/*************************************************** * This is a root macro for Auto fitting * * Created by Tsz Leung (Ryan) TANG, around 2019. * updated 01-04-2022 * * contact goluckyryan@gmail.com ***************************************************/ #ifndef AutoFit_C #define AutoFit_C #include #include #include #include #include #include #include #include //Global fit paramaters std::vector BestFitMean; std::vector BestFitCount; std::vector BestFitSigma; TString recentFitMethod; void ShowFitMethod(){ printf("----------------------- Method of Fitting ---------------\n"); printf("---------------------------------------------------------\n"); printf(" fitAuto() - estimate BG, find peak, and fit n-Gauss \n"); printf(" fitGaussPol() - fit 1 Gauss + pol-n BG\n"); printf(" fit2GaussP1() - fit 2 Gauss + pol-1 BG \n"); printf(" fitGF3Pol() - fit GF3 + pol-n BG \n"); //printf(" fitNGF3() - fit n-GF3, estimated BG \n"); printf(" fitNGauss() - fit n-Gauss, estimated BG, need input\n"); printf(" fitNGaussSub() - fit estimated BG with Pol, subtract, fit n-Guass\n"); printf(" fitNGaussPol() - fit n-Gauss + pol-n BG \n"); printf(" fitNGaussPolSub() - subtract Pol-n BG, fit n-Gauss \n"); printf("\n"); printf("------- Mouse click Fit : \n"); printf(" clickFitNGaussPol() - fit n-Gauss + pol-n BG \n"); printf(" clickFitNGaussPolSub() - Fit Pol-n BG, subtract, fit n-Gauss\n"); printf("\n"); printf("------- Utility : \n"); printf(" SaveFitPara() - Save the inital/Best fit parameters.\n"); printf(" ShowFitMerhod() - Show this menual.\n"); printf("---------------------------------------------------------\n"); } void AutoFit(){ ShowFitMethod(); } std::vector SplitStrAF(std::string tempLine, std::string splitter, int shift = 0){ std::vector output; size_t pos; do{ pos = tempLine.find(splitter); // fine splitter if( pos == 0 ){ //check if it is splitter again tempLine = tempLine.substr(pos+1); continue; } std::string secStr; if( pos == std::string::npos ){ secStr = tempLine; }else{ secStr = tempLine.substr(0, pos+shift); tempLine = tempLine.substr(pos+shift); } //check if secStr is begin with space if( secStr.substr(0, 1) == " "){ secStr = secStr.substr(1); } output.push_back(secStr); //printf(" |%s---\n", secStr.c_str()); }while(pos != std::string::npos ); return output; } TColor RGBWheel(double ang){ ang = ang * TMath::DegToRad(); double r = max(0., (1+2*cos(ang))/3.); double g = max(0., (1 - cos(ang) + sqrt(3)* sin(ang))/3.); double b = max(0., (1 - cos(ang) - sqrt(3)* sin(ang))/3.); TColor col(r,g,b); return col; } int nPeaks = 16; Double_t nGauss(Double_t *x, Double_t *par) { Double_t result = 0; for (Int_t p=0;pGetNpar(); int count = totPar/numParPerPeak; printf("ID "); for( int i = 0; i < numParPerPeak; i++){ printf("par%d ", i); } printf("\n"); for( int i = 0; i < count ; i++){ printf("%3d ", i); for( int j = 0; j < numParPerPeak; j++){ int parID = numParPerPeak * i + j; printf("%.3f(%.3f) ", fit->GetParameter(parID), fit->GetParError(parID)); } printf("\n"); } } void GoodnessofFit(TH1F * hist, TF1 * fit){ int nBin = hist->GetNbinsX(); int effBin = 0; double mean = 0; double ysq = 0; double SSR = 0; double chisq = 0; //with estimated error be sqrt(y) double Xsq = 0; // for Pearson's chi-sq test for( int i = 1; i <= nBin; i++){ double e = hist->GetBinError(i); if( e > 0 ) { effBin ++; double y = hist->GetBinContent(i); double x = hist->GetBinCenter(i); double ybar = fit->Eval(x); ysq += y*y; mean += y; SSR += (y - ybar)*(y-ybar); chisq += (y - ybar)*(y-ybar)/e/e; if( ybar > e ) { Xsq += (y - ybar)*(y-ybar)/ybar; }else{ Xsq += (y - ybar)*(y-ybar)/e; } //printf(" %d | x : %f, y : %f, ybar : %f , X-sq : %f\n", i, x, y, ybar, Xsq); } } mean = mean / nBin; double SSTotal = ysq + mean*mean; int npar = fit->GetNpar(); int ndf = effBin - npar; printf("#################################################\n"); printf("## Goodness of Fit. ##\n"); printf("#################################################\n"); printf(" eff. Bin(%d) - numPar(%d) = ndf = %d \n", effBin, npar, ndf); printf("============== Regression analysis\n"); printf("----------------- R-sq \n"); printf(" SSTotal = %f \n", SSTotal); printf(" SSR = %f \n", SSR); printf(" MSR = %f <-- is it similar to sample variance?\n", SSR/ndf); double Rsq = 1 - SSR/SSTotal; printf(" R-sq = %f \n", Rsq ); printf("----------------- Chi-sq \n"); printf(" Chi-sq = %f \n", chisq); printf(" rd. Chi-sq = %f \n", chisq/ndf); printf("ROOT Chi-Sq = %f , NDF = %d \n", fit->GetChisquare(), fit->GetNDF()); //================ chi-sq test printf("============== Hypothesis testing\n"); printf(" Null Hypothesis : the fitting model is truth. \n"); printf(" * p-value = prob. that Null Hypo. is truth. \n"); printf(" * the Pearson's test in here only for background free data \n"); printf(" Pearson's X-sq = %.2f \n", Xsq); double p = 1 - TMath::Prob(Xsq, ndf); printf(" Pearson's p-value = %.2f %s 0.05 | %s\n", p, p < 0.05 ? "<": ">", p < 0.05 ? "reject" : "cannot reject"); double pchi = 1 - TMath::Prob(chisq, ndf); printf(" Chi-sq p-value = %.2f %s 0.05 | %s\n", pchi, pchi < 0.05 ? "<": ">", pchi < 0.05 ? "reject" : "cannot reject"); double pRoot = 1- fit->GetProb(); printf("ROOT Chi-sq p-value = %.2f %s 0.05 | %s\n", pRoot, pRoot < 0.05 ? "<": ">", pRoot < 0.05 ? "reject" : "cannot reject"); printf("################################################\n"); } vector energy, height, sigma, lowE, highE ; vector energyFlag, sigmaFlag; bool loadFitParameters(TString fitParaFile){ energy.clear(); energyFlag.clear(); sigma.clear(); sigmaFlag.clear(); lowE.clear(); highE.clear(); height.clear(); bool paraRead = false; printf("====================================================================== \n"); printf("----- loading fit parameters from : %s", fitParaFile.Data()); ifstream file; file.open(fitParaFile.Data()); if( !file){ printf("\ncannot read file : %s \n", fitParaFile.Data()); return 0; } while( file.good()) { string tempLine; getline(file, tempLine); if( tempLine.substr(0, 1) == "#" ) continue; if( tempLine.substr(0, 2) == "//" ) continue; if( tempLine.size() < 5 ) continue; ///printf("%s\n", tempLine.c_str()); vector temp = SplitStrAF(tempLine, " "); if( temp.size() < 7 ) continue; energy.push_back( atof(temp[0].c_str())); lowE.push_back( atof(temp[1].c_str())); highE.push_back( atof(temp[2].c_str())); energyFlag.push_back(atoi(temp[3].c_str())); sigma.push_back( atof(temp[4].c_str())); sigmaFlag.push_back( atoi(temp[5].c_str())); height.push_back( atof(temp[6].c_str())); } printf("... done.\n"); int n = energy.size(); TString limStr = "(fixed)"; printf("%2s| %34s | %10s \n", "ID", "Peak [MeV]", "Sigma [MeV]"); for( int j = 0; j < n; j ++){ if( energyFlag[j] == 0 ) limStr.Form("(limited, %6.3f - %6.3f)", lowE[j], highE[j]); printf("%2d| %7.4f %-26s | %7.4f (%5s) \n", j, energy[j], limStr.Data(), sigma[j], sigmaFlag[j] == 1 ? "fixed" : "free"); } paraRead = true; printf("====================================================================== \n"); return paraRead; } TCanvas * NewCanvas(TString name, TString title, int divX, int divY, int padSizeX, int padSizeY){ TCanvas * output = NULL; if( gROOT->FindObjectAny(name) == NULL ){ output = new TCanvas(name, title, divX * padSizeX, divY * padSizeY); }else{ output = (TCanvas *) gROOT->FindObjectAny(name) ; output->Clear(); } output->Divide(divX, divY); return output; } void ScaleAndDrawHist(TH1F * hist, double xMin, double xMax){ if ( xMin != xMax ) hist->GetXaxis()->SetRangeUser(xMin, xMax); int maxBin = hist->GetMaximumBin(); double ymax = hist->GetBinContent(maxBin); hist->GetYaxis()->SetRangeUser(0, 1.1 * ymax); hist->Draw(); } void PlotResidual(TH1F * hist, TF1 * fit){ TH1F * hRes = (TH1F*) hist->Clone(); hRes->GetListOfFunctions()->Clear(); hRes->SetTitle("Residual"); hRes->SetName("hRes"); hRes->SetYTitle("Hist - fit"); hRes->Sumw2(0); hRes->Sumw2(1); hRes->Add(fit, -1); hRes->Draw(); } //######################################## //### Fit a Gauss + Pol-n //######################################## void fitGaussPol(TH1F * hist, double mean, double sigmaMax, int degPol, double xMin, double xMax, TString optStat = ""){ printf("=========================================================\n"); printf("================ fit 1-Gauss + Pol-%d BG ================\n", degPol); printf(" * mean Range +- 5 sigmaMax \n"); printf(" * inital parameters of the polynomial is random/pow(10, i) \n"); printf("==========================================================\n"); recentFitMethod = "fitGaussPol"; gStyle->SetOptStat(optStat); TCanvas * cFitGaussPol = NewCanvas("cFitGaussPol", Form("fit Gauss & Pol-%d | fitGaussPol", degPol), 1, 2, 800, 350); cFitGaussPol->cd(1); ScaleAndDrawHist(hist, xMin, xMax); const int nPar = 3 + degPol + 1; TString funcExp = "[0] * TMath::Gaus(x, [1], [2], 1)"; for( int i = 0; i < degPol+1 ; i++){ funcExp += Form(" + [%d]*TMath::Power(x,%d)", i+3 , i); } TF1 * fit = new TF1("fit", funcExp.Data(), xMin, xMax); double * para = new double[nPar]; para[0] = 100 * 0.05 * TMath::Sqrt(TMath::TwoPi()); para[1] = mean; para[2] = sigmaMax/2.; for( int i = 0 ; i < degPol+1; i++){ para[3 + i ] = gRandom->Rndm()/TMath::Power(10, i); } fit->SetLineWidth(2); fit->SetLineColor(1); fit->SetNpx(1000); fit->SetParameters(para); fit->SetParLimits(0, 0, 1e9); fit->SetParLimits(1, mean - 5*sigmaMax, mean + 5 * sigmaMax); fit->SetParLimits(2, 0, sigmaMax); hist->Fit("fit", "Rq"); const Double_t* paraE = fit->GetParErrors(); const Double_t* paraA = fit->GetParameters(); double bw = hist->GetBinWidth(1); printf("histogram name : %s \n====== Gaussian:\ncount: %8.0f(%3.0f)\nmean : %8.4f(%8.4f)\nsigma: %8.4f(%8.4f) \n", hist->GetName(), paraA[0] / bw, paraE[0] /bw, paraA[1], paraE[1], paraA[2], paraE[2]); printf("------- the polnomail BG:\n"); for(int i = 0 ; i < degPol+1; i++){ printf("%2d | %8.4f(%8.4f) \n", i, paraA[3+i], paraE[3+i]); } TLatex text; text.SetNDC(); text.SetTextFont(82); text.SetTextSize(0.04); double chi2 = fit->GetChisquare(); int ndf = fit->GetNDF(); text.DrawLatex(0.12, 0.8, Form("#bar{#chi^{2}} : %5.3f", chi2/ndf)); text.DrawLatex(0.12, 0.75,Form("count: %4.0f(%3.0f)", paraA[0] / bw, paraE[0] /bw)); text.DrawLatex(0.12, 0.70,Form("E_{x}: %6.3f(%5.3f) MeV", paraA[1], paraE[1])); text.DrawLatex(0.12, 0.65,Form("#sigma: %3.0f(%3.0f) keV", paraA[2] * 1000., paraE[2] * 1000.)); for( int i = 0; i < degPol + 1; i++){ text.DrawLatex(0.60, 0.85 - 0.05*i ,Form("%3s: %8.3f(%8.3f)", Form("p%d", i), paraA[3+i], paraE[3+i])); } TString expression = "[0] "; for( int j = 1; j < degPol + 1; j++){ expression += Form(" + [%d]*TMath::Power(x, %d)", j, j); } TF1 * g0 = new TF1("g0", expression.Data(), xMin, xMax); for( int j = 0; j < degPol + 1 ; j++){ g0->SetParameter(j, paraA[3+j]); } g0->SetLineColor(4); g0->Draw("same"); TF1* f0 = new TF1("f0", "[0] * TMath::Gaus(x, [1], [2], 1)", xMin, xMax); f0->SetParameter(0, paraA[0]); f0->SetParameter(1, paraA[1]); f0->SetParameter(2, paraA[2]); f0->SetLineColor(2); f0->SetNpx(1000); f0->Draw("same"); // GoodnessofFit(hist, fit); cFitGaussPol->cd(2); PlotResidual(hist, fit); BestFitCount.clear(); BestFitMean.clear(); BestFitSigma.clear(); BestFitCount.push_back(paraA[0]); BestFitMean.push_back(paraA[1]); BestFitSigma.push_back(paraA[2]); } //######################################## //#### fit 2 gauss + pol-1 // not updated //######################################## vector fit2GaussP1(TH1F * hist, double mean1, double sigma1, double mean2, double sigma2, double xMin, double xMax, TString optStat = "", bool newCanvas = false){ printf("=========================================================\n"); printf("================ fit 2-Gauss + Pol-1 BG ================\n" ); printf(" NOT updated. It works, but the code is old \n"); printf("==========================================================\n"); recentFitMethod = "fit2GaussP1"; vector output; output.clear(); gStyle->SetOptStat(optStat); TCanvas * cFit2GaussP1 = NewCanvas("cFit2GaussP1", "fit Gauss & P1 | fit2GaussP1", 1, 1, 800, 350); cFit2GaussP1->cd(1); ScaleAndDrawHist(hist, xMin, xMax); TF1 * fit = new TF1("fit", "[0] * TMath::Gaus(x, [1], [2], 1) + [3] * TMath::Gaus(x, [4], [5], 1) + [6] + [7]*x", xMin, xMax); double * para = new double[8]; para[0] = 20 * 0.05 * TMath::Sqrt(TMath::TwoPi()); para[1] = mean1; para[2] = sigma1; para[3] = 100 * 0.05 * TMath::Sqrt(TMath::TwoPi()); para[4] = mean2; para[5] = sigma2; para[6] = 1; para[7] = 0; fit->SetLineWidth(2); fit->SetLineColor(2); fit->SetNpx(1000); fit->SetParameters(para); hist->Fit("fit", "Rq"); const Double_t* paraE = fit->GetParErrors(); const Double_t* paraA = fit->GetParameters(); double bw = hist->GetBinWidth(1); printf("%7s ====== count: %8.0f(%3.0f), mean: %8.4f(%8.4f), sigma: %8.4f(%8.4f) \n", hist->GetName(), paraA[0] / bw, paraE[0] /bw, paraA[1], paraE[1], paraA[2], paraE[2]); printf("%7s ====== count: %8.0f(%3.0f), mean: %8.4f(%8.4f), sigma: %8.4f(%8.4f) \n", "", paraA[3] / bw, paraE[3] /bw, paraA[4], paraE[4], paraA[5], paraE[5]); output.push_back( paraA[0]/bw); output.push_back( paraE[0]/bw); output.push_back( paraA[1]); output.push_back( paraE[1]); output.push_back( paraA[2]); output.push_back( paraE[2]); output.push_back( paraA[3]/bw); output.push_back( paraE[3]/bw); output.push_back( paraA[4]); output.push_back( paraE[4]); output.push_back( paraA[5]); output.push_back( paraE[5]); TLatex text; text.SetNDC(); text.SetTextFont(82); text.SetTextSize(0.04); double chi2 = fit->GetChisquare(); int ndf = fit->GetNDF(); text.DrawLatex(0.15, 0.8, Form("#bar{#chi^{2}} : %5.3f", chi2/ndf)); text.DrawLatex(0.15, 0.75,Form("count: %4.0f(%3.0f), E_{x}: %6.3f(%5.3f) MeV, #sigma: %3.0f(%3.0f) keV ", paraA[0] / bw, paraE[0] /bw, paraA[1], paraE[1], paraA[2] * 1000., paraE[2] * 1000.)); text.DrawLatex(0.15, 0.7, Form("count: %4.0f(%3.0f), E_{x}: %6.3f(%5.3f) MeV, #sigma: %3.0f(%3.0f) keV ", paraA[3] / bw, paraE[3] /bw, paraA[4], paraE[4], paraA[5] * 1000., paraE[5] * 1000.)); text.DrawLatex(0.15, 0.6, Form("Line : %6.3f(%5.3f) + %6.3f(%5.3f)x ", paraA[6], paraE[6], paraA[7], paraE[7])); GoodnessofFit(hist, fit); BestFitCount.clear(); BestFitMean.clear(); BestFitSigma.clear(); for( int i = 0; i < 2; i++){ BestFitCount.push_back(paraA[3*i]/ bw); BestFitMean.push_back(paraA[3*i+1]); BestFitSigma.push_back(paraA[3*i+2]); } return output; } //######################################## //#### fit for gamma + pol-n BG //######################################## void fitGF3Pol(TH1F * hist, double mean, double sigmaMax, double ratio, double beta, double step, int degPol, double xMin, double xMax, TString optStat = ""){ printf("=========================================================\n"); printf("================ fit GF1 + Pol-%d BG ================\n", degPol); printf(" * mean Range = xMin, xMax \n"); printf(" * inital parameters of the polynomial is random/pow(10, i) \n"); printf("==========================================================\n"); recentFitMethod = "fitGF3Pol"; gStyle->SetOptStat(optStat); gStyle->SetOptStat(optStat); TCanvas * cFitGF3Pol = NewCanvas("cFitGF3Pol", Form("fit GF3 + pol-%d | fitGF3Pol", degPol), 1, 2, 800, 350); cFitGF3Pol->cd(1); ScaleAndDrawHist(hist, xMin, xMax); nPeaks = 1; nPols = degPol; int nPar = 6*nPeaks + degPol + 1; TF1 * fit = new TF1("fit", nGF3Pol, xMin, xMax, nPar); fit->Print(); double * para = new double[nPar]; para[0] = hist->GetMaximum() *4; para[1] = mean; para[2] = sigmaMax/2.; para[3] = ratio ; para[4] = beta ; para[5] = step ; for( int i = 0 ; i < degPol + 1; i++){ para[6+i] = gRandom->Rndm()/TMath::Power(10, i); } fit->SetLineWidth(2); fit->SetLineColor(1); fit->SetNpx(1000); fit->SetParameters(para); fit->SetParLimits(0, 0, 1e9); fit->SetParLimits(1, xMin, xMax); fit->SetParLimits(2, 0.00000001, sigmaMax); fit->SetParLimits(3, 0, 0.5); fit->SetParLimits(4, 1, 400); fit->SetParLimits(5, 0, 0.5); hist->Fit("fit", "Rq"); const Double_t* paraE = fit->GetParErrors(); const Double_t* paraA = fit->GetParameters(); double chisquare = fit->GetChisquare(); int ndf = fit->GetNDF(); double bw = hist->GetBinWidth(1); printf("histogram : %s \n", hist->GetName()); printf("========= The Gaussian \n"); printf("count: %8.0f(%3.0f)\n", paraA[0] / bw, paraE[0] /bw); printf("mean : %8.4f(%8.4f)\n", paraA[1], paraE[1]); printf("sigma: %8.4f(%8.4f)\n", paraA[2], paraE[2]); TLatex text; text.SetNDC(); text.SetTextFont(82); text.SetTextSize(0.04); text.SetTextColor(1); text.DrawLatex(0.12, 0.65, Form("count : %5.0f(%5.0f)", paraA[0]/bw, paraE[0]/bw)); text.DrawLatex(0.12, 0.60, Form(" mean : %5.3f(%5.3f) keV", paraA[1], paraE[1])); text.DrawLatex(0.12, 0.55, Form("sigma : %5.3f(%5.3f) keV", paraA[2], paraE[2])); text.DrawLatex(0.12, 0.50, Form(" FWHM : %5.3f(%5.3f) keV", paraA[2] *2.355, paraE[2]*2.355)); text.DrawLatex(0.12, 0.40, Form("#chi^2/ndf : %5.3f", chisquare/ndf)); //GoodnessofFit(hist, fit); /// 0 1 2 3 4 5 string label[8] = {"Area", "mean", "sigma", "ratio", "beta", "step"}; printf("---------- The detail\n"); for(int i = 0 ; i < 6 ; i++){ printf("%d | %8s | %f (%f) \n", i, label[i].c_str(), paraA[i], paraE[i]); text.DrawLatex(0.65, 0.85-0.05*i, Form("%6s: %5.3f(%5.3f)", label[i].c_str(), paraA[i], paraE[i])); } for(int i = 6 ; i < nPar; i++){ printf("%d | %8s | %f (%f) \n", i, Form("p%d", i-6), paraA[i], paraE[i]); text.DrawLatex(0.65, 0.85-0.05*i, Form("%6s: %5.3f (%5.3f) \n", Form("p%d", i-6), paraA[i], paraE[i])); } /// norm * (1-ratio)* TMath::Gaus(x[0], mean, sigma, 1) TF1 * g0 = new TF1("g0", "[0] * (1.0-[3]) * TMath::Gaus(x, [1], [2], 1)", xMin, xMax); g0->SetParameter(0, paraA[0]); g0->SetParameter(1, paraA[1]); g0->SetParameter(2, paraA[2]); g0->SetParameter(3, paraA[3]); g0->SetNpx(1000); g0->SetLineColor(kRed); /// norm * ratio * exp( sigma * sigma/2/beta/beta)* exp((x[0]-mean)/beta) * TMath::Erfc( (x[0]-mean)/(sigma * sqrt(2)) + sigma/beta/sqrt(2)) ; TF1 * g1 = new TF1("g1", "[0] * [3] * exp( [2] * [2]/2/[4]/[4]) / (2* [4])* exp((x-[1])/[4]) * TMath::Erfc( (x-[1])/([2] * sqrt(2)) + [2]/[4]/sqrt(2)) ", xMin, xMax); g1->SetParameter(0, paraA[0]); g1->SetParameter(1, paraA[1]); g1->SetParameter(2, paraA[2]); g1->SetParameter(3, paraA[3]); g1->SetParameter(4, paraA[4]); g1->SetNpx(1000); g1->SetLineColor(kGreen +3); /// norm * step * TMath::Erfc( (x[0]-mean)/(sigma * sqrt(2)) ); TF1 * g2 = new TF1("g2", "[0] * [3] * TMath::Erfc( (x-[1])/([2] * sqrt(2)) );", xMin, xMax); g2->SetParameter(0, paraA[0]); g2->SetParameter(1, paraA[1]); g2->SetParameter(2, paraA[2]); g2->SetParameter(3, paraA[5]); g2->SetNpx(1000); g2->SetLineColor(kViolet); TString expression = "[0] "; for( int j = 1; j < degPol + 1; j++){ expression += Form(" + [%d]*TMath::Power(x, %d)", j, j); } TF1 * g3 = new TF1("g3", expression.Data(), xMin, xMax); for( int j = 0; j < degPol + 1 ; j++){ g3->SetParameter(j, paraA[6+j]); } g3->SetLineColor(kBlue); g3->Draw("same"); g0->Draw("same"); g1->Draw("same"); g2->Draw("same"); g3->Draw("same"); cFitGF3Pol->cd(2); PlotResidual(hist, fit); } //############################################## //##### Auto Fit