SOLARIS_Analysis/Cleopatra/ClassTransfer.h

593 lines
17 KiB
C++

#ifndef Transfer_h
#define Transfer_h
#include "utility"
#include "ClassIsotope.h"
#include "../Armory/AnalysisLib.h"
#include "../Armory/ClassReactionConfig.h"
#include "TLorentzVector.h"
#include "TMath.h"
#include "TF1.h"
#include "TMacro.h"
//=======================================================
//#######################################################
// Class for Transfer Reaction
// reaction notation A(a,b)B
// A = incident particle
// a = target
// b = light scattered particle
// B = heavy scattered particle
//=======================================================
class TransferReaction {
public:
TransferReaction(){Inititization();};
TransferReaction(ReactionConfig config, unsigned short ID = 0);
TransferReaction(std::string configFile, unsigned short ID = 0);
TransferReaction(TMacro configMarco, unsigned short ID = 0);
TransferReaction(int beamA, int beamZ,
int targetA, int targetZ,
int recoilA, int recoilZ, float beamEnergy_AMeV);
~TransferReaction();
void SetA(int A, int Z, double Ex = 0);
void Seta(int A, int Z);
void Setb(int A, int Z);
void SetB(int A, int Z);
void SetIncidentEnergyAngle(double KEA, double theta, double phi);
void SetReactionFromReactionConfigClass(ReactionConfig reactConfigClassObject, unsigned short ID = 0);
void SetReactionFromFile(std::string configFile, unsigned short ID = 0);
void SetReactionFromTMacro(TMacro configMacro, unsigned short ID = 0);
void SetReactionSimple(int beamA, int beamZ,
int targetA, int targetZ,
int recoilA, int recoilZ, float beamEnergy_AMeV);
void SetExA(double Ex);
void SetExB(double Ex);
TString GetReactionName() const;
TString GetReactionName_Latex();
ReactionConfig GetRectionConfig() { return config;}
Recoil GetRecoil() { return recoil;}
ExcitedEnergies * GetExList() { return &exList;}
double GetMass_A() const {return mA + ExA;}
double GetMass_a() const {return ma;}
double GetMass_b() const {return mb;}
double GetMass_B() const {return mB + ExB;}
double GetCMTotalKE() {return Etot - mA - ma;}
double GetQValue() {return mA + ExA + ma - mb - mB - ExB;}
double GetMaxExB() {return Etot - mb - mB;}
TLorentzVector GetPA() const {return PA;}
TLorentzVector GetPa() const {return Pa;}
TLorentzVector GetPb() const {return Pb;}
TLorentzVector GetPB() const {return PB;}
void PrintFourVectors() const;
void PrintReaction(bool withEx = true) const;
double CalkCM(double ExB); //momentum at CM frame
void CalReactionConstant();
std::pair<double, double> CalExThetaCM(double e, double z, double Bfield, double a);
void Event(double thetaCM_rad, double phiCM_rad);
double GetMomentumbCM() {return p;}
double GetReactionBeta() {return beta;}
double GetReactionGamma() {return gamma;}
double GetCMTotalEnergy() {return Etot;}
double GetEZSlope(double BField) {return 299.792458 * recoil.lightZ * abs(BField) / TMath::TwoPi() * beta / 1000.;} // MeV/mm
void CreateExDistribution();
int GetRandomExID(){
if( exDistribution ) {
return exDistribution->GetRandom();
}
return 0;
}
double GetRandomEx(){
if( exDistribution ) {
int exID = exDistribution->GetRandom();
return exList.ExList[exID].Ex;
