#include "TROOT.h" #include "TBenchmark.h" #include "TLorentzVector.h" #include "TMath.h" #include "TFile.h" #include "TF1.h" #include "TTree.h" #include "TRandom.h" #include "TGraph.h" #include "TMacro.h" #include #include #include #include #include "../Armory/ClassDetGeo.h" #include "ClassTargetScattering.h" #include "ClassDecay.h" #include "ClassTransfer.h" #include "ClassHelios.h" double exDistFunc(Double_t *x, Double_t * par){ return par[(int) x[0]]; } void PrintEZPlotPara(TransferReaction tran, HELIOS helios){ printf("==================================== E-Z plot slope\n"); double betaRect = tran.GetReactionBeta() ; double gamma = tran.GetReactionGamma(); double mb = tran.GetMass_b(); double pCM = tran.GetMomentumbCM(); double q = TMath::Sqrt(mb*mb + pCM*pCM); ///energy of light recoil in center of mass double slope = tran.GetEZSlope(helios.GetBField()); /// MeV/mm printf(" e-z slope : %f MeV/mm\n", slope); double intercept = q/gamma - mb; // MeV printf(" e-z intercept (ground state) : %f MeV\n", intercept); } void Transfer( std::string basicConfig = "reactionConfig.txt", std::string heliosDetGeoFile = "detectorGeo.txt", unsigned short ID = 0, // this is the ID for the array TString ptolemyRoot = "DWBA.root", TString saveFileName = "transfer.root"){ //*############################################# Set Reaction TransferReaction transfer; HELIOS helios; Decay decay; std::vector kbCM; /// momentum of b in CM frame TF1 * exDist = nullptr; transfer.SetReactionFromFile(basicConfig, ID); helios.SetDetectorGeometry(heliosDetGeoFile, ID); printf("*****************************************************************\n"); printf("*\e[1m\e[33m %27s \e[0m*\n", transfer.GetReactionName().Data()); printf("*****************************************************************\n"); printf("----- loading reaction setting from %s. \n", basicConfig.c_str()); printf("----- loading geometry setting from %s. \n", heliosDetGeoFile.c_str()); printf("\e[32m#################################### Reaction & HELIOS configuration\e[0m\n"); transfer.PrintReaction(false); if(transfer.GetRecoil().isDecay) { decay.SetMotherDaugther(transfer.GetRecoil()); } helios.PrintGeometry(); PrintEZPlotPara(transfer, helios); DetGeo detGeo = helios.GetDetectorGeometry(); Array array = helios.GetArrayGeometry(); Auxillary aux = helios.GetAuxGeometry(); ReactionConfig reactConfig = transfer.GetRectionConfig(); Recoil recoil = transfer.GetRecoil(); //*############################################# save reaction.dat // if( filename != "" ) { // FILE * keyParaOut; // keyParaOut = fopen (filename.Data(), "w+"); // printf("=========== save key reaction constants to %s \n", filename.Data()); // fprintf(keyParaOut, "%-15.4f //%s\n", transfer.GetMass_b(), "mass_b"); // fprintf(keyParaOut, "%-15d //%s\n", reactConfig.recoilLightZ, "charge_b"); // fprintf(keyParaOut, "%-15.8f //%s\n", transfer.GetReactionBeta(), "betaCM"); // fprintf(keyParaOut, "%-15.4f //%s\n", transfer.GetCMTotalEnergy(), "Ecm"); // fprintf(keyParaOut, "%-15.4f //%s\n", transfer.GetMass_B(), "mass_B"); // fprintf(keyParaOut, "%-15.4f //%s\n", slope/betaRect, "alpha=slope/betaRect"); // fflush(keyParaOut); // fclose(keyParaOut); // } //*############################################# Target scattering, only energy loss // bool isTargetScattering = reactConfig.isTargetScattering; // float density = reactConfig.targetDensity; // float targetThickness = reactConfig.targetThickness; // if(isTargetScattering) printf("\e[32m#################################### Target Scattering\e[0m\n"); // TargetScattering msA; // TargetScattering msB; // TargetScattering msb; // if(reactConfig.isTargetScattering) printf("======== Target : (thickness : %6.2f um) x (density : %6.2f g/cm3) = %6.2f ug/cm2\n", // targetThickness * 1e+4, // density, // targetThickness * density * 1e+6); // if( reactConfig.isTargetScattering ){ // msA.LoadStoppingPower(reactConfig.beamStoppingPowerFile); // msb.LoadStoppingPower(reactConfig.recoilLightStoppingPowerFile); // msB.LoadStoppingPower(reactConfig.recoilHeavyStoppingPowerFile); // } ExcitedEnergies exList = transfer.GetRectionConfig().exList[ID]; //*############################################# Load DWBAroot for thetaCM distribution printf("\e[32m#################################### Load DWBA input : %s \e[0m\n", ptolemyRoot.Data()); TF1 * dist = NULL; TFile * distFile = new TFile(ptolemyRoot, "read"); TObjArray * distList = nullptr; TMacro * dwbaExList = nullptr; TMacro * dwbaReactList = nullptr; TMacro dwbaExList_Used; if( distFile->IsOpen() ) { printf("--------- Found DWBA thetaCM distributions. Use the ExList from DWBA.\n"); distList = (TObjArray *) distFile->FindObjectAny("thetaCM_TF1"); // the function List dwbaExList = (TMacro *) distFile->FindObjectAny("ExList"); dwbaExList_Used.AddLine(dwbaExList->GetListOfLines()->At(0)->GetName()); dwbaReactList = (TMacro *) distFile->FindObjectAny("ReactionList"); exList.Clear(); int numEx = dwbaExList->GetListOfLines()->GetSize() - 1 ; for(int i = 1; i <= numEx ; i++){ std::string reactionName = dwbaReactList->GetListOfLines()->At(i-1)->GetName(); if( reactionName.find( transfer.GetReactionName().Data() ) != std::string::npos) { std::string temp = dwbaExList->GetListOfLines()->At(i)->GetName(); dwbaExList_Used.AddLine(temp.c_str()); if( temp[0] == '/' ) continue; std::vector tempStr = AnalysisLib::SplitStr(temp, " "); exList.Add( atof(tempStr[0].c_str()), atof(tempStr[1].c_str()), 1.0, 0.00); } } }else{ printf("------- no DWBA input. Use the ExList from %s\n", basicConfig.c_str()); } printf("------------------------------ Heavy Recoil excitation\n"); printf("Energy[MeV] Rel.Xsec SF sigma\n"); int numEx = exList.ExList.size(); for( int j = 0; j < numEx; j++){ double ex = exList.ExList[j].Ex; kbCM.push_back(transfer.CalkCM(ex)); int decayID = decay.CalDecay(TLorentzVector (0,0,0,0), ex, 0); exList.ExList[j].Print(decayID == 1 ? "-->Decay" : "\n"); } //---- create Ex-distribution if( exList.ExList.size() > 1 ) { printf("---- creating Ex-distribution \n"); exDist = new TF1("exDist", exDistFunc, 0, numEx, numEx); for(int q = 0; q < numEx; q++){ exDist->SetParameter(q, exList.ExList[q].xsec*exList.ExList[q].SF); } } //*############################################# build tree printf("\e[32m#################################### building Tree in %s\e[0m\n", saveFileName.Data()); TFile * saveFile = new TFile(saveFileName, "recreate"); TTree * tree = new TTree("tree", "tree"); TMacro config(basicConfig.c_str()); TMacro detGeoTxt(heliosDetGeoFile.c_str()); config.SetName(transfer.GetReactionName_Latex().Data()); config.Write("reactionConfig"); detGeoTxt.Write("detGeo"); if( distList != NULL ) distList->Write("DWBA", 1); if( dwbaExList != NULL ) dwbaExList_Used.Write("DWBA_ExList", 1); TMacro idMacro; idMacro.AddLine(Form("%d", ID)); idMacro.Write("detGeoID"); TMacro hitMeaning; hitMeaning.AddLine("======================= meaning of Hit\n"); for( int code = -15 ; code <= 1; code ++ ){ hitMeaning.AddLine( Form( "%4d = %s", code, helios.AcceptanceCodeToMsg(code).Data() )); } hitMeaning.AddLine(" other = unknown\n"); hitMeaning.AddLine("===========================================\n"); hitMeaning.Write("hitMeaning"); int hit; /// the output of Helios.CalHit tree->Branch("hit", &hit, "hit/I"); double thetab, phib, Tb; double thetaB, phiB, TB; tree->Branch("thetab", &thetab, "thetab/D"); tree->Branch("phib", &phib, "phib/D"); tree->Branch("Tb", &Tb, "Tb/D"); tree->Branch("thetaB", &thetaB, "thetaB/D"); tree->Branch("phiB", &phiB, "phiB/D"); tree->Branch("TB", &TB, "TB/D"); double thetaCM; tree->Branch("thetaCM", &thetaCM, "thetaCM/D"); double e, z, detX, t, z0, tB; tree->Branch("e", &e, "energy_light/D"); tree->Branch("x", &detX, "detector_x/D"); tree->Branch("z", &z, "array_hit_z/D"); tree->Branch("z0", &z0, "z-cycle/D"); tree->Branch("t", &t, "cycle_time_light/D"); tree->Branch("tB", &tB, "recoil_hit_time/D"); /// hit time for recoil on the recoil detector int loop, detID, detRowID; tree->Branch("detID", &detID, "detID/I"); tree->Branch("detRowID", &detRowID, "detRowID/I"); tree->Branch("loop", &loop, "loop/I"); double rho, rhoB; ///orbit radius tree->Branch("rho", &rho, "orbit_radius_light/D"); tree->Branch("rhoB", &rhoB, "orbit_radius_heavy/D"); int ExID; double Ex; tree->Branch("ExID", &ExID, "ExID/I"); tree->Branch("Ex", &Ex, "Ex/D"); double ExCal, thetaCMCal; tree->Branch("ExCal", &ExCal, "ExCal/D"); tree->Branch("thetaCMCal", &thetaCMCal, "thetaCMCal/D"); // double TbLoss; /// energy loss of particle-b from target scattering // double KEAnew; ///beam energy after target scattering // double depth; /// reaction depth; // double Ecm; // if( reactConfig.isTargetScattering ){ // tree->Branch("depth", &depth, "depth/D"); // tree->Branch("TbLoss", &TbLoss, "TbLoss/D"); // tree->Branch("KEAnew", &KEAnew, "KEAnew/D"); // tree->Branch("Ecm", &Ecm, "Ecm/D"); // } double decayTheta; /// the change of thetaB due to decay double xRecoil_d, yRecoil_d, rhoRecoil_d, Td; if( recoil.isDecay ) { tree->Branch("decayTheta", &decayTheta, "decayTheta/D"); tree->Branch("xRecoil_d", &xRecoil_d, "xRecoil_d/D"); tree->Branch("yRecoil_d", &yRecoil_d, "yRecoil_d/D"); tree->Branch("rhoRecoil_d", &rhoRecoil_d, "rhoRecoil_d/D"); tree->Branch("Td", &Td, "Td/D"); } double xArray, yArray, rhoArray; ///x, y, rho positon of particle-b on PSD tree->Branch("xArray", &xArray, "xArray/D"); tree->Branch("yArray", &yArray, "yArray/D"); tree->Branch("rhoArray", &rhoArray, "rhoArray/D"); double