < mapping::NRDT ; i++) {
if( i % 2 == 0 ) hrdt[i] = new TH1F(Form("hrdt%d",i), Form("Raw Recoil E(ch=%d); E (channel)",i), 500, rdtERange[0], rdtERange[1]);
if( i % 2 == 0 ) hrdtg[i] = new TH1F(Form("hrdt%dg",i),Form("Raw Recoil E(ch=%d) gated; E (channel)",i), 500, rdtERange[0], rdtERange[1]);
if( i % 2 == 1 ) hrdt[i] = new TH1F(Form("hrdt%d",i), Form("Raw Recoil DE(ch=%d); DE (channel)",i), 500, rdtDERange[0], rdtDERange[1]);
if( i % 2 == 1 ) hrdtg[i] = new TH1F(Form("hrdt%dg",i),Form("Raw Recoil DE(ch=%d) gated; DE (channel)",i), 500, rdtDERange[0], rdtDERange[1]);
///dE vs E
if( i % 2 == 0 ) {
int tempID = i / 2;
hrdt2D[tempID] = new TH2F(Form("hrdt2D%d",tempID), Form("Raw Recoil DE vs Eres (dE=%d, E=%d); Eres (channel); DE (channel)", i+1, i), 500, rdtERange[0], rdtERange[1],500,rdtDERange[0],rdtDERange[1]);
hrdt2Dg[tempID] = new TH2F(Form("hrdt2Dg%d",tempID), Form("Gated Raw Recoil DE vs Eres (dE=%d, E=%d); Eres (channel); DE (channel)",i+1, i), 500, rdtERange[0], rdtERange[1],500,rdtDERange[0], rdtDERange[1]);
hrdt2Dsum[tempID] = new TH2F(Form("hrdt2Dsum%d",tempID), Form("Raw Recoil DE vs Eres+DE (dE=%d, E=%d); Eres+DE (channel); DE (channel)", i+1, i), 500, rdtERange[0], rdtERange[1]+rdtDERange[1], 500, rdtDERange[0], rdtDERange[1]);
}
}
hrdtRate1 = new TH1F("hrdtRate1", "recoil rate 1 / min; min; count / 1 min", timeRange[1] - timeRange[0], timeRange[0], timeRange[1]);
hrdtRate2 = new TH1F("hrdtRate2", "recoil rate 2 / min; min; count / 1 min", timeRange[1] - timeRange[0], timeRange[0], timeRange[1]);
hrdtRate1->SetLineColor(2);
hrdtRate2->SetLineColor(4);
//===================== multiplicity
hmultEZ = new TH1I("hmultEZ", "Filled EZ with coinTime and recoil", 10, 0, 10);
hmult = new TH2I("hmult", "Array Multiplicity vs Recoil Multiplicity; Array ; Recoil",10, 0, 10, 10, 0, 10);
hArrayRDTMatrix = new TH2I("hArrayRDTMatrix", "Array ID vs Recoil ID; Array ID; Recoil ID", 30, 0, 30, 8, 0, 8);
hArrayRDTMatrixG = new TH2I("hArrayRDTMatrixG", "Array ID vs Recoil ID / g; Array ID; Recoil ID", 30, 0, 30, 8, 0, 8);
//===================== coincident time
htdiff = new TH1I("htdiff" ,"Coincident time (recoil-dE - array); time [ch = 10ns]; count", coinTimeRange[1] - coinTimeRange[0], coinTimeRange[0], coinTimeRange[1]);
htdiffg = new TH1I("htdiffg","Coincident time (recoil-dE - array) w/ recoil gated; time [ch = 10ns]; count", coinTimeRange[1] - coinTimeRange[0], coinTimeRange[0], coinTimeRange[1]);
printf("======================================== End of histograms Declaration\n");
StpWatch.Start();
}
//^###########################################################
//^ * Process
//^###########################################################
Bool_t Monitors::Process(Long64_t entry){
if( entry == 0 ) printf("========== %s \n", __func__);
if( ProcessedEntries > maxNumberEvent ) return kTRUE;
ProcessedEntries++;
