SOLARIS_Analysis/Cleopatra/ClassHelios.h

480 lines
16 KiB
C++

#ifndef HELIOS_Library_h
#define HELIOS_Library_h
#include "TBenchmark.h"
#include "TLorentzVector.h"
#include "TVector3.h"
#include "TMath.h"
#include "TFile.h"
#include "TTree.h"
#include "TRandom.h"
#include "TMacro.h"
#include "TGraph.h"
#include <vector>
#include <fstream>
#include "../Armory/AnalysisLib.h"
#include "../Armory/ClassDetGeo.h"
#include "../Armory/ClassReactionConfig.h"
//=======================================================
//#######################################################
//Class for HELIOS
//input Lorentz vector, detector configuration
//output e, z, Ex, thetaCM, etc
//=======================================================
struct trajectory{
double theta, phi;
double vt, vp; // tranvser and perpendicular velocity
double rho; // orbit radius
double z0, t0; // position cycle
double x, y, z; // hit position
double t; //actual orbit time;
double R; //hit radius = sqrt(x^2+y^2);
int detID, detRowID;
int loop;
double effLoop;
};
void PrintTrajectory(trajectory a){
printf("=====================\n");
printf(" theta : %f deg\n", a.theta*TMath::RadToDeg());
printf(" phi : %f deg\n", a.phi*TMath::RadToDeg());
printf(" vt : %f mm/ns\n", a.vt);
printf(" vp : %f mm/ns\n", a.vp);
printf(" rho : %f mm\n", a.rho);
printf(" z0 : %f mm\n", a.z0);
printf(" t0 : %f ns\n", a.t0);
printf("(x, y, z) : (%f, %f. %f) mm\n", a.x, a.y, a.z);
printf(" R : %f mm\n", a.R);
printf(" t : %f ns\n", a.t);
printf(" effLoop : %f cycle\n", a.effLoop);
printf(" Loop : %d cycle\n", a.loop);
printf(" detRowID : %d \n", a.detRowID);
printf(" detID : %d \n", a.detID);
}
class HELIOS{
public:
HELIOS();
~HELIOS();
void SetCoincidentWithRecoil(bool TorF){ this->isCoincidentWithRecoil = TorF;}
bool GetCoincidentWithRecoil(){return this->isCoincidentWithRecoil;}
bool SetDetectorGeometry(std::string filename);
void SetBeamPosition(double x, double y) { xOff = x; yOff = y;}
void OverrideMagneticField(double BField){ this->detGeo.Bfield = BField; this->detGeo.BfieldSign = BField > 0 ? 1: -1;}
void OverrideMagneticFieldDirection(double BfieldThetaInDeg){ this->detGeo.BfieldTheta = BfieldThetaInDeg;}
void OverrideFirstPos(double firstPos){
overrideFirstPos = true;
printf("------ Overriding FirstPosition to : %8.2f mm \n", firstPos);
this->array.firstPos = firstPos;
}
void OverrideDetectorDistance(double perpDist){
overrideDetDistance = true;
printf("------ Overriding Detector Distance to : %8.2f mm \n", perpDist);
this->array.detPerpDist = perpDist;
}
void SetDetectorOutside(bool isOutside){
this->array.detFaceOut = isOutside;
printf(" Detectors are facing %s\n", array.detFaceOut ? "outside": "inside" );
}
int DetAcceptance();
int CalArrayHit(TLorentzVector Pb, int Zb);
int CalRecoilHit(TLorentzVector PB, int ZB);
//int CalHit(TLorentzVector Pb, int Zb, TLorentzVector PB, int ZB, double xOff = 0, double yOff = 0 ); // return 0 for no hit, 1 for hit
void CalTrajectoryPara(TLorentzVector P, int Z, int id); // id = 0 for Pb, id = 1 for PB.
int GetNumberOfDetectorsInSamePos(){return array.mDet;}
double GetEnergy(){return e;}
double GetDetX(){return detX;} // position in each detector, range from -1, 1
/// clockwise rotation for B-field along the z-axis, sign = 1.