xRecoil, yRecoil, rhoRecoil; /// x, y, rho position of particle-B on recoil-detector tree->Branch("xRecoil", &xRecoil, "xRecoil/D"); tree->Branch("yRecoil", &yRecoil, "yRecoil/D"); tree->Branch("rhoRecoil", &rhoRecoil, "rhoRecoil/D"); ///in case need ELUM double xElum1, yElum1, rhoElum1; if( aux.elumPos1 != 0 ) { tree->Branch("xElum1", &xElum1, "xElum1/D"); tree->Branch("yElum1", &yElum1, "yElum1/D"); tree->Branch("rhoElum1", &rhoElum1, "rhoElum1/D"); } double xElum2, yElum2, rhoElum2; if( aux.elumPos2 != 0 ) { tree->Branch("xElum2", &xElum2, "xElum2/D"); tree->Branch("yElum2", &yElum2, "yElum2/D"); tree->Branch("rhoElum2", &rhoElum2, "rhoElum2/D"); } ///in case need other recoil detector. double xRecoil1, yRecoil1, rhoRecoil1; if( aux.detPos1 != 0 ){ tree->Branch("xRecoil1", &xRecoil1, "xRecoil1/D"); tree->Branch("yRecoil1", &yRecoil1, "yRecoil1/D"); tree->Branch("rhoRecoil1", &rhoRecoil1, "rhoRecoil1/D"); } double xRecoil2, yRecoil2, rhoRecoil2; if( aux.detPos2 != 0 ){ tree->Branch("xRecoil2", &xRecoil2, "xRecoil2/D"); tree->Branch("yRecoil2", &yRecoil2, "yRecoil2/D"); tree->Branch("rhoRecoil2", &rhoRecoil2, "rhoRecoil2/D"); } //======= function for e-z plot for ideal case printf("++++ generate functions\n"); TObjArray * gList = new TObjArray(); gList->SetName("Constant thetaCM lines"); const int gxSize = 50; TF1 ** gx = new TF1*[gxSize]; TString name; double mb = transfer.GetMass_b(); double betaRect = transfer.GetReactionBeta(); double gamma = transfer.GetReactionGamma(); double slope = transfer.GetEZSlope(helios.GetBField()); /// MeV/mm for( int i = 0; i < gxSize; i++){ name.Form("g%d", i); gx[i] = new TF1(name, "([0]*TMath::Sqrt([1]+[2]*x*x)+[5]*x)/([3]) - [4]", -1000, 1000); double thetacm = i * TMath::DegToRad(); double gS2 = TMath::Power(TMath::Sin(thetacm)*gamma,2); gx[i]->SetParameter(0, TMath::Cos(thetacm)); gx[i]->SetParameter(1, mb*mb*(1-gS2)); gx[i]->SetParameter(2, TMath::Power(slope/betaRect,2)); gx[i]->SetParameter(3, 1-gS2); gx[i]->SetParameter(4, mb); gx[i]->SetParameter(5, -gS2*slope); gx[i]->SetNpx(1000); gList->Add(gx[i]); printf("/"); if( i > 1 && i % 40 == 0 ) printf("\n"); } gList->Write("EZ_thetaCM", TObject::kSingleKey); printf(" %d constant thetaCM functions\n", gxSize); //--- cal modified f TObjArray * fxList = new TObjArray(); TGraph ** fx = new TGraph*[numEx]; std::vector px, py; int countfx = 0; for( int j = 0 ; j < numEx; j++){ double a = helios.GetDetRadius(); double q = TMath::Sqrt(mb*mb + kbCM[j] * kbCM[j] ); px.clear(); py.clear(); countfx = 0; for(int i = 0; i < 100; i++){ double thetacm = TMath::Pi()/TMath::Log(100) * (TMath::Log(100) - TMath::Log(100-i)) ;//using log scale, for more point in small angle. double temp = TMath::TwoPi() * slope / betaRect / kbCM[j] * a / TMath::Sin(thetacm); double pxTemp = betaRect /slope * (gamma * betaRect * q - gamma * kbCM[j] * TMath::Cos(thetacm)) * (1 - TMath::ASin(temp)/TMath::TwoPi()) ; double pyTemp = gamma * q - mb - gamma * betaRect * kbCM[j] * TMath::Cos(thetacm); if( TMath::IsNaN(pxTemp) || TMath::IsNaN(pyTemp) ) continue; px.push_back(pxTemp); py.push_back(pyTemp); countfx ++; } fx[j] = new