//@*********** Progress Bar ******************************************/
if (ProcessedEntries>NumEntries*Frac-1) {
TString msg; msg.Form("%llu", NumEntries/1000);
int len = msg.Sizeof();
printf(" %3.0f%% (%*llu/%llu k) processed in %6.1f sec | expect %6.1f sec\n",
Frac*100, len, ProcessedEntries/1000,NumEntries/1000,StpWatch.RealTime(), StpWatch.RealTime()/Frac);
StpWatch.Start(kFALSE);
Frac+=0.1;
}
//@********** Get Branch *********************************************/
b_Energy->GetEntry(entry);
b_XF->GetEntry(entry);
b_XN->GetEntry(entry);
b_EnergyTimestamp->GetEntry(entry);
if( isRDTExist ){
b_RDT->GetEntry(entry);
b_RDTTimestamp->GetEntry(entry);
}
// if( isArrayTraceExist ) {
// ///b_Trace_Energy->GetEntry(entry);
// b_Trace_Energy_RiseTime->GetEntry(entry);
// b_Trace_Energy_Time->GetEntry(entry);
// }
// if( isRDTTraceExist ){
// ///b_Trace_RDT->GetEntry(entry);
// b_Trace_RDT_Time->GetEntry(entry);
// b_Trace_RDT_RiseTime->GetEntry(entry);
// }
//@*********** initization ******************************************/
for( int i = 0 ; i < mapping::NARRAY; i++){
z[i] = TMath::QuietNaN();
x[i] = TMath::QuietNaN();
xCal[i] = TMath::QuietNaN();
eCal[i] = TMath::QuietNaN();
}
//@*********** Apply Recoil correction here *************************/
if( isRDTCorrOK ){
for( int i = 0 ; i < mapping::NRDT; i++){
rdt[i] = rdt[i]*AnalysisLib::rdtCorr[i][0] + AnalysisLib::rdtCorr[i][1];
}
}
//@*********** Array ************************************************/
//Do calculations and fill histograms
Int_t recoilMulti = 0;
Int_t arrayMulti = 0;
Int_t multiEZ = 0;
bool rdtgate1 = false;
bool rdtgate2 = false;
bool coinFlag = false;
bool ezGate = false;
bool isGoodEventFlag = false;
for (Int_t detID = 0; detID < mapping::NARRAY; detID++) {
//@================== Filling raw data
he[detID]->Fill(e[detID]);
hxf[detID]->Fill(xf[detID]);
hxn[detID]->Fill(xn[detID]);
hxfVxn[detID]->Fill(xf[detID],xn[detID]);
heVxs[detID]->Fill(xf[detID]+xn[detID], e[detID]);
heVID->Fill(detID, e[detID]);
hxfVID->Fill(detID, xf[detID]);
hxnVID->Fill(detID, xn[detID]);
//if( !TMath::IsNaN(e[detID]) ) printf("%llu | %d | %f %f %f \n", entry, detID, e[detID], xf[detID], xn[detID]);
//@==================== Basic gate
if( TMath::IsNaN(e[detID]) ) continue ;
///if( ring[detID] < -100 || ring[detID] > 100 ) continue;
///if( ring[detID] > 300 ) continue;
if( TMath::IsNaN(xn[detID]) && TMath::IsNaN(xf[detID]) ) continue ;
//@==================== Skip detector
bool skipFlag = false;
for( unsigned int kk = 0; kk < skipDetID.size() ; kk++){
if( detID == skipDetID[kk] ) {
skipFlag = true;
break;
}
}
if (skipFlag ) continue;
//@==================== Basic gate
if( TMath::IsNaN(e[detID]) ) continue ;
///if( ring[detID] < -100 || ring[detID] > 100 ) continue;
///if( ring[detID] > 300 ) continue;
if( TMath::IsNaN(xn[detID]) && TMath::IsNaN(xf[detID]) ) continue ;