n-Gauss with estimated BG //############################################## vector fitAuto(TH1F * hist, int bgEst = 10, double peakThreshold = 0.05, double sigmaMax = 0, int peakDensity = 4, TString optStat = ""){ printf("================================================================\n"); printf("========== Auto Fit n-Gauss with estimated BG ==================\n"); printf(" * bgEst = parameter of BG estimation, larger BG, more linear \n"); printf(" * peakThreshold = precentage of the highest peak that will count \n"); printf(" * sigmaMax = maximum sigma, if -1, program try to find the sigma \n"); printf(" * peakDensity = peak will closer when the number is larger "); printf(" \n"); printf(" after peaks found, the i-th peaks will be limited by the mid-point\n"); printf(" by the (i-1)-th peak and the i-th peak, and the mid-point of the\n"); printf(" i-th peak and (i+1)-th peak \n"); printf(" i.e. [peak(i-1)+peak(i)]/2 < limit of peak(i) < [peak(i)+peak(i+1)]/2 \n"); printf("================================================================\n"); recentFitMethod = "fitAuto"; gStyle->SetOptStat(optStat); TCanvas *cFitAuto = NewCanvas("cFitAuto","Auto Fitting | fitAuto", 1, 4, 800, 300); cFitAuto->cd(1); ScaleAndDrawHist(hist, 0, 0); TH1F * specS = (TH1F*) hist->Clone(); double xMin = hist->GetXaxis()->GetXmin(); double xMax = hist->GetXaxis()->GetXmax(); int xBin = hist->GetXaxis()->GetNbins(); TString titleH; titleH.Form("fitted spectrum (BG=%d); Ex [MeV]; Count / %4.0f keV", bgEst, (xMax-xMin)*1000./xBin ); specS->SetTitle(titleH); specS->SetName("specS"); ///specS->GetXaxis()->SetTitleSize(0.06); ///specS->GetYaxis()->SetTitleSize(0.06); ///specS->GetXaxis()->SetTitleOffset(0.7); ///specS->GetYaxis()->SetTitleOffset(0.6); //=================== find peak and fit gStyle->SetOptFit(0); TSpectrum * peak = new TSpectrum(50); nPeaks = peak->Search(hist, peakDensity, "", peakThreshold); if( bgEst > 0 ) { printf("============= estimating background...\n"); TH1 * h1 = peak->Background(hist, bgEst); h1->Draw("same"); printf("============= substracting the linear background...\n"); specS->Sumw2(); specS->Add(h1, -1.); } cFitAuto->cd(2)->SetGrid(); cFitAuto->cd(2); specS->Draw("hist"); //========== Fitting printf("============= Fitting....."); printf(" found %d peaks \n", nPeaks); double * xpos = peak->GetPositionX(); double * ypos = peak->GetPositionY(); int * inX = new int[nPeaks]; TMath::Sort(nPeaks, xpos, inX, 0 ); vector energy, height; for( int j = 0; j < nPeaks; j++){ energy.push_back(xpos[inX[j]]); height.push_back(ypos[inX[j]]); } for( int j = 0; j < nPeaks; j++){ printf(" energy : %f , %f \n", energy[j], height[j]); } if( sigmaMax == 0 ){ printf("------------- Estimate sigma for each peak \n"); sigma.clear(); int binMin = hist->FindBin(xMin); int binMax = hist->FindBin(xMax); for( int i = 0; i < nPeaks ; i++){ int b0 = hist->FindBin(energy[i]); double sMin = (xMax-xMin)/5., sMax = (xMax-xMin)/5.; //---- backward search, stop when for( int b = b0-1 ; b > binMin ; b-- ){ double y = hist->GetBinContent(b); double x = hist->GetBinCenter(b); if( y < (height[i])/2. ) { sMin = energy[i] - hist->GetBinCenter(b); break; } } //---- forward search, stop when for( int b = b0+1 ; b < binMax ; b++ ){ double y = hist->GetBinContent(b); double x = hist->GetBinCenter(b); if( y < (height[i])/2. ) { sMax = hist->GetBinCenter(b) - energy[i]; break; } } double temp = TMath::Min(sMin, sMax); /// When there are multiple peaks closely packed : if( i > 0 && temp > 2.5 * sigma.back() ) temp = sigma.back(); sigma.push_back(temp); printf("%2d | x : %8.2f | sigma(est) %f \n", i, energy[i], sigma[i]); } }else if( sigmaMax < 0 ){ printf("========== use user input sigma : %f (fixed)\n", abs(sigmaMax)); sigma.clear(); for( int i = 0; i < nPeaks ; i++) sigma.push_back(abs(sigmaMax)); }else if( sigmaMax > 0 ){ printf("========== use user input sigma : %f/2. \n", sigmaMax/2.); sigma.clear(); for( int i = 0; i < nPeaks ; i++) sigma.push_back(sigmaMax/2.); } int numParPerPeak = 3; const int n = numParPerPeak * nPeaks; double * para = new double[n]; for(int i = 0; i < nPeaks ; i++){ para[numParPerPeak*i+0] = height[i] * 0.05 * TMath::Sqrt(TMath::TwoPi()); para[numParPerPeak*i+1] = energy[i]; if( sigmaMax == 0 ){ para[numParPerPeak*i+2] = sigma[i]; }else if(sigmaMax < 0 ){ para[numParPerPeak*i+2] = abs(sigmaMax); }else if(sigmaMax > 0 ){ para[numParPerPeak*i+2] = sigmaMax/2.; } } TF1 * fit = new TF1("fit", nGauss, xMin, xMax, 3 * nPeaks ); fit->SetLineWidth(2); fit->SetLineColor(2); fit->SetNpx(1000); fit->SetParameters(para); if( nPeaks > 1 ){ for( int i = 0; i < nPeaks; i++){ fit->SetParLimits(numParPerPeak*i+0, 0, 1e+9); double de1 = 1, de2 = 1; if( i == 0 ){ de2 = (energy[i+1] - energy[i])/2.; de1 = de2; }else if( i < nPeaks -1 ){ de1 = (energy[i] - energy[i-1])/2.; de2 = (energy[i+1] - energy[i])/2.; }else{ de1 = (energy[i] - energy[i-1])/2.; de2 = de1; } fit->SetParLimits(numParPerPeak*i+1, energy[i] - de1 , energy[i] + de2); if( sigmaMax== 0 ) fit->SetParLimits(numParPerPeak*i+2, 0, 1.5*sigma[i]); // add 50% margin of sigma if( sigmaMax < 0 ) fit->FixParameter(numParPerPeak*i+2, abs(sigmaMax)); if( sigmaMax > 0 ) fit->SetParLimits(numParPerPeak*i+2, 0, sigmaMax); } }else{ fit->SetParLimits(0, 0, 1e+9); fit->SetParLimits(2, 0, sigmaMax); } specS->Fit("fit", "q"); const Double_t* paraE = fit->GetParErrors(); const Double_t* paraA = fit->GetParameters(); //======== calculate reduce chi-squared //GoodnessofFit(specS, fit); double bw = specS->GetBinWidth(1); vector exPos; for(int i = 0; i < nPeaks ; i++){ exPos.push_back(paraA[numParPerPeak*i+1]); printf("%2d , count: %8.0f(%3.0f), mean: %8.4f(%8.4f), sigma: %8.4f(%8.4f) \n", i, paraA[numParPerPeak*i] / bw, paraE[numParPerPeak*i] /bw, paraA[numParPerPeak*i+1], paraE[numParPerPeak*i+1], paraA[numParPerPeak*i+2], paraE[numParPerPeak*i+2]); } cFitAuto->Update(); //draw the indivual fit fit->Draw("same"); const int nn = nPeaks; TF1 ** gFit = new TF1 *[nn]; for( int i = 0; i < nPeaks; i++){ gFit[i] = new TF1(Form("gFit%d", i), "[0] * TMath::Gaus(x,[1],[2], 1)", xMin, xMax); gFit[i]->SetParameter(0, paraA[numParPerPeak*i]); gFit[i]->SetParameter(1, paraA[numParPerPeak*i+1]); gFit[i]->SetParameter(2, paraA[numParPerPeak*i+2]); gFit[i]->SetLineColor(i+1); gFit[i]->SetNpx(1000); gFit[i]->SetLineWidth(1); gFit[i]->Draw("same"); } specS->Draw("hist same"); //======== print text on plot TLatex text; text.SetNDC(); text.SetTextFont(82); text.SetTextSize(0.04); double chi2 = fit->GetChisquare(); int ndf = fit->GetNDF(); text.SetTextSize(0.06); text.DrawLatex(0.15, 0.8, Form("#bar{#chi^{2}} : %5.3f", chi2/ndf)); cFitAuto->cd(3); PlotResidual(specS, fit); cFitAuto->cd(4); text.SetTextSize(0.05); text.SetTextColor(2); text.DrawLatex(0.1, 0.9, Form(" %13s, %18s, %18s", "count", "mean", "sigma")); BestFitCount.clear(); BestFitMean.clear(); BestFitSigma.clear(); for( int i = 0; i < nPeaks; i++){ text.DrawLatex(0.1, 0.8-0.05*i, Form(" %2d, %8.0f(%3.0f), %8.4f(%8.4f), %8.4f(%8.4f)\n", i, paraA[3*i] / bw, paraE[3*i] /bw, paraA[3*i+1], paraE[3*i+1], paraA[3*i+2], paraE[3*i+2])); BestFitCount.push_back(paraA[3*i]/ bw); BestFitMean.push_back(paraA[3*i+1]); BestFitSigma.push_back(paraA[3*i+2]); } return exPos; } //######################################## //###### NOT tested //######################################## vector fitNGF3(TH1 * hist, int bgEst = 10, double peakThreshold = 0.1, double sigmaMax = 20, int peakDensity = 4, TString optStat = "", bool newPlot = true){ TCanvas *cFitAuto = NULL; if( newPlot ){ cFitAuto = new TCanvas("cFitAuto","Auto Fitting", 100, 100, 800,800); cFitAuto->Divide(1,2); gStyle->SetOptStat(optStat); cFitAuto->cd(1); hist->Draw(); } recentFitMethod = "fitNGF3"; TH1F * specS = (TH1F*) hist->Clone(); double xMin = hist->GetXaxis()->GetXmin(); double xMax = hist->GetXaxis()->GetXmax(); int xBin = hist->GetXaxis()->GetNbins(); TString titleH; titleH.Form("fitted spectrum (BG=%d); Ex [MeV]; Count / %4.0f keV", bgEst, (xMax-xMin)*1000./xBin ); specS->SetTitle(titleH); specS->SetName("specS"); ///specS->GetXaxis()->SetTitleSize(0.06); ///specS->GetYaxis()->SetTitleSize(0.06); ///specS->GetXaxis()->SetTitleOffset(0.7); ///specS->GetYaxis()->SetTitleOffset(0.6); //=================== find peak and fit gStyle->SetOptFit(0); TSpectrum * peak = new TSpectrum(50); nPeaks = peak->Search(hist, peakDensity, "", peakThreshold); if( bgEst > 0 ) { printf("============= estimating background...\n"); TH1 * h1 = peak->Background(hist, bgEst); h1->Draw("same"); printf("============= substracting the linear background...