}
return TMath::QuietNaN();
}
private:
ExcitedEnergies exList;
Recoil recoil;
ReactionConfig config;
std::string nameA, namea, nameb, nameB;
double thetaIN, phiIN;
double mA, ma, mb, mB;
double TA, T; // TA = KE of A pre u, T = total energy
double ExA, ExB;
bool isReady;
bool isBSet;
double k; // CM Boost momentum
double beta, gamma; //CM boost beta
double Etot;
double p; // CM frame momentum of b, B
double slope; // slope of the
TLorentzVector PA, Pa, Pb, PB;
TString format(TString name);
void Inititization();
TF1 * exDistribution;
static double exDistFunc(Double_t *x, Double_t * par){
return par[(int) x[0]];
}
};
TransferReaction::TransferReaction(ReactionConfig config, unsigned short ID){
Inititization();
SetA(config.beamA, config.beamZ);
Seta(config.targetA, config.targetZ);
SetExA(config.beamEx);
recoil = config.recoil[ID];
exList = config.exList[ID];
Setb(recoil.lightA, recoil.lightZ);
SetB(recoil.heavyA, recoil.heavyZ);
SetIncidentEnergyAngle(config.beamEnergy, 0, 0);
CalReactionConstant();
}
TransferReaction::TransferReaction(std::string configFile, unsigned short ID){
Inititization();
SetReactionFromFile(configFile, ID);
}
TransferReaction::TransferReaction(TMacro configMarco, unsigned short ID){
Inititization();
SetReactionFromTMacro(configMarco, ID);
}
TransferReaction::TransferReaction(int beamA, int beamZ,
int targetA, int targetZ,
int recoilA, int recoilZ,
float beamEnergy_AMeV){
Inititization();
SetReactionSimple(beamA, beamZ,
targetA, targetZ,
recoilA, recoilZ,
beamEnergy_AMeV);
}
void TransferReaction::Inititization(){
thetaIN = 0.;
phiIN = 0.;
SetA(12, 6, 0);
Seta(2,1);
Setb(1,1);
SetB(13,6);
TA = 6;
T = TA * config.beamA;
exDistribution = nullptr;
ExA = 0;
ExB = 0;
CalReactionConstant();
TLorentzVector temp (0,0,0,0);
PA = temp;
Pa = temp;
Pb = temp;
PB = temp;
}
TransferReaction::~TransferReaction(){
delete exDistribution;
}
void TransferReaction::SetA(int A, int Z, double Ex){
Isotope temp (A, Z);
mA = temp.Mass;
config.beamA = A;
config.beamZ = Z;
ExA = Ex;
nameA = temp.Name;
isReady = false;
isBSet = true;
}
void TransferReaction::Seta(int A, int Z){
Isotope temp (A, Z);
ma = temp.Mass;
config.targetA = A;
config.targetZ = Z;
namea = temp.Name;
isReady = false;
isBSet = false;
}
void TransferReaction::Setb(int A, int Z){
Isotope temp (A, Z);
mb = temp.Mass;
recoil.lightA = A;
recoil.lightZ = Z;
nameb = temp.Name;
isReady = false;
isBSet = false;
}
void TransferReaction::SetB(int A, int Z){
Isotope temp (A, Z);
mB = temp.Mass;
recoil.heavyA = A;
recoil.heavyZ = Z;
nameB = temp.Name;
isReady = false;
isBSet = true;
}
void TransferReaction::SetIncidentEnergyAngle(double KEA, double theta, double phi){
this->TA = KEA;
this->T = TA * config.beamA;
this->thetaIN = theta;
this->phiIN = phi;
isReady = false;
}
void TransferReaction::SetReactionSimple(int beamA, int beamZ,
int targetA, int targetZ,
int recoilA, int recoilZ,
float beamEnergy_AMeV){
config.SetReactionSimple(beamA, beamZ,
targetA, targetZ,
recoilA, recoilZ, beamEnergy_AMeV);
recoil = config.recoil[0];
SetA(config.beamA, config.beamZ);
Seta(config.targetA, config.targetZ);
Setb(recoil.lightA, recoil.lightZ);