TGraph(countfx, &px[0], &py[0]); name.Form("fx%d", j); fx[j]->SetName(name); fx[j]->SetLineColor(4); fxList->Add(fx[j]); printf(","); } fxList->Write("EZCurve", TObject::kSingleKey); printf(" %d e-z finite-size detector functions\n", numEx); //--- cal modified thetaCM vs z TObjArray * txList = new TObjArray(); TGraph ** tx = new TGraph*[numEx]; for( int j = 0 ; j < numEx; j++){ double a = helios.GetDetRadius(); double q = TMath::Sqrt(mb*mb + kbCM[j] * kbCM[j] ); px.clear(); py.clear(); countfx = 0; for(int i = 0; i < 100; i++){ double thetacm = (i + 8.) * TMath::DegToRad(); double temp = TMath::TwoPi() * slope / betaRect / kbCM[j] * a / TMath::Sin(thetacm); double pxTemp = betaRect /slope * (gamma * betaRect * q - gamma * kbCM[j] * TMath::Cos(thetacm)) * (1 - TMath::ASin(temp)/TMath::TwoPi()); double pyTemp = thetacm * TMath::RadToDeg(); if( TMath::IsNaN(pxTemp) || TMath::IsNaN(pyTemp) ) continue; px.push_back(pxTemp); py.push_back(pyTemp); countfx ++; } tx[j] = new TGraph(countfx, &px[0], &py[0]); name.Form("tx%d", j); tx[j]->SetName(name); tx[j]->SetLineColor(4); txList->Add(tx[j]); printf("*"); } txList->Write("thetaCM_Z", TObject::kSingleKey); printf(" %d thetaCM-z for finite-size detector functions\n", numEx); //========timer TBenchmark clock; bool shown ; clock.Reset(); clock.Start("timer"); shown = false; //change the number of event into human easy-to-read form int numEvent = reactConfig.numEvents; int digitLen = TMath::Floor(TMath::Log10(numEvent)); TString numEventStr; if( 3 <= digitLen && digitLen < 6 ){ numEventStr.Form("%5.1f kilo", numEvent/1000.); }else if ( 6<= digitLen && digitLen < 9 ){ numEventStr.Form("%6.2f million", numEvent/1e6); }else if ( 9<= digitLen ){ numEventStr.Form("%6.2f billion", numEvent/1e9); } printf("\e[32m#################################### generating %s events \e[0m\n", numEventStr.Data()); double KEA = reactConfig.beamEnergy; double theta = reactConfig.beamTheta; double phi = 0.0; //*====================================================== calculate event int count = 0; for( int i = 0; i < numEvent; i++){ bool redoFlag = true; if( !reactConfig.isRedo ) redoFlag = false; do{ //==== Set Ex of B if( numEx == 1 ) { ExID = 0; Ex = exList.ExList[0].Ex + (exList.ExList[0].sigma == 0 ? 0 : gRandom->Gaus(0, exList.ExList[0].sigma)); }else{ ExID = exDist->GetRandom(); Ex = exList.ExList[ExID].Ex + (exList.ExList[ExID].sigma == 0 ? 0 : gRandom->Gaus(0, exList.ExList[ExID].sigma)); } transfer.SetExB(Ex); //==== Set incident beam if( reactConfig.beamEnergySigma != 0 ){ KEA = gRandom->Gaus(reactConfig.beamEnergy, reactConfig.beamEnergySigma); } if( reactConfig.beamThetaSigma != 0 ){ theta = gRandom->Gaus(reactConfig.beamTheta, reactConfig.beamThetaSigma); } //==== for taregt scattering transfer.SetIncidentEnergyAngle(KEA, theta, 0.); transfer.CalReactionConstant(); // TLorentzVector PA = transfer.GetPA(); //depth = 0; // if( isTargetScattering ){ // //==== Target scattering, only energy loss // depth = targetThickness * gRandom->Rndm(); // msA.SetTarget(density, depth); // TLorentzVector PAnew = msA.Scattering(PA); // KEAnew = msA.GetKE()/reactConfig.beamA; // transfer.SetIncidentEnergyAngle(KEAnew, theta, phi); // transfer.CalReactionConstant(); // Ecm = transfer.GetCMTotalKE(); // } //==== Calculate thetaCM, phiCM if( distFile->IsOpen()){ dist = (TF1 *) distList->At(ExID); thetaCM = dist->GetRandom() / 180. * TMath::Pi(); }else{ thetaCM = TMath::ACos(2 * gRandom->Rndm() - 1) ; } double phiCM = TMath::TwoPi() * gRandom->Rndm(); //==== Calculate reaction transfer.Event(thetaCM, phiCM); TLorentzVector Pb = transfer.GetPb(); TLorentzVector PB = transfer.GetPB(); // //==== Calculate energy loss of scattered and recoil in target // if( isTargetScattering ){ // if( Pb.Theta() < TMath::PiOver2() ){ // msb.SetTarget(density, targetThickness - depth); // }else{ // msb.SetTarget(density, depth); // } // Pb = msb.Scattering(Pb); // TbLoss = msb.GetKELoss(); // msB.SetTarget(density, targetThickness - depth); // PB = msB.Scattering(PB); // }else{ // TbLoss = 0; // } //======= Decay of particle-B int decayID = 0; if( recoil.isDecay){ decayID = decay.CalDecay(PB, Ex, 0, phiCM + TMath::Pi()/2); // decay to ground state if( decayID == 1 ){ PB = decay.GetDaugther_D(); //decayTheta = decay.GetAngleChange(); decayTheta = decay.GetThetaCM(); PB.SetUniqueID(recoil.decayZ); }else{ decayTheta = TMath::QuietNaN(); } } //################################### tree branches //===== reaction thetab = Pb.Theta() * TMath::RadToDeg(); thetaB = PB.Theta() * TMath::RadToDeg(); Tb = Pb.E() - Pb.M(); TB = PB.E() - PB.M(); phib = Pb.Phi() * TMath::RadToDeg(); phiB = PB.Phi() * TMath::RadToDeg(); //==== Helios // printf(" thetaCM : %f, Tb : %f\n", thetaCM * TMath::RadToDeg(), Pb.M()); if( Tb > 0 || TB > 0 ){ helios.CalArrayHit(Pb); helios.CalRecoilHit(PB); hit = 2; while( hit > 1 ){ hit = helios.CheckDetAcceptance(); } /// while hit > 1, goto next loop; trajectory orb_b = helios.GetTrajectory_b(); trajectory orb_B = helios.GetTrajectory_B(); e = helios.GetEnergy() + gRandom->Gaus(0, array.eSigma ); double ranX = gRandom->Gaus(0, array.zSigma); z = orb_b.z + ranX; detX = helios.GetDetX() + ranX; z0 = orb_b.z0; t = orb_b.t; loop = orb_b.loop; detID = orb_b.detID; detRowID = orb_b.detRowID; rho = orb_b.rho; rhoArray = orb_b.R; xArray = orb_b.x; yArray = orb_b.y; //ELUM if( aux.elumPos1 != 0 ){ xElum1 = helios.GetXPos(aux.elumPos1); yElum1 = helios.GetYPos(aux.elumPos1); rhoElum1 = helios.GetR(aux.elumPos1); } if( aux.elumPos2 != 0 ){ xElum2 = helios.GetXPos(aux.elumPos2); yElum2 = helios.GetYPos(aux.elumPos2); rhoElum2 = helios.GetR(aux.elumPos2); } //Recoil rhoRecoil = orb_B.R; tB = orb_B.t; xRecoil = orb_B.x; yRecoil = orb_B.y; rhoB = orb_B.rho; //other recoil detectors if ( aux.detPos1 != 0 ){ xRecoil1 = helios.GetRecoilXPos(aux.detPos1); yRecoil1 = helios.GetRecoilYPos(aux.detPos1); rhoRecoil1 = helios.GetRecoilR(aux.detPos1); } if ( aux.detPos2 != 0 ){ xRecoil2 = helios.GetRecoilXPos(aux.detPos2); yRecoil2 = helios.GetRecoilYPos(aux.detPos2); rhoRecoil2 = helios.GetRecoilR(aux.detPos2); } std::pair ExThetaCM = transfer.CalExThetaCM(e, z, helios.GetBField(), helios.GetDetRadius()); ExCal = ExThetaCM.first; thetaCMCal = ExThetaCM.second; //change thetaCM into deg thetaCM = thetaCM * TMath::RadToDeg(); //if decay, get the light decay