\n"); specS->Sumw2(); specS->Add(h1, -1.); } if( newPlot ){ cFitAuto->cd(2)->SetGrid(); cFitAuto->cd(2); } specS->Draw("hist"); //========== Fitting if( newPlot ){ printf("============= Fitting....."); printf(" found %d peaks \n", nPeaks); } double * xpos = peak->GetPositionX(); double * ypos = peak->GetPositionY(); int * inX = new int[nPeaks]; TMath::Sort(nPeaks, xpos, inX, 0 ); vector energy, height; for( int j = 0; j < nPeaks; j++){ energy.push_back(xpos[inX[j]]); height.push_back(ypos[inX[j]]); } if( newPlot ){ for( int j = 0; j < nPeaks; j++){ printf(" energy : %f , %f \n", energy[j], height[j]); } } int numParPerPeak = 6; const int n = numParPerPeak * nPeaks; double * para = new double[n]; for(int i = 0; i < nPeaks ; i++){ para[numParPerPeak*i+0] = height[i] * 0.05 * TMath::Sqrt(TMath::TwoPi()); para[numParPerPeak*i+1] = energy[i]; para[numParPerPeak*i+2] = sigmaMax; para[numParPerPeak*i+3] = height[i] * 0.05 * TMath::Sqrt(TMath::TwoPi()) * 0.1; para[numParPerPeak*i+4] = sigmaMax; para[numParPerPeak*i+5] = -4; } TF1 * fit = new TF1("fit", nGF3, xMin, xMax, numParPerPeak * nPeaks ); fit->SetLineWidth(2); fit->SetLineColor(2); fit->SetNpx(1000); fit->SetParameters(para); if( nPeaks > 1 ){ for( int i = 0; i < nPeaks; i++){ fit->SetParLimits(numParPerPeak*i+0, 0, 1e+9); double de1 = 1, de2 = 1; if( i == 0 ){ de2 = (energy[i+1] - energy[i])/2.; de1 = de2; }else if( i < nPeaks -1 ){ de1 = (energy[i] - energy[i-1])/2.; de2 = (energy[i+1] - energy[i])/2.; }else{ de1 = (energy[i] - energy[i-1])/2.; de2 = de1; } fit->SetParLimits(numParPerPeak*i+1, energy[i] - de1 , energy[i] + de2); fit->SetParLimits(numParPerPeak*i+2, 0, sigmaMax * 5); fit->SetParLimits(numParPerPeak*i+3, 0, 1e+9); fit->SetParLimits(numParPerPeak*i+4, 0, sigmaMax); fit->SetParLimits(numParPerPeak*i+5, -10, -2); } }else{ fit->SetParLimits(0, 0, 1e+9); fit->SetParLimits(2, 0, sigmaMax); fit->SetParLimits(3, 0, 1e+9); fit->SetParLimits(4, 0, sigmaMax); fit->SetParLimits(5, -10, -2); } specS->Fit("fit", "q"); const Double_t* paraE = fit->GetParErrors(); const Double_t* paraA = fit->GetParameters(); //======== calculate reduce chi-squared if( newPlot ) GoodnessofFit(specS, fit); double bw = specS->GetBinWidth(1); vector exPos; for(int i = 0; i < nPeaks ; i++){ exPos.push_back(paraA[numParPerPeak*i+1]); double totCount = paraA[numParPerPeak*i] + paraA[numParPerPeak*i+3]; double totCountErr = sqrt(paraE[numParPerPeak*i]*paraE[numParPerPeak*i] + paraE[numParPerPeak*i+3]*paraE[numParPerPeak*i+3]); printf("%2d , count: %8.0f(%3.0f)+%8.0f(%3.0f)=%8.0f(%3.0f), mean: %8.4f(%8.4f), sigma: %8.4f(%8.4f), skewneww: %4.1f(%4.1f) \n", i, paraA[numParPerPeak*i] / bw, paraE[numParPerPeak*i] /bw, paraA[numParPerPeak*i+3] / bw, paraE[numParPerPeak*i+3] /bw, totCount / bw, totCountErr /bw, paraA[numParPerPeak*i+1], paraE[numParPerPeak*i+1], paraA[numParPerPeak*i+2], paraE[numParPerPeak*i+2], paraA[numParPerPeak*i+5], paraE[numParPerPeak*i+5]); //PrintPar(fit, numParPerPeak); } if( newPlot ) cFitAuto->Update(); //draw the indivual fit fit->Draw("same"); const int nn = nPeaks; TF1 ** gFit = new TF1 *[nn]; TF1 ** kFit = new TF1 *[nn]; TF1 ** zFit = new TF1 *[nn]; for( int i = 0; i < nPeaks; i++){ gFit[i] = new TF1(Form("gFit%d", i), "[0] * TMath::Gaus(x,[1],[2], 1) + [3] * TMath::Gaus(x,[1],[4], 1) * ( 1 + TMath::Erf( [5]*(x-[1])/sqrt(2)/[4] ))", xMin, xMax); gFit[i]->SetParameter(0, paraA[numParPerPeak*i]); gFit[i]->SetParameter(1, paraA[numParPerPeak*i+1]); gFit[i]->SetParameter(2, paraA[numParPerPeak*i+2]); gFit[i]->SetParameter(3, paraA[numParPerPeak*i+3]); gFit[i]->SetParameter(4, paraA[numParPerPeak*i+4]); gFit[i]->SetParameter(5, paraA[numParPerPeak*i+5]); gFit[i]->SetLineColor(i+1); gFit[i]->SetNpx(1000); gFit[i]->SetLineWidth(1); gFit[i]->Draw("same"); kFit[i] = new TF1(Form("kFit%d", i), "[0] * TMath::Gaus(x,[1],[2], 1) * ( 1 + TMath::Erf( [3]*(x-[1])/sqrt(2)/[2] ))", xMin, xMax); kFit[i]->SetParameter(0, paraA[numParPerPeak*i+3]); kFit[i]->SetParameter(1, paraA[numParPerPeak*i+1]); kFit[i]->SetParameter(2, paraA[numParPerPeak*i+4]); kFit[i]->SetParameter(3, paraA[numParPerPeak*i+5]); kFit[i]->SetLineColor(i+1); kFit[i]->SetNpx(1000); kFit[i]->SetLineWidth(1); kFit[i]->Draw("same"); zFit[i] = new TF1(Form("zFit%d", i), "[0] * TMath::Gaus(x,[1],[2], 1)", xMin, xMax); zFit[i]->SetParameter(0, paraA[numParPerPeak*i]); zFit[i]->SetParameter(1, paraA[numParPerPeak*i+1]); zFit[i]->SetParameter(2, paraA[numParPerPeak*i+2]); zFit[i]->SetLineColor(i+1); zFit[i]->SetNpx(1000); zFit[i]->SetLineWidth(1); zFit[i]->Draw("same"); } specS->Draw("hist same"); return exPos; } //######################################## //###### fir N Gauss with estimated BG //######################################## void fitNGauss(TH1F * hist, int bgEst = 10, TString fitFile = "AutoFit_para.txt", TString optStat = ""){ printf("================================================================\n"); printf("================ fit N-Gauss with estimated BG ================\n"); printf(" * bgEst = larger of bgEst, more linear the estimated BG \n"); printf(" * need the file input \n"); printf(" \n"); printf(" 1) The histogram will be subtracted by the estimated BG. \n"); printf(" 2) n-Gauss will then be fitted the BG subtracted histogram \n"); printf("================================================================\n"); recentFitMethod = "fitNGauss"; bool isParaRead = loadFitParameters(fitFile); if( !isParaRead ) { printf("Please provide a valid input file\n"); return; } nPeaks = energy.size(); gStyle->SetOptStat(optStat); TCanvas *cFitNGauss = NewCanvas("cFitNGauss","Fit n-Gauss | fitNGauss", 1,4, 800, 300);; cFitNGauss->cd(1); ScaleAndDrawHist(hist, 0, 0); TH1F * specS = (TH1F*) hist->Clone(); double xMin = hist->GetXaxis()->GetXmin(); double xMax = hist->GetXaxis()->GetXmax(); int xBin = hist->GetXaxis()->GetNbins(); TString titleH; titleH.Form("fitNGauss (BG = %2d); Ex [MeV]; Count / %4.0f keV", bgEst, (xMax-xMin)*1000./xBin ); specS->SetTitle(titleH); specS->SetName("specS"); //=================== find peak and fi gStyle->SetOptFit(0); //cFitNGauss->cd(2)->SetGrid(); cFitNGauss->cd(2); if( bgEst > 0 ) { printf("============= estimating background...\n"); TSpectrum * peak = new TSpectrum(50); TH1 * h1 = peak->Background(hist, bgEst); cFitNGauss->cd(1); h1->Draw("same"); cFitNGauss->cd(2); printf("============= substracting the estimated background...\n"); specS->Sumw2(); specS->Add(h1, -1.); } specS->Draw("hist"); //========== Fitting printf("============= Fitting %d-Gauss..... \n", nPeaks); const int n = 3 * nPeaks; double * para = new double[n]; for(int i = 0; i < nPeaks ; i++){ para[3*i+0] = height[i] * 0.05 * TMath::Sqrt(TMath::TwoPi()); para[3*i+1] = energy[i]; para[3*i+2] = sigma[i]/2.; } TF1 * fit = new TF1("fit", nGauss, xMin, xMax, 3* nPeaks ); fit->SetLineWidth(3); fit->SetLineColor(1); fit->SetNpx(1000); fit->SetParameters(para); //fixing parameters for( int i = 0; i < nPeaks; i++){ fit->SetParLimits(3*i , 0, 1e9); if( energyFlag[i] == 1 ) { fit->FixParameter(3*i+1, energy[i]); }else{ fit->SetParLimits(3*i+1, lowE[i], highE[i]); } if( sigmaFlag[i] == 1 ) { fit->FixParameter(3*i+2, sigma[i]); }else{ fit->SetParLimits(3*i+2, 0, sigma[i]); } } specS->Fit("fit", "q"); const Double_t* paraE = fit->GetParErrors(); const Double_t* paraA = fit->GetParameters(); //======== calculate reduce chi-squared //GoodnessofFit(specS, fit); double bw = specS->GetBinWidth(1); for(int i = 0; i < nPeaks ; i++){ printf(" %2d , count: %8.0f(%3.0f), mean: %8.4f(%8.4f), sigma: %8.4f(%8.4f) \n", i, paraA[3*i] / bw, paraE[3*i] /bw, paraA[3*i+1], paraE[3*i+1], paraA[3*i+2], paraE[3*i+2]); } printf("\n"); //draw the indivual fit specS->Draw("hist"); fit->Draw("same"); const int nn = nPeaks; TF1 ** gFit = new TF1 *[nn]; for( int i = 0; i < nPeaks; i++){ gFit[i] = new TF1(Form("gFit%d", i), "[0] * TMath::Gaus(x,[1],[2], 1)", xMin, xMax); gFit[i]->SetParameter(0, paraA[3*i]); gFit[i]->SetParameter(1, paraA[3*i+1]); gFit[i]->SetParameter(2, paraA[3*i+2]); gFit[i]->SetLineColor(i+1); gFit[i]->SetNpx(1000); gFit[i]->SetLineWidth(1); gFit[i]->Draw("same"); } specS->Draw("hist same"); //specS->Draw("E same"); //======== print text on plot TLatex text; text.SetNDC(); text.SetTextFont(82); text.SetTextSize(0.06); double chi2 = fit->GetChisquare(); int ndf = fit->GetNDF(); text.DrawLatex(0.15, 0.8, Form("#bar{#chi^{2}} : %5.3f", chi2/ndf)); cFitNGauss->cd(3); PlotResidual(specS, fit); cFitNGauss->cd(4); text.SetTextSize(0.05); text.SetTextColor(2); text.DrawLatex(0.1, 0.9, Form(" %13s, %18s, %18s", "count", "mean", "sigma")); BestFitCount.clear(); BestFitMean.clear(); BestFitSigma.clear(); for( int i = 0; i < nPeaks; i++){ text.DrawLatex(0.1, 0.8-0.05*i, Form(" %2d, %8.0f(%3.0f), %8.4f(%8.4f), %8.4f(%8.4f)\n", i, paraA[3*i] / bw, paraE[3*i] /bw, paraA[3*i+1], paraE[3*i+1], paraA[3*i+2], paraE[3*i+2])); BestFitCount.push_back(paraA[3*i]/ bw); BestFitMean.push_back(paraA[3*i+1]); BestFitSigma.push_back(paraA[3*i+2]); } cFitNGauss->Update(); } //######################################## //#### not updated //######################################## void fitNGaussSub(TH1F * hist, int bgEst = 10, int degPol = 1, TString fitFile = "AutoFit_para.txt", TString optStat = ""){ printf("==================================================================\n"); printf("======== fit N-Gauss with estimated BG (method-2) ================\n"); printf(" * bgEst = larger of bgEst, more linear the estimated BG \n"); printf(" * degPol = degree of polynomial \n"); printf(" * need the file input \n"); printf(" \n"); printf(" 1) A BG is estimated, and then the BG is fitted by a polynomial. \n"); printf(" 2) The histogram will be subtracted by the polynomial. \n"); printf(" 3) n-Gauss will then be fitted the subtracted histogram \n"); printf("================================================================\n"); recentFitMethod = "fitNGaussSub"; bool isParaRead = loadFitParameters(fitFile); if( !isParaRead ) { printf("Please provide a valid input file\n"); return; } nPeaks = energy.size(); nPols = degPol; gStyle->SetOptStat(optStat); TCanvas *cFitNGaussSub = NewCanvas("cFitNGaussSub","Fit n-Gauss, replace estimated BG with Pol-n | fitNGauss2", 1, 4, 800, 300 ); //if(! cFitNGaussSub->GetShowEventStatus() ) cFitNGaussSub->ToggleEventStatus(); cFitNGaussSub->cd(1); ScaleAndDrawHist(hist, 0, 0); TH1F * specS = (TH1F*) hist->Clone(); double xMin = hist->GetXaxis()->GetXmin(); double xMax = hist->GetXaxis()->GetXmax(); int xBin = hist->GetXaxis()->GetNbins(); TString titleH; titleH.Form("fitNGauss2 (replace Est. BG with Pol-%d) (BG = %2d); Ex [MeV]; Count / %4.0f keV", degPol, bgEst, (xMax-xMin)*1000./xBin ); specS->SetTitle(titleH); specS->SetName("specS"); printf("============= estimating background...