SetB(recoil.heavyA, recoil.heavyZ);
SetIncidentEnergyAngle(config.beamEnergy, 0, 0);
CalReactionConstant();
}
void TransferReaction::SetExA(double Ex){
this->ExA = Ex;
isReady = false;
}
void TransferReaction::SetExB(double Ex){
this->ExB = Ex;
isReady = false;
}
void TransferReaction::SetReactionFromReactionConfigClass(ReactionConfig reactConfigClassObject, unsigned short ID){
config = reactConfigClassObject;
SetA(config.beamA, config.beamZ);
Seta(config.targetA, config.targetZ);
SetExA(config.beamEx);
if( ID > config.recoil.size() ){
printf("Reaction Config only has %zu recoil settings. input is %u. Abort.\n", config.recoil.size(), ID);
return;
}
recoil = config.recoil[ID];
exList = config.exList[ID];
Setb(recoil.lightA, recoil.lightZ);
SetB(recoil.heavyA, recoil.heavyZ);
SetIncidentEnergyAngle(config.beamEnergy, 0, 0);
CalReactionConstant();
}
void TransferReaction::SetReactionFromFile(std::string configFile, unsigned short ID){
if( config.LoadReactionConfig(configFile) ){
SetA(config.beamA, config.beamZ);
Seta(config.targetA, config.targetZ);
SetExA(config.beamEx);
if( ID > config.recoil.size() ){
printf("Reaction Config only has %zu recoil settings. input is %u. Abort.\n", config.recoil.size(), ID);
return;
}
recoil = config.recoil[ID];
exList = config.exList[ID];
Setb(recoil.lightA, recoil.lightZ);
SetB(recoil.heavyA, recoil.heavyZ);
SetIncidentEnergyAngle(config.beamEnergy, 0, 0);
CalReactionConstant();
}else{
printf("cannot read file %s.\n", configFile.c_str());
isReady = false;
}
}
void TransferReaction::SetReactionFromTMacro(TMacro configMacro, unsigned short ID){
if( config.LoadReactionConfig(&configMacro) ){
SetA(config.beamA, config.beamZ);
Seta(config.targetA, config.targetZ);
SetExA(config.beamEx);
if( ID > config.recoil.size() ){
printf("Reaction Config only has %zu recoil settings. input is %u. Abort.\n", config.recoil.size(), ID);
return;
}
recoil = config.recoil[ID];
exList = config.exList[ID];
Setb(recoil.lightA, recoil.lightZ);
SetB(recoil.heavyA, recoil.heavyZ);
SetIncidentEnergyAngle(config.beamEnergy, 0, 0);
CalReactionConstant();
}else{
printf("cannot read TMacro %s.\n", configMacro.GetName());
isReady = false;
}
}
TString TransferReaction::GetReactionName() const{
TString rName;
rName.Form("%s(%s,%s)%s", nameA.c_str(), namea.c_str(), nameb.c_str(), nameB.c_str());
return rName;
}
TString TransferReaction::format(TString name){
if( name.IsAlpha() ) return name;
int len = name.Length();
TString temp = name;
TString temp2 = name;
if( temp.Remove(0, len-2).IsAlpha()){
temp2.Remove(len-2);
}else{
temp = name;
temp.Remove(0, len-1);
temp2.Remove(len-1);
}
return "^{"+temp2+"}"+temp;
}
TString TransferReaction::GetReactionName_Latex(){
TString rName;
rName.Form("%s(%s,%s)%s @ %.2f MeV/u", format(nameA).Data(), format(namea).Data(), format(nameb).Data(), format(nameB).Data(), config.beamEnergy);
return rName;
}
double TransferReaction::CalkCM(double ExB){
if( !isBSet || !isReady) return TMath::QuietNaN();
return TMath::Sqrt( (Etot*Etot - TMath::Power(mb + mB + ExB,2)) * (Etot*Etot - TMath::Power(mb - mB - ExB,2)) ) / 2 / Etot;
}