//@==================== Calibrations go here
if( isXNCorrOK && isXFXNCorrOK ) xnCal[detID] = xn[detID] * AnalysisLib::xnCorr[detID] * AnalysisLib::xfxneCorr[detID][1] + AnalysisLib::xfxneCorr[detID][0];
if( isXNCorrOK && isXFXNCorrOK ) xfCal[detID] = xf[detID] * AnalysisLib::xfxneCorr[detID][1] + AnalysisLib::xfxneCorr[detID][0];
if( isECorrOK ) eCal[detID] = e[detID] / AnalysisLib::eCorr[detID][0] + AnalysisLib::eCorr[detID][1];
if( eCal[detID] < eCalCut[0] ) continue;
if( eCal[detID] > eCalCut[1] ) continue;
//@===================== fill Calibrated data
heCal[detID]->Fill(eCal[detID]);
heCalID->Fill(detID, eCal[detID]);
hxfCalVxnCal[detID]->Fill(xfCal[detID], xnCal[detID]);
heVxsCal[detID]->Fill(xnCal[detID] + xfCal[detID], e[detID]);
//@===================== calculate X
if( (xf[detID] > 0 || !TMath::IsNaN(xf[detID])) && ( xn[detID]>0 || !TMath::IsNaN(xn[detID])) ) {
///x[detID] = 0.5*((xf[detID]-xn[detID]) / (xf[detID]+xn[detID]))+0.5;
x[detID] = 0.5*((xf[detID]-xn[detID]) / e[detID])+0.5;
}
/// range of x is (0, 1)
if ( !TMath::IsNaN(xf[detID]) && !TMath::IsNaN(xn[detID]) ) xCal[detID] = 0.5 + 0.5 * (xfCal[detID] - xnCal[detID] ) / e[detID];
if ( !TMath::IsNaN(xf[detID]) && TMath::IsNaN(xn[detID]) ) xCal[detID] = xfCal[detID]/ e[detID];
if ( TMath::IsNaN(xf[detID]) && !TMath::IsNaN(xn[detID]) ) xCal[detID] = 1.0 - xnCal[detID]/ e[detID];
//@======= Scale xcal from (0,1)
if( isXScaleCorrOK ) xCal[detID] = (xCal[detID]-0.5)/AnalysisLib::xScale[detID] + 0.5; /// if include this scale, need to also inclused in Cali_littleTree
if( abs(xCal[detID] - 0.5) > xGate/2. ) continue;
//@==================== calculate Z
if( AnalysisLib::detGeo.firstPos > 0 ) {
z[detID] = AnalysisLib::detGeo.detLength*(1.0-xCal[detID]) + AnalysisLib::detGeo.detPos[detID%numCol];
}else{
z[detID] = AnalysisLib::detGeo.detLength*(xCal[detID]-1.0) + AnalysisLib::detGeo.detPos[detID%numCol];
}
//@===================== multiplicity
arrayMulti++; /// multi-hit when both e, xf, xn are not NaN
//@=================== Array fill
heVx[detID]->Fill(x[detID],e[detID]);
heCalVxCal[detID]->Fill(xCal[detID]*AnalysisLib::detGeo.detLength,eCal[detID]);
heCalVz->Fill(z[detID],eCal[detID]);
//@=================== Recoil Gate
if( isRDTExist && (cutList1 || cutList2)){
for(int i = 0 ; i < cutList1->GetEntries() ; i++ ){
cutG = (TCutG *)cutList1->At(i) ;
if(cutG->IsInside(rdt[2*i],rdt[2*i+1])) {
// if(cutG->IsInside(rdt[2*i] + rdt[2*i+1],rdt[2*i+1])) {
rdtgate1= true;
break; /// only one is enough
}
}
for(int i = 0 ; i < cutList2->GetEntries() ; i++ ){
cutG = (TCutG *)cutList2->At(i) ;
if(cutG->IsInside(rdt[2*i],rdt[2*i+1])) {
//if(cutG->IsInside(rdt[2*i]+ rdt[2*i+1],rdt[2*i+1])) {
rdtgate2= true;
break; /// only one is enough
}
}
}else{
rdtgate1 = true;
rdtgate2 = true;
}
//================ coincident with Recoil when z is calculated.