double XPos(double Zpos, double theta, double phi, double rho, int sign){
return rho * ( TMath::Sin( TMath::Tan(theta) * Zpos / rho - sign * phi ) + sign * TMath::Sin(phi) ) + xOff;
}
double YPos(double Zpos, double theta, double phi, double rho, int sign){
return rho * sign * (TMath::Cos( TMath::Tan(theta) * Zpos / rho - sign * phi ) - TMath::Cos(phi)) + yOff;
}
double RPos(double Zpos, double theta, double phi, double rho, int sign){
double x = XPos(Zpos, theta, phi, rho, sign) ;
double y = YPos(Zpos, theta, phi, rho, sign) ;
return sqrt(x*x+y*y);
}
double GetXPos(double ZPos){ return XPos( ZPos, orbitb.theta, orbitb.phi, orbitb.rho, detGeo.BfieldSign); }
double GetYPos(double ZPos){ return YPos( ZPos, orbitb.theta, orbitb.phi, orbitb.rho, detGeo.BfieldSign); }
double GetR(double ZPos) { return RPos( ZPos, orbitb.theta, orbitb.phi, orbitb.rho, detGeo.BfieldSign); }
double GetRecoilEnergy(){return eB;}
double GetRecoilXPos(double ZPos){ return XPos( ZPos, orbitB.theta, orbitB.phi, orbitB.rho, detGeo.BfieldSign); }
double GetRecoilYPos(double ZPos){ return YPos( ZPos, orbitB.theta, orbitB.phi, orbitB.rho, detGeo.BfieldSign); }
double GetRecoilR(double ZPos) { return RPos( ZPos, orbitB.theta, orbitB.phi, orbitB.rho, detGeo.BfieldSign); }
double GetBField() {return detGeo.Bfield;}
double GetDetRadius() {return array.detPerpDist;}
trajectory GetTrajectory_b() {return orbitb;}
trajectory GetTrajectory_B() {return orbitB;}
DetGeo GetDetectorGeometry() {return detGeo;}
private:
void ClearTrajectory(trajectory t){
t.theta = TMath::QuietNaN();
t.phi = TMath::QuietNaN();
t.vt = TMath::QuietNaN();
t.vp = TMath::QuietNaN();
t.rho = TMath::QuietNaN();
t.z0 = TMath::QuietNaN();
t.t0 = TMath::QuietNaN();
t.x = TMath::QuietNaN();
t.y = TMath::QuietNaN();
t.z = TMath::QuietNaN();
t.effLoop = TMath::QuietNaN();
t.detID = -1;
t.detRowID = -1;
t.loop = -1;
}
DetGeo detGeo;
Array array;
trajectory orbitb, orbitB;
double e,detX ; ///energy of light recoil, position X
double rhoHit; /// radius of particle-b hit on recoil detector
double eB; ///energy of heavy recoil
bool isDetReady;
double xOff, yOff; // beam position
bool overrideDetDistance;
bool overrideFirstPos;
bool isCoincidentWithRecoil;
const double c = 299.792458; //mm/ns
};
HELIOS::HELIOS(){
ClearTrajectory(orbitb);
ClearTrajectory(orbitB);
e = TMath::QuietNaN();
eB = TMath::QuietNaN();
detX = TMath::QuietNaN();
rhoHit = TMath::QuietNaN();
xOff = 0.0;
yOff = 0.0;
isDetReady = false;
overrideDetDistance = false;
overrideFirstPos = false;
isCoincidentWithRecoil = false;
}
HELIOS::~HELIOS(){
}
bool HELIOS::SetDetectorGeometry(std::string filename){
if( detGeo.LoadDetectorGeo(filename)) {
if( detGeo.use2ndArray ){
array = detGeo.array2;
}else{
array = detGeo.array1;
}
isCoincidentWithRecoil = detGeo.isCoincidentWithRecoil;
isDetReady = true;
}else{
printf("cannot read file %s.\n", filename.c_str());
isDetReady = false;
}
return isDetReady;
}
int HELIOS::DetAcceptance(){
//CalArrayHit and CalRecoilHit must be done before.
if( isDetReady == false ) return 0;
// -1 ========= when recoil direction is not same side of array
if( array.firstPos < 0 && orbitb.z > 0 ) return -1;
if( array.firstPos > 0 && orbitb.z < 0 ) return -1;
// -11 ======== rho is too small
if( 2 * orbitb.rho < array.detPerpDist ) return -11;
// -15 ========= if detRowID == -1, should be (2 * orbitb.rho < perpDist)
if( orbitb.detRowID == -1 ) return -15;
// -10 =========== when rho is too big .