void TransferReaction::CalReactionConstant(){
if( !isBSet){
recoil.heavyA = config.beamA + config.targetA - recoil.lightA;
recoil.heavyZ = config.beamZ + config.targetZ - recoil.lightZ;
Isotope temp (recoil.heavyA, recoil.heavyZ);
mB = temp.Mass;
isBSet = true;
}
k = TMath::Sqrt(TMath::Power(mA + ExA + T, 2) - (mA + ExA) * (mA + ExA));
beta = k / (mA + ExA + ma + T);
gamma = 1 / TMath::Sqrt(1- beta * beta);
Etot = TMath::Sqrt(TMath::Power(mA + ExA + ma + T,2) - k * k);
PA.SetXYZM(0, 0, k, mA + ExA);
PA.RotateY(thetaIN);
PA.RotateZ(phiIN);
Pa.SetXYZM(0,0,0,ma);
PA.SetUniqueID(config.beamZ);
Pa.SetUniqueID(config.targetZ);
Pb.SetUniqueID(recoil.lightZ);
PB.SetUniqueID(recoil.heavyZ);
isReady = true;
p = CalkCM(ExB);
}
void TransferReaction::PrintFourVectors() const {
printf("A : %10.2f %10.2f %10.2f %10.2f\n", PA.E(), PA.Px(), PA.Py(), PA.Pz());
printf("a : %10.2f %10.2f %10.2f %10.2f\n", Pa.E(), Pa.Px(), Pa.Py(), Pa.Pz());
printf("b : %10.2f %10.2f %10.2f %10.2f\n", Pb.E(), Pb.Px(), Pb.Py(), Pb.Pz());
printf("B : %10.2f %10.2f %10.2f %10.2f\n", PB.E(), PB.Px(), PB.Py(), PB.Pz());
printf("-------------------------------------------------------\n");
printf("B : %10.2f %10.2f %10.2f %10.2f\n",
PA.E() + Pa.E() - Pb.E() - PB.E(),
PA.Px() + Pa.Px() - Pb.Px() - PB.Px(),
PA.Py() + Pa.Py() - Pb.Py() - PB.Py(),
PA.Pz() + Pa.Pz() - Pb.Pz() - PB.Pz());
}
void TransferReaction::PrintReaction(bool withEx) const {
printf("=====================================================\n");
printf("\e[1m\e[33m %s \e[0m\n", GetReactionName().Data());
printf("=====================================================\n");
printf("------------------------------ Beam\n");
printf(" beam : A = %3d, Z = %2d, Ex = %.2f MeV\n", config.beamA, config.beamZ, config.beamEx);
printf(" beam Energy : %.2f +- %.2f MeV/u, dE/E = %5.2f %%\n", config.beamEnergy, config.beamEnergySigma, config.beamEnergySigma/config.beamEnergy);
printf(" Angle : %.2f +- %.2f mrad\n", config.beamTheta, config.beamThetaSigma);
printf(" offset : (x,y) = (%.2f, %.2f) mmm \n", config.beamX, config.beamY);
printf("------------------------------ Target\n");
printf(" target : A = %3d, Z = %2d \n", config.targetA, config.targetZ);
printf("------------------------------ Recoil\n");
printf(" light : A = %3d, Z = %2d \n", recoil.lightA, recoil.lightZ);
printf(" heavy : A = %3d, Z = %2d \n", recoil.heavyA, recoil.heavyZ);
printf("=====================================================\n");
if( withEx ) {
exList.Print();
printf("=====================================================\n");
}
}
void TransferReaction::Event(double thetaCM_rad, double phiCM_rad){
if( !isReady ) CalReactionConstant();
//---- to CM frame
TLorentzVector Pc = PA + Pa;
TVector3 b = Pc.BoostVector();
TVector3 vb(0,0,0);
if( b.Mag() > 0 ){
TVector3 v0 (0,0,0);
TVector3 nb = v0 - b;
TLorentzVector PAc = PA;
PAc.Boost(nb);
TVector3 vA = PAc.Vect();
TLorentzVector Pac = Pa;
Pac.Boost(nb);
TVector3 va = Pac.Vect();
//--- construct vb
vb = va;
vb.SetMag(p);
TVector3 ub = vb.Orthogonal();
vb.Rotate(thetaCM_rad, ub);
vb.Rotate(phiCM_rad + TMath::PiOver2(), va); // somehow, the calculation turn the vector 90 degree.