if( !TMath::IsNaN(z[detID]) ) {
for( int j = 0; j < mapping::NRDT ; j++){
if( TMath::IsNaN(rdt[j]) ) continue;
int tdiff = rdt_t[j] - e_t[detID];
if( j%2 == 1) {
htdiff->Fill(tdiff);
if((rdtgate1 || rdtgate2) && (eCalCut[1] > eCal[detID] && eCal[detID]>eCalCut[0])) {
htdiffg->Fill(tdiff);
}
}
hArrayRDTMatrix->Fill(detID, j);
if( isTimeGateOn && timeGate[0] < tdiff && tdiff < timeGate[1] ) {
if(j % 2 == 0 ) hrdt2Dg[j/2]->Fill(rdt[j],rdt[j+1]); /// x=E, y=dE
///if(j % 2 == 0 ) hrdt2Dg[j/2]->Fill(rdt[j+1],rdt[j]); /// x=dE, y=E
hArrayRDTMatrixG->Fill(detID, j);
///if( rdtgate1) hArrayRDTMatrixG->Fill(detID, j);
hrdtg[j]->Fill(rdt[j]);
coinFlag = true;
}
}
}
if( !isTimeGateOn ) coinFlag = true;
//================ E-Z gate
if( isEZCutFileOpen ) {
if( EZCut->IsInside(z[detID], eCal[detID]) ) ezGate = true;
}else{
ezGate = true;
}
if( coinFlag && (rdtgate1 || rdtgate2) && ezGate){
heCalVzGC->Fill( z[detID] , eCal[detID] );
heCalVxCalG[detID]->Fill(xCal[detID]*AnalysisLib::detGeo.detLength,eCal[detID]);
multiEZ ++;
isGoodEventFlag = true;
}
}//end of array loop
if( !isEZCutFileOpen ) ezGate = true;
//@*********** RECOILS ***********************************************/
for( int i = 0; i < mapping::NRDT ; i++){
hrdtID->Fill(i, rdt[i]);
hrdt[i]->Fill(rdt[i]);
if( i % 2 == 0 ){
recoilMulti++; // when both dE and E are hit
hrdt2D[i/2]->Fill(rdt[i],rdt[i+1]); //E-dE
}
}
//@******************* Multi-hit *************************************/
hmultEZ->Fill(multiEZ);
hmult->Fill(recoilMulti,arrayMulti);
hMultiHit->Fill(arrayMulti);
//@*********** Good event Gate ***************************************/
if( !isGoodEventFlag ) return kTRUE;
//@*********** Ex and thetaCM ****************************************/
for(Int_t detID = 0; detID < mapping::NARRAY ; detID++){
if( TMath::IsNaN(e[detID]) ) continue ;
if( TMath::IsNaN(z[detID]) ) continue ;
if( eCal[detID] < eCalCut[0] ) continue ;
if( eCal[detID] > eCalCut[1] ) continue ;
if( AnalysisLib::hasReactionPara ){
std::vector<double> ExThetaCM = AnalysisLib::CalExTheta(eCal[detID], x[detID]);
Ex = ExThetaCM[0];
thetaCM = ExThetaCM[1];
// ///======== Ex calculation by Ryan
// double y = eCal[detID] + mass; // to give the KE + mass of proton;
// double Z = alpha * gamm * betRel * z[detID];
// double H = TMath::Sqrt(TMath::Power(gamm * betRel,2) * (y*y - mass * mass) ) ;
// if( TMath::Abs(Z) < H ) {
// ///using Newton's method to solve 0 == H * sin(phi) - G * tan(phi) - Z = f(phi)
// double tolerrence = 0.001;
// double phi = 0; ///initial phi = 0 -> ensure the solution has f'(phi) > 0
// double nPhi = 0; /// new phi
// int iter = 0;
// do{
// phi = nPhi;
// nPhi = phi - (H * TMath::Sin(phi) - G * TMath::Tan(phi) - Z) / (H * TMath::Cos(phi) - G /TMath::Power( TMath::Cos(phi), 2));
// iter ++;
// if( iter > 10 || TMath::Abs(nPhi) > TMath::PiOver2()) break;
// }while( TMath::Abs(phi - nPhi ) > tolerrence);
// phi = nPhi;
// /// check f'(phi) > 0
// double Df = H * TMath::Cos(phi) - G / TMath::Power( TMath::Cos(phi),2);
// if( Df > 0 && TMath::Abs(phi) < TMath::PiOver2() ){
// double K = H * TMath::Sin(phi);
// double x = TMath::ACos( mass / ( y * gamm - K));
// double momt = mass * TMath::Tan(x); /// momentum of particel b or B in CM frame
// double EB = TMath::Sqrt(mass*mass + Et*Et - 2*Et*TMath::Sqrt(momt*momt + mass * mass));