particle on the recoil; if( recoil.isDecay ){ if( decayID == 1 ){ TLorentzVector Pd = decay.GetDaugther_d(); Td = Pd.E() - Pd.M(); helios.CalRecoilHit(Pd); trajectory orb_d = helios.GetTrajectory_B(); rhoRecoil_d = orb_d.R; xRecoil_d = orb_d.x; yRecoil_d = orb_d.y; }else{ rhoRecoil_d = TMath::QuietNaN(); xRecoil_d = TMath::QuietNaN(); yRecoil_d = TMath::QuietNaN(); } } }else{ hit = -404; } if( hit == 1) count ++; if( reactConfig.isRedo ){ if( hit == 1) { redoFlag = false; }else{ redoFlag = true; //printf("%d, %2d, thetaCM : %f, theta : %f, z0: %f \n", i, hit, thetaCM * TMath::RadToDeg(), thetab, helios.GetZ0()); } }else{ redoFlag = false; } }while( redoFlag ); tree->Fill(); //#################################################################### Timer clock.Stop("timer"); Double_t time = clock.GetRealTime("timer"); clock.Start("timer"); if ( !shown ) { if (fmod(time, 10) < 1 ){ printf( "%10d[%2d%%]| %8.2f sec | expect: %5.1f min \n", i, TMath::Nint((i+1)*100./numEvent), time , numEvent*time/(i+1)/60); shown = 1; } }else{ if (fmod(time, 10) > 9 ){ shown = 0; } } } saveFile->Write(); saveFile->Close(); distFile->Close(); delete exDist; printf("=============== done. saved as %s. count(hit==1) : %d\n", saveFileName.Data(), count); //gROOT->ProcessLine(".q"); return; } int main (int argc, char *argv[]) { printf("=================================================================\n"); printf("========== Simulate Transfer reaction in HELIOS ==========\n"); printf("=================================================================\n"); if(argc == 2 || argc > 7) { printf("Usage: ./Transfer [1] [2] [3] [4] [5] [6]\n"); printf(" default file name \n"); printf(" [1] reactionConfig.txt (input) reaction Setting \n"); printf(" [2] detectorGeo.txt (input) detector Setting \n"); printf(" [3] ID (input) detector & reaction ID (default = 0 ) \n"); printf(" [4] DWBA.root (input) thetaCM distribution from DWBA \n"); printf(" [5] transfer.root (output) rootFile name for output \n"); printf(" [6] plot (input) will it plot stuffs [1/0] \n"); printf("------------------------------------------------------\n"); return 0 ; } std::string basicConfig = "reactionConfig.txt"; std::string heliosDetGeoFile = "detectorGeo.txt"; int ID = 0; TString ptolemyRoot = "DWBA.root"; // when no file, use isotropic distribution of thetaCM TString saveFileName; // format based on ID; bool isPlot = false; if( argc >= 2) basicConfig = argv[1]; if( argc >= 3) heliosDetGeoFile = argv[2]; if( argc >= 4) ID = atoi(argv[3]); if( argc >= 5) ptolemyRoot = argv[4]; if( argc >= 6) saveFileName = argv[5]; if( argc >= 7) isPlot = atoi(argv[7]); saveFileName = Form("transfer_%d.root", ID); Transfer( basicConfig, heliosDetGeoFile, ID, ptolemyRoot, saveFileName); //run Armory/Check_Simulation if( isPlot ){ std::ifstream file_in; file_in.open("../Cleopatra/Check_Simulation.C", std::ios::in); if( file_in){ printf("---- running ../Cleopatra/Check_Simulation.C on %s \n", saveFileName.Data()); TString cmd; cmd.Form("root -l '../Cleopatra/Check_Simulation.C(\"%s\")'", saveFileName.Data()); system(cmd.Data()); }else{ printf("cannot find ../Cleopatra/Check_Simulation.C \n"); } } }