\n"); TSpectrum * peak = new TSpectrum(50); TH1 * h1 = peak->Background(hist, bgEst); printf("============= fit the est-background with a polynomial function...\n"); TString polExp = "[0]"; for( int i = 1; i < degPol + 1; i++){ polExp += Form("+[%d]*TMath::Power(x,%d)", i, i ); } TF1 * bg = new TF1("bg", polExp.Data(), xMin, xMax); bg->SetParameter(0, 50); bg->SetParameter(0, 0); bg->SetLineColor(2); bg->SetNpx(1000); h1->Fit("bg", "R", ""); hist->Draw(); bg->Draw("same"); //======== print text on plot TLatex text; text.SetNDC(); text.SetTextFont(82); text.SetTextSize(0.04); const Double_t * paraAt = bg->GetParameters(); const Double_t * paraEt = bg->GetParErrors(); for( int i = 0; i < degPol + 1; i++){ text.DrawLatex(0.6, 0.85 - 0.05*i, Form("%4s : %8.4e(%8.4e)\n", Form("p%d", i), paraAt[i], paraEt[i])); } gStyle->SetOptFit(0); // cFitNGaussSub->cd(2)->SetGrid(); cFitNGaussSub->cd(2); printf("============= substracting the polynomial background...\n"); specS->Sumw2(); specS->Add(bg, -1.); specS->Draw("hist"); //========== Fitting printf("============= Fitting..... \n"); const int n = 3 * nPeaks; double * para = new double[n]; for(int i = 0; i < nPeaks ; i++){ para[3*i+0] = height[i] * 0.05 * TMath::Sqrt(TMath::TwoPi()); para[3*i+1] = energy[i]; para[3*i+2] = sigma[i]/2.; } TF1 * fit = new TF1("fit", nGauss, xMin, xMax, 3* nPeaks ); fit->SetLineWidth(3); fit->SetLineColor(1); fit->SetNpx(1000); fit->SetParameters(para); //fixing parameters for( int i = 0; i < nPeaks; i++){ fit->SetParLimits(3*i , 0, 1e9); if( energyFlag[i] == 1 ) { fit->FixParameter(3*i+1, energy[i]); }else{ fit->SetParLimits(3*i+1, lowE[i], highE[i]); } if( sigmaFlag[i] == 1 ) { fit->FixParameter(3*i+2, sigma[i]); }else{ fit->SetParLimits(3*i+2, 0, sigma[i]); } } specS->Fit("fit", "q"); const Double_t* paraE = fit->GetParErrors(); const Double_t* paraA = fit->GetParameters(); GoodnessofFit(specS, fit); double bw = specS->GetBinWidth(1); for(int i = 0; i < nPeaks ; i++){ printf(" %2d , count: %8.0f(%3.0f), mean: %8.4f(%8.4f), sigma: %8.4f(%8.4f) \n", i, paraA[3*i] / bw, paraE[3*i] /bw, paraA[3*i+1], paraE[3*i+1], paraA[3*i+2], paraE[3*i+2]); } printf("\n"); //draw the indivual fit specS->Draw("hist"); fit->Draw("same"); const int nn = nPeaks; TF1 ** gFit = new TF1 *[nn]; for( int i = 0; i < nPeaks; i++){ gFit[i] = new TF1(Form("gFit%d", i), "[0] * TMath::Gaus(x,[1],[2], 1)", xMin, xMax); gFit[i]->SetParameter(0, paraA[3*i]); gFit[i]->SetParameter(1, paraA[3*i+1]); gFit[i]->SetParameter(2, paraA[3*i+2]); gFit[i]->SetLineColor(i+1); gFit[i]->SetNpx(1000); gFit[i]->SetLineWidth(1); gFit[i]->Draw("same"); } specS->Draw("hist same"); //specS->Draw("E same"); double chi2 = fit->GetChisquare(); int ndf = fit->GetNDF(); text.SetTextSize(0.06); text.DrawLatex(0.15, 0.8, Form("#bar{#chi^{2}} : %5.3f", chi2/ndf)); cFitNGaussSub->cd(3); PlotResidual(specS, fit); cFitNGaussSub->cd(4); text.SetTextSize(0.05); text.SetTextColor(2); text.DrawLatex(0.1, 0.9, Form(" %13s, %18s, %18s", "count", "mean", "sigma")); BestFitCount.clear(); BestFitMean.clear(); BestFitSigma.clear(); for( int i = 0; i < nPeaks; i++){ text.DrawLatex(0.1, 0.8-0.05*i, Form(" %2d, %8.0f(%3.0f), %8.4f(%8.4f), %8.4f(%8.4f)\n", i, paraA[3*i] / bw, paraE[3*i] /bw, paraA[3*i+1], paraE[3*i+1], paraA[3*i+2], paraE[3*i+2])); BestFitCount.push_back(paraA[3*i]/ bw); BestFitMean.push_back(paraA[3*i+1]); BestFitSigma.push_back(paraA[3*i+2]); } } //######################################## //#### fit N-Gauss with pol-n BG //######################################## void fitNGaussPol(TH1F * hist, int degPol, TString fitFile = "AutoFit_para.txt",double xMin = 0, double xMax = 0, TString optStat = ""){ printf("================================================================\n"); printf("================ fit N-Gauss with Pol-%1d BG ==================\n", degPol); printf(" * degPol = degree of polynomial \n"); printf(" * need the file input \n"); printf(" * xMin, xMax = if left empty, full range will be used\n"); printf(" \n"); printf(" 1) The histogram will be fitted by n-Gauss + Pol \n"); printf("================================================================\n"); recentFitMethod = "fitNGaussPol"; bool isParaRead = loadFitParameters(fitFile); if( !isParaRead ) { printf("Please provide a valid input file\n"); return; } gStyle->SetOptStat(optStat); nPeaks = energy.size(); nPols = degPol; TCanvas * cFitNGaussPol = NewCanvas("cFitNGaussPol", Form("Fitting with n-Gauss + pol-%d | fitNGaussPol", degPol), 1, 3, 800, 300); //if(! cFitNGaussPol->GetShowEventStatus() ) cFitNGaussPol->ToggleEventStatus(); cFitNGaussPol->cd(1); ScaleAndDrawHist(hist, xMin, xMax); if( xMin == xMax){ xMin = hist->GetXaxis()->GetXmin(); xMax = hist->GetXaxis()->GetXmax(); } int xBin = hist->GetXaxis()->GetNbins(); printf("============= find the polynomial background ..... \n"); int nPar = 3 * nPeaks + nPols + 1; double * para = new double[nPar]; for(int i = 0; i < nPeaks ; i++){ para[3*i+0] = height[i] * 0.05 * TMath::Sqrt(TMath::TwoPi()); para[3*i+1] = energy[i]; para[3*i+2] = sigma[i]/2.; } for(int i = 0; i < nPols + 1; i++){ //if( ggg == NULL ){ para[3*nPeaks+i] = gRandom->Rndm()/TMath::Power(10, 3*i); //}else{ // para[3*nPeaks+i] = gPara[i]; //} } TF1 * fit = new TF1("fit", nGaussPol, xMin, xMax, nPar ); fit->SetLineWidth(3); fit->SetLineColor(1); fit->SetNpx(1000); fit->SetParameters(para); //fixing parameters for( int i = 0; i < nPeaks; i++){ fit->SetParLimits(3*i , 0, 1e9); if( energyFlag[i] == 1 ) { fit->FixParameter(3*i+1, energy[i]); }else{ fit->SetParLimits(3*i+1, lowE[i], highE[i]); } if( sigmaFlag[i] == 1 ) { fit->FixParameter(3*i+2, sigma[i]); }else{ fit->SetParLimits(3*i+2, 0, sigma[i]); } } hist->Fit("fit", "Rq"); //=========== get the polynomial part const Double_t* paraA = fit->GetParameters(); const Double_t* paraE = fit->GetParErrors(); TString polExp = "[0]"; for( int i = 1; i < degPol + 1; i++){ polExp += Form("+[%d]*TMath::Power(x,%d)", i, i ); } TF1 * bg = new TF1("bg", polExp.Data(), xMin, xMax); for( int i = 0; i < degPol + 1; i++){ bg->SetParameter(i, paraA[3*nPeaks+i]); } bg->SetNpx(1000); for( int i = 0; i < degPol + 1; i++){ printf("%4s : %8.4e(%8.4e)\n", Form("p%d", i), paraA[3*nPeaks+i], paraE[3*nPeaks+i]); } printf("====================================\n"); cFitNGaussPol->cd(1); bg->Draw("same"); TLatex text; text.SetNDC(); text.SetTextFont(82); text.SetTextSize(0.04); text.SetTextColor(1); for( int i = 0; i < degPol + 1; i++){ text.DrawLatex(0.6, 0.85 - 0.05*i, Form("%4s : %8.4e(%8.4e)\n", Form("p%d", i), paraA[3*nPeaks+i], paraE[3*nPeaks+i])); } double chi2 = fit->GetChisquare(); int ndf = fit->GetNDF(); text.SetTextSize(0.06); text.DrawLatex(0.15, 0.8, Form("#bar{#chi^{2}} : %5.3f", chi2/ndf)); //GoodnessofFit(specS, fit); double bw = hist->GetBinWidth(1); for(int i = 0; i < nPeaks ; i++){ printf(" %2d , count: %8.0f(%3.0f), mean: %8.4f(%8.4f), sigma: %8.4f(%8.4f) \n", i, paraA[3*i] / bw, paraE[3*i] /bw, paraA[3*i+1], paraE[3*i+1], paraA[3*i+2], paraE[3*i+2]); } printf("\n"); const int nn = nPeaks; TF1 ** gFit = new TF1 *[nn]; for( int i = 0; i < nPeaks; i++){ gFit[i] = new TF1(Form("gFit%d", i), "[0] * TMath::Gaus(x,[1],[2], 1)", xMin, xMax); gFit[i]->SetParameter(0, paraA[3*i]); gFit[i]->SetParameter(1, paraA[3*i+1]); gFit[i]->SetParameter(2, paraA[3*i+2]); gFit[i]->SetLineColor(i+1); gFit[i]->SetNpx(1000); gFit[i]->SetLineWidth(1); gFit[i]->Draw("same"); } cFitNGaussPol->Update(); cFitNGaussPol->cd(2); PlotResidual(hist, fit); cFitNGaussPol->cd(3); text.SetNDC(); text.SetTextFont(82); text.SetTextSize(0.05); text.SetTextColor(2); text.DrawLatex(0.1, 0.9, Form(" %13s, %18s, %18s", "count", "mean", "sigma")); BestFitCount.clear(); BestFitMean.clear(); BestFitSigma.clear(); for( int i = 0; i < nPeaks; i++){ text.DrawLatex(0.1, 0.8-0.05*i, Form(" %2d, %8.0f(%3.0f), %8.4f(%8.4f), %8.4f(%8.4f)\n", i, paraA[3*i] / bw, paraE[3*i] /bw, paraA[3*i+1], paraE[3*i+1], paraA[3*i+2], paraE[3*i+2])); BestFitCount.push_back(paraA[3*i]/ bw); BestFitMean.push_back(paraA[3*i+1]); BestFitSigma.push_back(paraA[3*i+2]); } } //######################################## //#### fit N-Gauss with pol-n BG //######################################## void fitNGaussPolSub(TH1F * hist, int degPol, TString fitFile = "AutoFit_para.txt",double xMin = 0, double xMax = 0, TString optStat = ""){ printf("================================================================\n"); printf("========= fit N-Gauss with Pol-%1d BG / 2nd method ============\n", degPol); printf(" * degPol = degree of polynomial \n"); printf(" * need the file input \n"); printf(" * xMin, xMax = if left empty, full range will be used\n"); printf(" \n"); printf(" 1) The histogram will be fitted by n-Gauss + Pol -> to get the estimated BG \n"); printf(" 2) The histogram will be subtracted by the Pol BG. \n"); printf(" 3) n-Gauss will then be fitted the BG subtracted histogram \n"); printf("================================================================\n"); recentFitMethod = "fitNGaussPolSub"; bool isParaRead = loadFitParameters(fitFile); if( !isParaRead ) { printf("Please provide a valid input file\n"); return; } gStyle->SetOptStat(optStat); nPeaks = energy.size(); nPols = degPol; TCanvas * cFitNGaussPolSub = NewCanvas("cFitNGaussPolSub", Form("Fitting with n-Gauss + pol-%d (method-2) | fitGaussPol2", degPol), 1, 4, 800, 300); //if(! cFitNGaussPol->GetShowEventStatus() ) cFitNGaussPol->ToggleEventStatus(); cFitNGaussPolSub->cd(1); ScaleAndDrawHist(hist, xMin, xMax); if( xMin == xMax){ xMin = hist->GetXaxis()->GetXmin(); xMax = hist->GetXaxis()->GetXmax(); } int xBin = hist->GetXaxis()->GetNbins(); printf("============= find the polynomial background ..... \n"); int nPar = 3 * nPeaks + nPols + 1; double * para = new double[nPar]; for(int i = 0; i < nPeaks ; i++){ para[3*i+0] = height[i] * 0.05 * TMath::Sqrt(TMath::TwoPi()); para[3*i+1] = energy[i]; para[3*i+2] = sigma[i]/2.; } for(int i = 0; i < nPols + 1; i++){ para[3*nPeaks+i] = gRandom->Rndm()/TMath::Power(10, 3*i); } TF1 * fit = new TF1("fit", nGaussPol, xMin, xMax, nPar ); fit->SetLineWidth(3); fit->SetLineColor(1); fit->SetNpx(1000); fit->SetParameters(para); //fixing parameters for( int i = 0; i < nPeaks; i++){ fit->SetParLimits(3*i , 0, 1e9); if( energyFlag[i] == 1 ) { fit->FixParameter(3*i+1, energy[i]); }else{ fit->SetParLimits(3*i+1, lowE[i], highE[i]); } if( sigmaFlag[i] == 1 ) { fit->FixParameter(3*i+2, sigma[i]); }else{ fit->SetParLimits(3*i+2, 0, sigma[i]); } } hist->Fit("fit", "nq"); //=========== get the polynomial part and substract const Double_t* paraAt = fit->GetParameters(); const Double_t* paraEt = fit->GetParErrors(); TString polExp = "[0]"; for( int i = 1; i < degPol + 1; i++){ polExp += Form("+[%d]*TMath::Power(x,%d)", i, i ); } TF1 * bg = new TF1("bg", polExp.Data(), xMin, xMax); for( int i = 0; i < degPol + 1; i++){ bg->SetParameter(i, paraAt[3*nPeaks+i]); } bg->SetNpx(1000); for( int i = 0; i < degPol + 1; i++){ printf("%4s : %8.4e(%8.4e)\n", Form("p%d", i), paraAt[3*nPeaks+i], paraEt[3*nPeaks+i]); } printf("====================================\n"); cFitNGaussPolSub->cd(1); bg->Draw("same"); TH1F * specS = (TH1F*) hist->Clone(); TString titleH; titleH.Form("pol-%d BG Subtracted spectrum (fitNGaussPol-2); Ex [MeV]; Count / %4.0f keV", degPol, (xMax-xMin)*1000./xBin ); specS->SetTitle(titleH); specS->SetName("specS"); //=================== find peak and fit gStyle->SetOptFit(0); ///cFitNGaussPol->cd(2)->SetGrid(); cFitNGaussPolSub->cd(2); printf("============= substracting the polynomial background...\n"); specS->Sumw2(); specS->Add(bg, -1.); specS->Draw("hist"); //======= fit again printf("============= fitting the subtracted spectrum.... \n"); nPar = 3* nPeaks; TF1 * fita = new TF1("fita", nGauss, xMin, xMax, nPar ); fita->SetLineWidth(3); fita->SetLineColor(1); fita->SetNpx(1000); fita->SetParameters(para); //fixing parameters for( int i = 0; i < nPeaks; i++){ fita->SetParLimits(3*i , 0, 1e9); if( energyFlag[i] == 1 ) { fita->FixParameter(3*i+1, energy[i]); }else{ fita->SetParLimits(3*i+1, lowE[i], highE[i]); } if( sigmaFlag[i] == 1 ) { fita->FixParameter(3*i+2, sigma[i]); }else{ fita->SetParLimits(3*i+2, 0, sigma[i]); } } specS->Fit("fita", "q"); const Double_t* paraE = fita->GetParErrors(); const Double_t* paraA = fita->GetParameters(); //GoodnessofFit(specS, fit); double bw = specS->GetBinWidth(1); for(int i = 0; i < nPeaks ; i++){ printf(" %2d , count: %8.0f(%3.0f), mean: %8.4f(%8.4f), sigma: %8.4f(%8.4f) \n", i, paraA[3*i] / bw, paraE[3*i] /bw, paraA[3*i+1], paraE[3*i+1], paraA[3*i+2], paraE[3*i+2]); } printf("\n"); //draw the indivual fit specS->Draw("hist"); fita->Draw("same"); const int nn = nPeaks; TF1 ** gFit = new TF1 *[nn]; for( int i = 0; i < nPeaks; i++){ gFit[i] = new TF1(Form("gFit%d", i), "[0] * TMath::Gaus(x,[1],[2], 1)", xMin, xMax); gFit[i]->SetParameter(0, paraA[3*i]); gFit[i]->SetParameter(1, paraA[3*i+1]); gFit[i]->SetParameter(2, paraA[3*i+2]); gFit[i]->SetLineColor(i+1); gFit[i]->SetNpx(1000); gFit[i]->SetLineWidth(1); gFit[i]->Draw("same"); } specS->Draw("hist same"); //specS->Draw("E same"); TLatex text; text.SetNDC(); text.SetTextFont(82); text.SetTextSize(0.04); text.SetTextColor(1); for( int i = 0; i < degPol + 1; i++){ text.DrawLatex(0.6, 0.85 - 0.05*i, Form("%4s : %8.4e(%8.4e)\n", Form("p%d", i), paraA[3*nPeaks+i], paraE[3*nPeaks+i])); } double chi2 = fita->GetChisquare(); int ndf = fita->GetNDF(); text.SetTextSize(0.06); text.DrawLatex(0.15, 0.8, Form("#bar{#chi^{2}} : %5.3f", chi2/ndf)); cFitNGaussPolSub->cd(3); PlotResidual(specS, fita); cFitNGaussPolSub->cd(4); text.SetNDC(); text.SetTextFont(82); text.SetTextSize(0.05); text.SetTextColor(2); text.DrawLatex(0.1, 0.9, Form(" %13s, %18s, %18s", "count", "mean", "sigma")); BestFitCount.clear(); BestFitMean.clear(); BestFitSigma.clear(); for( int i = 0; i < nPeaks; i++){ text.DrawLatex(0.1, 0.8-0.05*i, Form(" %2d, %8.0f(%3.0f), %8.4f(%8.4f), %8.4f(%8.4f)\n", i, paraA[3*i] / bw, paraE[3*i] /bw, paraA[3*i+1], paraE[3*i+1], paraA[3*i+2], paraE[3*i+2])); BestFitCount.push_back(paraA[3*i]/ bw); BestFitMean.push_back(paraA[3*i+1]); BestFitSigma.push_back(paraA[3*i+2]); } } //################################################# //#### fit N-Gauss with pol-n BG using mouse click //################################################# int nClick = 0; bool peakFlag = 1; vector xPeakList; vector yPeakList; vector xBGList; vector yBGList; TH1F * tempHist; int markerStyle = 23; int markerColor = 2; int markerBGColor = 4; void Clicked() { int event = gPad->GetEvent(); if (event != 11) return; TObject *select = gPad->GetSelected(); if (!select) return; TH1F *h = (TH1F*)select; int px = gPad->GetEventX(); double xd = gPad->AbsPixeltoX(px); float x = gPad->PadtoX(xd); if( peakFlag ) { xPeakList.push_back(x); }else{ xBGList.push_back(x); } int b = tempHist->FindBin(x); double y = tempHist->GetBinContent(b); if( peakFlag ){ yPeakList.push_back(y); }else{ yBGList.push_back(y); } // add marker in the histogram TMarker * mark = new TMarker(x,y, markerStyle); mark->SetMarkerColor(markerColor); tempHist->GetListOfFunctions()->Add(mark); printf("%2d | x : %8.2f , y : %.0f \n", nClick, x, y); nClick ++; } void SaveFitPara(bool isBestFit = true, TString fileName = "AutoFit_para.txt"){ if( xPeakList.size() == 0 && BestFitMean.size() == 0 ){ printf(" no fit paramaters availible. \n"); return; } if( recentFitMethod == "fitGF3Pol" || recentFitMethod == "fitGF3" ){ printf(" Not support for GF3 fitting. \n"); return; } printf("Save to : %s \n", fileName.Data()); FILE * file_out; file_out = fopen (fileName.Data(), "w+"); fprintf(file_out, "# for n-Gauss fit, can use \"#\", or \"//\" to comment out whole line\n"); fprintf(file_out, "# peak low high fixed? sigma_Max fixed? hight\n"); if ( xPeakList.size() == 0 || isBestFit ){ for( int i = 0 ; i < BestFitMean.size() ; i++){ fprintf(file_out, "%.3f %.3f %.3f 0 %.3f 0 %.0f\n", BestFitMean[i], BestFitMean[i] - 5*BestFitSigma[i], BestFitMean[i] + 5*BestFitSigma[i], BestFitSigma[i], BestFitCount[i]); } }else{ for( int i = 0 ; i < xPeakList.size() ; i++){ fprintf(file_out, "%.3f %.3f %.3f 0 %.3f 0 %.0f\n", xPeakList[i], xPeakList[i] - 5*sigma[i], xPeakList[i] + 5*sigma[i], sigma[i], yPeakList[i]); } } fclose(file_out); } void clickFitNGaussPol(TH1F * hist, int degPol, double sigmaMax = 0, double meanRange = 0){ printf("=========================================================\n"); printf("======== fit n-Gauss + Pol-%d BG using mouse click =====\n", degPol ); printf("==========================================================\n"); recentFitMethod = "clickFitNGaussPol"; gStyle->SetOptStat(""); gStyle->SetOptFit(0); TCanvas * cClickFitNGaussPol = NULL; if( gROOT->FindObjectAny("cClickFitGaussPol") == NULL ){ cClickFitNGaussPol = new TCanvas("cClickFitNGaussPol", Form("fit Gauss & Pol-%d by mouse click | clickFitGaussPol", degPol), 1400, 1200); }else{ delete gROOT->FindObjectAny("cClickFitNGaussPol") ; cClickFitNGaussPol = new TCanvas("cClickFitNGaussPol", Form("fit Gauss & Pol-%d by mouse click | clickFitGaussPol", degPol), 1400, 1200); } cClickFitNGaussPol->Divide(1, 4); for(int i = 1; i <= 4 ; i++){ cClickFitNGaussPol->cd(i)->SetGrid(0,0); } if(! cClickFitNGaussPol->GetShowEventStatus() ) cClickFitNGaussPol->ToggleEventStatus(); cClickFitNGaussPol->cd(1); hist->GetListOfFunctions()->Clear(); ScaleAndDrawHist(hist, 0, 0); TH1F* hspec = (TH1F*) hist->Clone(); hspec->Sumw2(); cClickFitNGaussPol->Update(); cClickFitNGaussPol->Draw(); TLatex helpMsg; helpMsg.SetNDC(); helpMsg.SetTextFont(82); helpMsg.SetTextSize(0.06); helpMsg.SetTextColor(kRed); helpMsg.DrawLatex(0.15, 0.8, "Click for peaks: (Double-click / x / Ctrl to end) "); printf("--------- Click the histogram for peaks: (Double-click / x / Ctrl to end) \n"); nClick = 0; xPeakList.clear(); yPeakList.clear(); markerColor = 2; markerStyle = 23; peakFlag = 1; cClickFitNGaussPol->cd(1)->SetCrosshair(1); cClickFitNGaussPol->cd(1)->AddExec("ex", "Clicked()"); tempHist = hist; TObject * obj ; do{ obj = gPad->WaitPrimitive(); if( obj == NULL ) break; }while( obj != NULL); if( degPol >= 0 ){ printf("--------- Click the histogram for Background: (Double-click / x / Ctrl to end) \n"); printf(" * when no input, program will estimate \n"); cClickFitNGaussPol->cd(1)->Clear(); hist->Draw(); helpMsg.SetTextColor(markerBGColor); helpMsg.DrawLatex(0.15, 0.8, "Click for BG: (Double-click / x / Ctrl to end) "); helpMsg.DrawLatex(0.15, 0.75, "* when no input, program will estimate"); cClickFitNGaussPol->Update(); cClickFitNGaussPol->Draw(); nClick = 0; xBGList.clear(); yBGList.clear(); markerColor = markerBGColor; markerStyle = 33; peakFlag = 