// Ex = EB - massB;
// double hahaha1 = gamm* TMath::Sqrt(mass * mass + momt * momt) - y;
// double hahaha2 = gamm* betRel * momt;
// thetaCM = TMath::ACos(hahaha1/hahaha2) * TMath::RadToDeg();
// }else{
// Ex = TMath::QuietNaN();
// thetaCM = TMath::QuietNaN();
// }
// }else{
// Ex = TMath::QuietNaN();
// thetaCM = TMath::QuietNaN();
// }
}else{
Ex = TMath::QuietNaN();
thetaCM = TMath::QuietNaN();
}
if( thetaCM > thetaCMGate ) {
hEx->Fill(Ex);
hExThetaCM->Fill(thetaCM, Ex);
if( rdtgate1 ) {
hExCut1->Fill(Ex);
hExThetaCM->Fill(thetaCM, Ex);
}
if( rdtgate2 ) {
hExCut2->Fill(Ex);
hExThetaCM->Fill(thetaCM, Ex);
}
hExi[detID]->Fill(Ex);
hExVxCal[detID]->Fill(xCal[detID], Ex);
}
}
return kTRUE;
}
//^###########################################################
//^ * Terminate
//^###########################################################
void Monitors::Terminate(){
printf("============================== finishing.\n");
gROOT->cd();
int strLen = canvasTitle.Sizeof();
canvasTitle.Remove(strLen-3);
TString runTimeStr = "";
if( runTime > 0. ) {
runTimeStr = Form("%.0f min", runTime);
canvasTitle += " | " + runTimeStr;
}
//############################################ User is free to edit this section
//--- Canvas Size
int canvasXY[2] = {1200 , 800} ;// x, y
int canvasDiv[2] = {3,2};
cCanvas = new TCanvas("cCanvas",canvasTitle + " | " + rdtCutFile1,canvasXY[0],canvasXY[1]);
cCanvas->Modified(); cCanvas->Update();
cCanvas->cd(); cCanvas->Divide(canvasDiv[0],canvasDiv[1]);
gStyle->SetOptStat("neiou");
text.SetNDC();
text.SetTextFont(82);
text.SetTextSize(0.04);
text.SetTextColor(2);
double yMax = 0;
Isotope hRecoil(AnalysisLib::reactionConfig.recoilHeavyA, AnalysisLib::reactionConfig.recoilHeavyZ);
double Sn = hRecoil.CalSp(0,1);
double Sp = hRecoil.CalSp(1,0);
double Sa = hRecoil.CalSp2(4,2);
//TODO, Module each plot
///----------------------------------- Canvas - 1
PlotEZ(1); /// raw EZ
///----------------------------------- Canvas - 2
PlotEZ(0); ///gated EZ
///----------------------------------- Canvas - 3
PlotTDiff(1, 1); ///with Gated Tdiff, isLog
///----------------------------------- Canvas - 4
padID++; cCanvas->cd(padID);
//hEx->Draw();
hExCut1->Draw("");
hExCut2->Draw("same");
DrawLine(hEx, Sn);
DrawLine(hEx, Sa);
if(isTimeGateOn)text.DrawLatex(0.15, 0.8, Form("%d < coinTime < %d", timeGate[0], timeGate[1]));
if( xGate < 1 ) text.DrawLatex(0.15, 0.75, Form("with |x-0.5|<%.4f", xGate/2.));
if( cutList1 ) text.DrawLatex(0.15, 0.7, "with recoil gated");
///----------------------------------- Canvas - 5
padID++; cCanvas->cd(padID);
//Draw2DHist(hExThetaCM);
//heVIDG->Draw();
//text.DrawLatex(0.15, 0.75, Form("#theta_{cm} > %.1f deg", thetaCMGate));
Draw2DHist(hrdt2D[0]);
// Draw2DHist(hrdt2Dsum[0]);
if( cutList1 && cutList1->GetEntries() > 0 ) {cutG = (TCutG *)cutList1->At(0) ; cutG->Draw("same");}
if( cutList2 && cutList2->GetEntries() > 0 ) {cutG = (TCutG *)cutList2->At(0) ; cutG->Draw("same");}
//helum4D->Draw();
//text.DrawLatex(0.25, 0.3, Form("gated from 800 to 1200 ch\n"));
///----------------------------------- Canvas - 6
PlotRDT(0,0);
// padID++; cCanvas->cd(padID);
// Draw2DHist(hrdtExGated);
//padID++; cCanvas->cd(padID);
//Draw2DHist(htacEx);
///------------------------------------- Canvas - 7
//PlotRDT(0, 0);
///----------------------------------- Canvas - 8
//PlotRDT(1, 0);