//vb.Rotate(phiCM , va); // somehow, the calculation turn the vector 90 degree.
}
//--- from Pb
TLorentzVector Pbc;
Pbc.SetVectM(vb, mb);
//--- from PB
TLorentzVector PBc;
//PBc.SetVectM(vB, mB + ExB);
PBc.SetVectM(-vb, mB + ExB);
//---- to Lab Frame
Pb = Pbc; Pb.Boost(b);
PB = PBc; PB.Boost(b);
}
std::pair<double, double> TransferReaction::CalExThetaCM(double e, double z, double Bfield, double perpDist){
double Ex = TMath::QuietNaN();
double thetaCM = TMath::QuietNaN();
double mass = mb;
double massB = mB;
double y = e + mass;
double slope = 299.792458 * recoil.lightZ * abs(Bfield) / TMath::TwoPi() * beta / 1000.; // MeV/mm;
double alpha = slope/beta;
double G = alpha * gamma * beta * perpDist ;
double Z = alpha * gamma * beta * z;
double H = TMath::Sqrt(TMath::Power(gamma * beta,2) * (y*y - mass * mass) ) ;
double Et = Etot;
if( TMath::Abs(Z) < H ) {
//using Newton's method to solve 0 == H * sin(phi) - G * tan(phi) - Z = f(phi)
double tolerrence = 0.001;
double phi = 0; //initial phi = 0 -> ensure the solution has f'(phi) > 0
double nPhi = 0; // new phi
int iter = 0;
do{
phi = nPhi;
nPhi = phi - (H * TMath::Sin(phi) - G * TMath::Tan(phi) - Z) / (H * TMath::Cos(phi) - G /TMath::Power( TMath::Cos(phi), 2));
iter ++;
if( iter > 10 || TMath::Abs(nPhi) > TMath::PiOver2()) break;
}while( TMath::Abs(phi - nPhi ) > tolerrence);
phi = nPhi;
// check f'(phi) > 0
double Df = H * TMath::Cos(phi) - G / TMath::Power( TMath::Cos(phi),2);
if( Df > 0 && TMath::Abs(phi) < TMath::PiOver2() ){
double K = H * TMath::Sin(phi);
double x = TMath::ACos( mass / ( y * gamma - K));
double k = mass * TMath::Tan(x); // momentum of particel b or B in CM frame
double EB = TMath::Sqrt(mass*mass + Et*Et - 2*Et*TMath::Sqrt(k*k + mass * mass));
Ex = EB - massB;
double hahaha1 = gamma* TMath::Sqrt(mass * mass + k * k) - y;
double hahaha2 = gamma* beta * k;
thetaCM = TMath::ACos(hahaha1/hahaha2) * TMath::RadToDeg();
//double pt = k * TMath::Sin(thetaCM * TMath::DegToRad());
//double pp = gamma*beta*TMath::Sqrt(mass*mass + k*k) - gamma * k * TMath::Cos(thetaCM * TMath::DegToRad());
//thetaLab = TMath::ATan(pt/pp) * TMath::RadToDeg();
}else{
Ex = TMath::QuietNaN();
thetaCM = TMath::QuietNaN();
//thetaLab = TMath::QuietNaN();
}
}else{
Ex = TMath::QuietNaN();
thetaCM = TMath::QuietNaN();
//thetaLab = TMath::QuietNaN();
}
return std::make_pair(Ex, thetaCM);
}
void TransferReaction::CreateExDistribution(){
int numEx = exList.ExList.size();
exDistribution = new TF1("exDistribution", TransferReaction::exDistFunc, 0, numEx, numEx);
for(int q = 0; q < numEx; q++){
exDistribution->SetParameter(q, exList.ExList[q].xsec*exList.ExList[q].SF);
}
}
#endif