0; cClickFitNGaussPol->cd(1)->AddExec("ex", "Clicked()"); do{ obj = gPad->WaitPrimitive(); if( obj == NULL ) break; }while( obj != NULL); } cClickFitNGaussPol->cd(1)->DeleteExec("ex"); cClickFitNGaussPol->cd(1)->SetCrosshair(0); cClickFitNGaussPol->cd(1)->Clear(); hist->Draw(); tempHist = NULL; cClickFitNGaussPol->Update(); cClickFitNGaussPol->Draw(); nPols = degPol; double xMin = hspec->GetXaxis()->GetXmin(); double xMax = hspec->GetXaxis()->GetXmax(); TString polExp = "[0]"; for( int i = 1; i < degPol + 1; i++) polExp += Form("+[%d]*TMath::Power(x,%d)", i, i ); TF1 *bg = new TF1("bg", polExp.Data(), xMin, xMax); bg->SetNpx(1000); bg->SetLineColor(markerBGColor); bg->SetLineWidth(1); if( xBGList.size() > 0 ) { printf("---------------- fit the BG with Pol-%d \n", nPols); TGraph * gBG = new TGraph((int) xBGList.size(), &xBGList[0], &yBGList[0]); for( int i = 0; i < degPol + 1; i++) bg->SetParameter(i, gRandom->Rndm()/TMath::Power(10, 3*i)); gBG->Fit("bg", "Rq"); bg->Draw("same"); //printf("--------------- Subtracting the BG \n"); //hspec->Add(bg, -1); }else{ for( int i = 0; i < nPols+1; i++) bg->SetParameter(i, 0.); } nPeaks = (int) xPeakList.size(); if( sigmaMax == 0 ){ printf("------------- Estimate sigma for each peak \n"); sigma.clear(); int binMin = hist->FindBin(xMin); int binMax = hist->FindBin(xMax); for( int i = 0; i < nPeaks ; i++){ int b0 = hist->FindBin(xPeakList[i]); double estBG = bg->Eval(xPeakList[i]); double sMin = (xMax-xMin)/5., sMax = (xMax-xMin)/5.; //---- backward search, stop when for( int b = b0-1 ; b > binMin ; b-- ){ double y = hist->GetBinContent(b); double x = hist->GetBinCenter(b); if( y - (bg->Eval(x)) < (yPeakList[i]-estBG)/2. ) { sMin = xPeakList[i] - hist->GetBinCenter(b); break; } } //---- forward search, stop when for( int b = b0+1 ; b < binMax ; b++ ){ double y = hist->GetBinContent(b); double x = hist->GetBinCenter(b); if( y - (bg->Eval(x)) < (yPeakList[i]-estBG)/2. ) { sMax = hist->GetBinCenter(b) - xPeakList[i]; break; } } double temp = TMath::Min(sMin, sMax); /// When there are multiple peaks closely packed : if( i > 0 && temp > 2.5 * sigma.back() ) temp = sigma.back(); sigma.push_back(temp); printf("%2d | x : %8.2f | sigma(est) %f \n", i, xPeakList[i], sigma[i]); } //---- use the mean of the sigma double sigma0 = 0; for( int i = 0; i < nPeaks ; i++) sigma0 += sigma[i]; sigma0 = sigma0/(nPeaks+1); for( int i = 0; i < nPeaks ; i++) sigma[i] = sigma0; printf("========== use the mean sigma : %f \n", sigma0); }else if( sigmaMax < 0 ){ printf("========== use user input sigma : %f (fixed)\n", abs(sigmaMax)); sigma.clear(); for( int i = 0; i < nPeaks ; i++) sigma.push_back(abs(sigmaMax)); }else if( sigmaMax > 0 ){ printf("========== use user input sigma : %f/2. \n", sigmaMax/2.); sigma.clear(); for( int i = 0; i < nPeaks ; i++) sigma.push_back(sigmaMax/2.); } printf("-------------- Fit the spectrum with %d-Gauss + Pol-%d\n", nPeaks, nPols ); cClickFitNGaussPol->cd(2); hspec->Draw("hist"); int nPar = 3 * nPeaks + nPols + 1; double * para = new double[nPar]; for(int i = 0; i < nPeaks ; i++){ para[3*i+0] = yPeakList[i] * 0.05 * TMath::Sqrt(TMath::TwoPi()); para[3*i+1] = xPeakList[i]; if( sigmaMax == 0){ para[3*i+2] = sigma[i]; }else if(sigmaMax < 0 ){ para[3*i+2] = abs(sigmaMax); }else if(sigmaMax > 0 ){ para[3*i+2] = sigmaMax/2.; } } for(int i = 0; i < nPols+1 ; i++){ para[3*nPeaks+i] = bg->GetParameter(i); } TF1 * fit = new TF1("fit", nGaussPol, xMin, xMax, nPar ); fit->SetLineWidth(3); fit->SetLineColor(1); fit->SetNpx(1000); fit->SetParameters(para); //limit parameters for( int i = 0; i < nPeaks; i++){ fit->SetParLimits(3*i , 0, 1e9); if( meanRange <= 0 ) { double dE1, dE2; if( i == 0 ){ dE2 = xPeakList[i+1] - xPeakList[i]; dE1 = dE2; }else if ( i == nPeaks-1 ){ dE1 = xPeakList[i] - xPeakList[i-1]; dE2 = dE1; }else{ dE1 = xPeakList[i] - xPeakList[i-1]; dE2 = xPeakList[i+1] - xPeakList[i]; } fit->SetParLimits(3*i+1, xPeakList[i] - dE1 , xPeakList[i] + dE2 ); }else{ fit->SetParLimits(3*i+1, xPeakList[i] - meanRange/2. , xPeakList[i] + meanRange/2. ); } if( sigmaMax== 0 ) fit->SetParLimits(3*i+2, 0, 1.5*sigma[i]); // add 50% margin of sigma if( sigmaMax < 0 ) fit->FixParameter(3*i+2, abs(sigmaMax)); if( sigmaMax > 0 ) fit->SetParLimits(3*i+2, 0, sigmaMax); } hspec->Fit("fit", "Rq"); fit->Draw("same"); //=========== get the polynomial part const Double_t* paraA = fit->GetParameters(); const Double_t* paraE = fit->GetParErrors(); double chi2 = fit->GetChisquare(); int ndf = fit->GetNDF(); double bw = hspec->GetBinWidth(1); for(int i = 0; i < nPeaks ; i++){ printf(" %2d , count: %8.0f(%3.0f), mean: %8.4f(%8.4f), sigma: %8.4f(%8.4f) \n", i, paraA[3*i] / bw, paraE[3*i] /bw, paraA[3*i+1], paraE[3*i+1], paraA[3*i+2], paraE[3*i+2]); } printf("\n"); TLatex text; text.SetNDC(); text.SetTextFont(82); text.SetTextSize(0.06); text.DrawLatex(0.15, 0.8, Form("#bar{#chi^{2}} : %5.3f", chi2/ndf)); for( int i = 0; i < degPol + 1; i++){ text.DrawLatex(0.6, 0.85 - 0.05*i, Form("%4s : %8.4e(%8.4e)\n", Form("p%d", i), paraA[3*nPeaks+i], paraE[3*nPeaks+i])); } TF1 ** gFit = new TF1 *[nPeaks]; for( int i = 0; i < nPeaks; i++){ gFit[i] = new TF1(Form("gFit%d", i), "[0] * TMath::Gaus(x,[1],[2], 1)", xMin, xMax); gFit[i]->SetParameter(0, paraA[3*i]); gFit[i]->SetParameter(1, paraA[3*i+1]); gFit[i]->SetParameter(2, paraA[3*i+2]); gFit[i]->SetLineColor(i+1); gFit[i]->SetNpx(1000); gFit[i]->SetLineWidth(1); gFit[i]->Draw("same"); } if( degPol >= 0 ){ TF1 *bg2 = new TF1("bg", polExp.Data(), xMin, xMax); bg2->SetNpx(1000); bg2->SetLineColor(markerBGColor); bg2->SetLineWidth(1); for( int i = 0; i < nPols + 1; i++){ bg2->SetParameter(i, paraA[3*nPeaks+i]); } bg2->Draw("same"); } cClickFitNGaussPol->cd(3); PlotResidual(hspec, fit); cClickFitNGaussPol->cd(4); text.SetTextSize(0.05); text.SetTextColor(2); text.DrawLatex(0.1, 0.9, Form(" %13s, %18s, %18s", "count", "mean", "sigma")); BestFitCount.clear(); BestFitMean.clear(); BestFitSigma.clear(); for( int i = 0; i < nPeaks; i++){ text.DrawLatex(0.1, 0.8-0.05*i, Form(" %2d, %8.0f(%3.0f), %8.4f(%8.4f), %8.4f(%8.4f)\n", i, paraA[3*i] / bw, paraE[3*i] /bw, paraA[3*i+1], paraE[3*i+1], paraA[3*i+2], paraE[3*i+2])); BestFitCount.push_back(paraA[3*i]/ bw); BestFitMean.push_back(paraA[3*i+1]); BestFitSigma.push_back(paraA[3*i+2]); } } void clickFitNGaussPolSub(TH1F * hist, int degPol, double sigmaMax = 0, double meanRange = 0){ printf("=========================================================\n"); printf("= fit n-Gauss + Pol-%d BG using mouse click (method-2) =\n", degPol ); printf("==========================================================\n"); recentFitMethod = "clickFitNGaussPolSub"; gStyle->SetOptStat(""); gStyle->SetOptFit(0); TCanvas * cClickFitNGaussPolsub = NULL; if( gROOT->FindObjectAny("cClickFitGaussPolsub") == NULL ){ cClickFitNGaussPolsub = new TCanvas("cClickFitNGaussPol", Form("fit Gauss & Pol-%d by mouse click (sub) | clickFitGaussPolsub", degPol), 1400, 1200); }else{ delete gROOT->FindObjectAny("cClickFitNGaussPolsub") ; cClickFitNGaussPolsub = new TCanvas("cClickFitNGaussPolsub", Form("fit Gauss & Pol-%d by mouse click (sub) | clickFitGaussPolsub", degPol), 1400, 1200); } cClickFitNGaussPolsub->Divide(1, 4); for(int i = 1; i <= 4 ; i++){ cClickFitNGaussPolsub->cd(i)->SetGrid(0,0); } if(! cClickFitNGaussPolsub->GetShowEventStatus() ) cClickFitNGaussPolsub->ToggleEventStatus(); cClickFitNGaussPolsub->cd(1); hist->GetListOfFunctions()->Clear(); ScaleAndDrawHist(hist, 0, 0); TH1F* hspec = (TH1F*) hist->Clone(); hspec->Sumw2(); cClickFitNGaussPolsub->Update(); cClickFitNGaussPolsub->Draw(); TLatex helpMsg; helpMsg.SetNDC(); helpMsg.SetTextFont(82); helpMsg.SetTextSize(0.06); helpMsg.SetTextColor(kRed); helpMsg.DrawLatex(0.15, 0.8, "Click for peaks: (Double-click / x / Ctrl to end) "); printf("--------- Click the histogram for peaks: (Double-click / x / Ctrl to end) \n"); nClick = 0; xPeakList.clear(); yPeakList.clear(); markerColor = 2; markerStyle = 23; peakFlag = 1; cClickFitNGaussPolsub->cd(1)->SetCrosshair(1); cClickFitNGaussPolsub->cd(1)->AddExec("ex", "Clicked()"); tempHist = hist; TObject * obj ; do{ obj = gPad->WaitPrimitive(); if( obj == NULL ) break; }while( obj != NULL); if( degPol >= 0 ){ printf("--------- Click the histogram for Background: (Double-click / x / Ctrl to end) \n"); cClickFitNGaussPolsub->cd(1)->Clear(); hist->Draw(); helpMsg.SetTextColor(markerBGColor); helpMsg.DrawLatex(0.15, 0.8, "Click for BG: (Double-click / x / Ctrl to end) "); cClickFitNGaussPolsub->Update(); cClickFitNGaussPolsub->Draw(); nClick = 0; xBGList.clear(); yBGList.clear(); markerColor = markerBGColor; markerStyle = 33; peakFlag = 0; do{ obj = gPad->WaitPrimitive(); if( obj == NULL ) break; }while( obj != NULL); } cClickFitNGaussPolsub->cd(1)->DeleteExec("ex"); cClickFitNGaussPolsub->cd(1)->SetCrosshair(0); cClickFitNGaussPolsub->cd(1)->Clear(); hist->Draw(); tempHist = NULL; if( xBGList.size() == 0 ) helpMsg.DrawLatex(0.15, 0.75, " No BG defined ! fitting could be problematics. "); cClickFitNGaussPolsub->Update(); cClickFitNGaussPolsub->Draw(); nPols = degPol; double xMin = hspec->GetXaxis()->GetXmin(); double xMax = hspec->GetXaxis()->GetXmax(); TString polExp = "[0]"; for( int i = 1; i < degPol + 1; i++) polExp += Form("+[%d]*TMath::Power(x,%d)", i, i ); TF1 *bg = new TF1("bg", polExp.Data(), xMin, xMax); bg->SetNpx(1000); bg->SetLineColor(markerBGColor); bg->SetLineWidth(1); if( xBGList.size() > 0 ) { printf("---------------- fit the BG with Pol-%d \n", nPols); TGraph * gBG = new TGraph((int) xBGList.size(), &xBGList[0], &yBGList[0]); for( int i = 0; i < degPol + 1; i++) bg->SetParameter(i, gRandom->Rndm()/TMath::Power(10, 3*i)); gBG->Fit("bg", "Rq"); bg->Draw("same"); printf("--------------- Subtracting the BG \n"); hspec->Add(bg, -1); }else{ for( int i = 0; i < nPols+1; i++) bg->SetParameter(i, 0.); } TLatex text; text.SetNDC(); text.SetTextFont(82); text.SetTextSize(0.06); double chi2BG = bg->GetChisquare(); int ndfBG = bg->GetNDF(); text.DrawLatex(0.15, 0.8, Form("#bar{#chi^{2}} : %5.3f", chi2BG/ndfBG)); //=========== get the polynomial BG const Double_t* paraAt = bg->GetParameters(); const Double_t* paraEt = bg->GetParErrors(); for( int i = 0; i < degPol + 1; i++){ text.DrawLatex(0.6, 0.85 - 0.05*i, Form("%4s : %8.2f(%8.2f)\n", Form("p%d", i), paraAt[i], paraEt[i])); } nPeaks = (int) xPeakList.size(); if( sigmaMax == 0 ){ printf("------------- Estimate sigma for each peak \n"); sigma.clear(); int binMin = hist->FindBin(xMin); int binMax = hist->FindBin(xMax); for( int i = 0; i < nPeaks ; i++){ int b0 = hist->FindBin(xPeakList[i]); double estBG = bg->Eval(xPeakList[i]); double sMin = (xMax-xMin)/5., sMax = (xMax-xMin)/5.; //---- backward search, stop when for( int b = b0-1 ; b > binMin ; b-- ){ double y = hist->GetBinContent(b); double x = hist->GetBinCenter(b); if( y - (bg->Eval(x)) < (yPeakList[i]-estBG)/2. ) { sMin = xPeakList[i] - hist->GetBinCenter(b); break; } } //---- forward search, stop when for( int b = b0+1 ; b < binMax ; b++ ){ double y = hist->GetBinContent(b); double x = hist->GetBinCenter(b); if( y - (bg->Eval(x)) < (yPeakList[i]-estBG)/2. ) { sMax = hist->GetBinCenter(b) - xPeakList[i]; break; } } double temp = TMath::Min(sMin, sMax); /// When there are multiple peaks closely packed : if( i > 0 && temp > 2.5 * sigma.back() ) temp = sigma.back(); sigma.push_back(temp); printf("%2d | x : %8.2f | sigma(est) %f \n", i, xPeakList[i], sigma[i]); } }else if( sigmaMax < 0 ){ printf("========== use user input sigma : %f (fixed)\n", abs(sigmaMax)); sigma.clear(); for( int i = 0; i < nPeaks ; i++) sigma.push_back(abs(sigmaMax)); }else if( sigmaMax > 0 ){ printf("========== use user input sigma : %f/2. \n", sigmaMax/2.); sigma.clear(); for( int i = 0; i < nPeaks ; i++) sigma.push_back(sigmaMax/2.); } printf("-------------- Fit the subtracted spectrum with %d-Gauss\n", nPeaks ); cClickFitNGaussPolsub->cd(2); hspec->Draw("hist"); int nPar = 3 * nPeaks; double * para = new double[nPar]; for(int i = 0; i < nPeaks ; i++){ para[3*i+0] = yPeakList[i] * 0.05 * TMath::Sqrt(TMath::TwoPi()); para[3*i+1] = xPeakList[i]; if( sigmaMax == 0){ para[3*i+2] = sigma[i]; }else if(sigmaMax < 0 ){ para[3*i+2] = abs(sigmaMax); }else if(sigmaMax > 0 ){ para[3*i+2] = sigmaMax/2.; } } TF1 * fit = new TF1("fit", nGauss, xMin, xMax, nPar ); fit->SetLineWidth(3); fit->SetLineColor(1); fit->SetNpx(1000); fit->SetParameters(para); //limit parameters for( int i = 0; i < nPeaks; i++){ fit->SetParLimits(3*i , 0, 1e9); if( meanRange <= 0 ) { double dE1, dE2; if( i == 0 ){ dE2 = xPeakList[i+1] - xPeakList[i]; dE1 = dE2; }else if ( i == nPeaks-1 ){ dE1 = xPeakList[i] - xPeakList[i-1]; dE2 = dE1; }else{ dE1 = xPeakList[i] - xPeakList[i-1]; dE2 = xPeakList[i+1] - xPeakList[i]; } fit->SetParLimits(3*i+1, xPeakList[i] - dE1 , xPeakList[i] + dE2 ); }else{ fit->SetParLimits(3*i+1, xPeakList[i] - meanRange/2. , xPeakList[i] + meanRange/2. ); } if( sigmaMax== 0 ) fit->SetParLimits(3*i+2, 0, 1.5*sigma[i]); // add 50% margin of sigma if( sigmaMax < 0 ) fit->FixParameter(3*i+2, abs(sigmaMax)); if( sigmaMax > 0 ) fit->SetParLimits(3*i+2, 0, sigmaMax); } hspec->Fit("fit", "Rq"); fit->Draw("same"); //=========== get the fit parameters const Double_t* paraA = fit->GetParameters(); const Double_t* paraE = fit->GetParErrors(); double chi2 = fit->GetChisquare(); int ndf = fit->GetNDF(); double bw = hspec->GetBinWidth(1); text.DrawLatex(0.15, 0.8, Form("#bar{#chi^{2}} : %5.3f", chi2/ndf)); for(int i = 0; i < nPeaks ; i++){ printf(" %2d , count: %8.0f(%3.0f), mean: %8.4f(%8.4f), sigma: %8.4f(%8.4f) \n", i, paraA[3*i] / bw, paraE[3*i] /bw, paraA[3*i+1], paraE[3*i+1], paraA[3*i+2], paraE[3*i+2]); } printf("\n"); TF1 ** gFit = new TF1 *[nPeaks]; for( int i = 0; i < nPeaks; i++){ gFit[i] = new TF1(Form("gFit%d", i), "[0] * TMath::Gaus(x,[1],[2], 1)", xMin, xMax); gFit[i]->SetParameter(0, paraA[3*i]); gFit[i]->SetParameter(1, paraA[3*i+1]); gFit[i]->SetParameter(2, paraA[3*i+2]); gFit[i]->SetLineColor(i+1); gFit[i]->SetNpx(1000); gFit[i]->SetLineWidth(1); gFit[i]->Draw("same"); } cClickFitNGaussPolsub->cd(3); PlotResidual(hspec, fit); cClickFitNGaussPolsub->cd(4); text.SetTextSize(0.05); text.SetTextColor(2); text.DrawLatex(0.1, 0.9, Form(" %13s, %18s, %18s", "count", "mean", "sigma")); BestFitCount.clear(); BestFitMean.clear(); BestFitSigma.clear(); for( int i = 0; i < nPeaks; i++){ text.DrawLatex(0.1, 0.8-0.05*i, Form(" %2d, %8.0f(%3.0f), %8.4f(%8.4f), %8.4f(%8.4f)\n", i, paraA[3*i] / bw, paraE[3*i] /bw, paraA[3*i+1], paraE[3*i+1], paraA[3*i+2], paraE[3*i+2])); BestFitCount.push_back(paraA[3*i]/ bw); BestFitMean.push_back(paraA[3*i+1]); BestFitSigma.push_back(paraA[3*i+2]); } } //######################################## //#### fit N-Gauss with pol-1 BG at fixed for < 0 //######################################## void fitSpecial(TH1F * hist, TString fitFile = "AutoFit_para.txt"){ printf("================================================================\n"); printf("================ Special fit for h074_82Kr =====================\n"); printf(" * need the file input \n"); printf("================================================================\n"); bool isParaRead = loadFitParameters(fitFile); if( !isParaRead ) { printf("Please provide a valid input file\n"); return; } gStyle->SetOptStat(""); gStyle->SetOptFit(0); nPeaks = energy.size(); nPols = 1; TCanvas * cFitSpecial = NewCanvas("cFitSpecial", "Fitting for h074_82Kr", 1, 3, 800, 300); //if(! cFitSpecial->GetShowEventStatus() ) cFitSpecial->ToggleEventStatus(); cFitSpecial->cd(1); ScaleAndDrawHist(hist, 0, 0); double xMin = hist->GetXaxis()->GetXmin(); double xMax = hist->GetXaxis()->GetXmax(); int xBin = hist->GetXaxis()->GetNbins(); printf("============= find the pol-1 background ..... \n"); TF1 * fitpol1 = new TF1("fitpol1", "pol1", xMin, -0.3); fitpol1->SetParameter(0, gRandom->Rndm()); fitpol1->SetParameter(1, gRandom->Rndm()); hist->Fit("fitpol1", "Rq"); double x0 = fitpol1->GetParameter(0); double x1 = fitpol1->GetParameter(1); int nPar = 3 * nPeaks + nPols + 1; double * para = new double[nPar]; for(int i = 0; i < nPeaks ; i++){ para[3*i+0] = height[i] * 0.05 * TMath::Sqrt(TMath::TwoPi()); para[3*i+1] = energy[i]; para[3*i+2] = sigma[i]/2.; } para[3*nPeaks+0] = x0; para[3*nPeaks+1] = x1; TF1 * fit = new TF1("fit", nGaussPol, xMin, xMax, nPar ); fit->SetLineWidth(3); fit->SetLineColor(1); fit->SetNpx(1000); fit->SetParameters(para); //fixing parameters for( int i = 0; i < nPeaks; i++){ fit->SetParLimits(3*i , 0, 1e9); if( energyFlag[i] == 1 ) { fit->FixParameter(3*i+1, energy[i]); }else{ fit->SetParLimits(3*i+1, lowE[i], highE[i]); } if( sigmaFlag[i] == 1 ) { fit->FixParameter(3*i+2, sigma[i]); }else{ fit->SetParLimits(3*i+2, 0, sigma[i]); } } fit->FixParameter(3*nPeaks + 0, x0); fit->FixParameter(3*nPeaks + 1, x1); hist->Fit("fit", "Rq"); //=========== get the polynomial part const Double_t* paraA = fit->GetParameters(); const Double_t* paraE = fit->GetParErrors(); TString polExp = "[0]"; for( int i = 1; i < nPols + 1; i++){ polExp += Form("+[%d]*TMath::Power(x,%d)", i, i ); } TF1 * bg = new TF1("bg", polExp.Data(), xMin, xMax); for( int i = 0; i < nPols + 1; i++){ bg->SetParameter(i, paraA[3*nPeaks+i]); } bg->SetNpx(1000); for( int i = 0; i < nPols + 1; i++){ printf("%4s : %8.4e(%8.4e)\n", Form("p%d", i), paraA[3*nPeaks+i], paraE[3*nPeaks+i]); } printf("====================================\n"); cFitSpecial->cd(1); bg->Draw("same"); TLatex text; text.SetNDC(); text.SetTextFont(82); text.SetTextSize(0.04); text.SetTextColor(1); for( int i = 0; i < nPols + 1; i++){ text.DrawLatex(0.6, 0.85 - 0.05*i, Form("%4s : %8.4e(%8.4e)\n", Form("p%d", i), paraA[3*nPeaks+i], paraE[3*nPeaks+i])); } double chi2 = fit->GetChisquare(); int ndf = fit->GetNDF(); text.SetTextSize(0.06); text.DrawLatex(0.15, 0.8, Form("#bar{#chi^{2}} : %5.3f", chi2/ndf)); //GoodnessofFit(specS, fit); double bw = hist->GetBinWidth(1); for(int i = 0; i < nPeaks ; i++){ printf(" %2d , count: %8.0f(%3.0f), mean: %8.4f(%8.4f), sigma: %8.4f(%8.4f) \n", i, paraA[3*i] / bw, paraE[3*i] /bw, paraA[3*i+1], paraE[3*i+1], paraA[3*i+2], paraE[3*i+2]); } printf("\n"); const int nn = nPeaks; TF1 ** gFit = new TF1 *[nn]; for( int i = 0; i < nPeaks; i++){ gFit[i] = new TF1(Form("gFit%d", i), "[0] * TMath::Gaus(x,[1],[2], 1)", xMin, xMax); gFit[i]->SetParameter(0, paraA[3*i]); gFit[i]->SetParameter(1, paraA[3*i+1]); gFit[i]->SetParameter(2, paraA[3*i+2]); gFit[i]->SetLineColor(i+1); gFit[i]->SetNpx(1000); gFit[i]->SetLineWidth(1); gFit[i]->Draw("same"); } cFitSpecial->Update(); cFitSpecial->cd(2); PlotResidual(hist, fit); cFitSpecial->cd(3); text.SetNDC(); text.SetTextFont(82); text.SetTextSize(0.05); text.SetTextColor(2); text.DrawLatex(0.1, 0.9, Form(" %13s, %18s, %18s", "count", "mean", "sigma")); for( int i = 0; i < nPeaks; i++){ text.DrawLatex(0.1, 0.8-0.05*i, Form(" %2d, %8.0f(%3.0f), %8.4f(%8.4f), %8.4f(%8.4f)\n", i, paraA[3*i] / bw, paraE[3*i] /bw, paraA[3*i+1], paraE[3*i+1], paraA[3*i+2], paraE[3*i+2])); } } #endif