///yMax = hic2->GetMaximum()*1.2;
///hic2->GetYaxis()->SetRangeUser(0, yMax);
///hic2->Draw();
///TBox * box14N = new TBox (-10, 0, -2, yMax);
///box14N->SetFillColorAlpha(2, 0.1);
///box14N->Draw();
///
///TBox * box14C = new TBox (8, 0, 16, yMax);
///box14C->SetFillColorAlpha(4, 0.1);
///box14C->Draw();
///
///text.SetTextColor(2); text.DrawLatex(0.38, 0.50, "14N");
///text.SetTextColor(4); text.DrawLatex(0.6, 0.45, "14C");
///text.SetTextColor(2);
///----------------------------------- Canvas - 9
//padID++; cCanvas->cd(padID);
//Draw2DHist(hic01);
///----------------------------------- Canvas - 10
//PlotRDT(3,0);
//TH1F * helumDBIC = new TH1F("helumDBIC", "elum(d)/BIC; time [min]; count/min", timeRange[1]-timeRange[0], timeRange[0], timeRange[1]);
//helumDBIC = (TH1F*) helum4D->Clone();
//helumDBIC->SetTitle("elum(d)/BIC; time [min]; count/min");
//helumDBIC->SetName("helumDBIC");
//helumDBIC->SetLineColor(2);
//helumDBIC->Divide(hBIC);
//yMax = helumDBIC->GetMaximum();
//if( yMax < hBIC->GetMaximum() ) yMax = hBIC->GetMaximum();
//helumDBIC->SetMaximum(yMax * 1.2);
//hBIC->SetMaximum(yMax * 1.2);
//hBIC->Draw();
//helumDBIC->Draw("same");
//text.DrawLatex(0.15, 0.5, Form("Elum(D) / BIC \n"));
///----------------------------------- Canvas - 11
//PlotRDT(2,0);
///----------------------------------- Canvas - 12
//padID++; cCanvas->cd(padID);
//htac->Draw();
/*
///----------------------------------- Canvas - 13
padID++; cCanvas->cd(padID);
///hicT14N->Draw("");
///hicT14C->Draw("same");
///
///text.SetTextColor(2); text.DrawLatex(0.15, 0.60, "14N");
///text.SetTextColor(4); text.DrawLatex(0.15, 0.25, "14C");
///text.SetTextColor(2);
///----------------------------------- Canvas - 14
padID++; cCanvas->cd(padID);
///hrdtRate1->Draw("");
///hrdtRate2->Draw("same");
///----------------------------------- Canvas - 15
padID++; cCanvas->cd(padID);
///----------------------------------- Canvas - 16
padID++; cCanvas->cd(padID);
///----------------------------------- Canvas - 17
padID++; cCanvas->cd(padID);
///----------------------------------- Canvas - 18
padID++; cCanvas->cd(padID);
///----------------------------------- Canvas - 19
padID++; cCanvas->cd(padID);
///----------------------------------- Canvas - 20
padID++; cCanvas->cd(padID);
htac->Draw();
*/
/************************************/
gStyle->GetAttDate()->SetTextSize(0.02);
gStyle->SetOptDate(1);
gStyle->SetDateX(0);
gStyle->SetDateY(0);
/************************************/
StpWatch.Start(kFALSE);
gROOT->ProcessLine(".L ../Armory/Monitor_Util.C");
printf("=============== loaded Monitor_Utils.C\n");
gROOT->ProcessLine(".L ../Armory/AutoFit.C");
printf("=============== loaded Armory/AutoFit.C\n");
gROOT->ProcessLine(".L ../Armory/RDTCutCreator.C");
printf("=============== loaded Armory/RDTCutCreator.C\n");
gROOT->ProcessLine(".L ../Armory/Check_rdtGate.C");
printf("=============== loaded Armory/Check_rdtGate.C\n");
gROOT->ProcessLine(".L ../Armory/readTrace.C");
printf("=============== loaded Armory/readTrace.C\n");
//gROOT->ProcessLine(".L ../Armory/readRawTrace.C");
//printf("=============== loaded Armory/readRawTrace.C\n");
gROOT->ProcessLine("listDraws()");
/************************* Save histograms to root file*/
gROOT->cd();
/************************************/
//gROOT->ProcessLine("recoils()");
}