if( detGeo.bore < 2 * orbitb.rho) return -10;
// -14 ========== check particle-B hit radius on recoil dectector
if( isCoincidentWithRecoil && orbitB.R > detGeo.recoilOuterRadius ) return -14;
//if( isCoincidentWithRecoil && (orbitB.R > rhoRecoilout || orbitB.R < rhoRecoilin) ) return -14;
// -12 ========= check is particle-b was blocked by recoil detector
rhoHit = GetR(detGeo.recoilPos);
if( orbitb.z > 0 && detGeo.recoilPos > 0 && orbitb.z > detGeo.recoilPos && rhoHit < detGeo.recoilOuterRadius ) return -12;
if( orbitb.z < 0 && detGeo.recoilPos < 0 && orbitb.z < detGeo.recoilPos && rhoHit < detGeo.recoilOuterRadius ) return -12;
// -13 ========= not more than 3 loops
if( orbitb.loop > 3 ) return -13;
// -2 ========= calculate the "y"-distance from detector center
if( sqrt(orbitb.R*orbitb.R - array.detPerpDist * array.detPerpDist)> array.detWidth/2 ) return -2;
// -3 ==== when zPos further the range of whole array, more loop would not save
if( array.firstPos < 0 && orbitb.z < array.detPos[0] - array.detLength ) return -3;
if( array.firstPos > 0 && orbitb.z > array.detPos[array.nDet-1] + array.detLength ) return -3;
// -4 ======== Hit on blacker
if( array.blocker != 0 && array.firstPos > 0 && array.detPos[0] - array.blocker < orbitb.z && orbitb.z < array.detPos[0] ) return -4;
if( array.blocker != 0 && array.firstPos < 0 && array.detPos[array.nDet-1] < orbitb.z && orbitb.z < array.detPos[array.nDet-1] + array.blocker ) return -4;
// 2 ====== when zPos less then the nearest position, more loop may hit
int increaseLoopFlag = 0;
if( array.firstPos < 0 && array.detPos[array.nDet-1] < orbitb.z ) increaseLoopFlag = 2;
if( array.firstPos > 0 && array.detPos[0] > orbitb.z ) increaseLoopFlag = 2;
if (increaseLoopFlag == 2 ) {
orbitb.z += orbitb.z0;
orbitb.effLoop += 1.0;
orbitb.loop += 1;
orbitb.t = orbitb.t0 * orbitb.effLoop;
return 2;
}
// 1 ======= check hit array z- position
if( array.firstPos < 0 ){
for( int i = 0; i < array.nDet; i++){
if( array.detPos[i] - array.detLength <= orbitb.z && orbitb.z <= array.detPos[i]) {
orbitb.detID = i;
detX = ( orbitb.z - (array.detPos[i] + array.detLength/2 ))/ array.detLength * 2 ;// range from -1 , 1
return 1;
}
}
}else{
for( int i = 0; i < array.nDet ; i++){
if( array.detPos[i] <= orbitb.z && orbitb.z <= array.detPos[i] + array.detLength) {
///printf(" %d | %f < z = %f < %f \n", i, array.detPos[i], orbitb.z, array.detPos[i]+length);
orbitb.detID = i;
detX = ( orbitb.z - (array.detPos[i] - array.detLength/2 ))/ array.detLength*2 ;// range from -1 , 1
return 1;
}
}
}
// -5 ======== check hit array gap
if( array.firstPos < 0 ){
for( int i = 0; i < array.nDet-1 ; i++){
if( array.detPos[i] < orbitb.z && orbitb.z < array.detPos[i+1] - array.detLength ) return -5; //increaseLoopFlag = 3;
}
}else{
for( int i = 0; i < array.nDet-1 ; i++){
if( array.detPos[i] + array.detLength < orbitb.z && orbitb.z < array.detPos[i+1] ) return -5; //increaseLoopFlag = 3;
}
}
if (increaseLoopFlag == 3 ) {
orbitb.z += orbitb.z0;
orbitb.effLoop += 1.0;
orbitb.loop += 1;
orbitb.t = orbitb.t0 * orbitb.effLoop;
return 3;
}
return -20; // for unknown reason
}
void HELIOS::CalTrajectoryPara(TLorentzVector P, int Z, int id){
if( id == 0 ){
orbitb.theta = P.Theta();
orbitb.phi = P.Phi();
orbitb.rho = P.Pt() / abs(detGeo.Bfield) / Z / c * 1000; //mm
orbitb.vt = P.Beta() * TMath::Sin(P.Theta()) * c ; // mm / nano-second
orbitb.vp = P.Beta() * TMath::Cos(P.Theta()) * c ; // mm / nano-second
orbitb.t0 = TMath::TwoPi() * orbitb.rho / orbitb.vt; // nano-second
orbitb.z0 = orbitb.vp * orbitb.t0;
orbitb.detID = -1;
orbitb.detRowID = -1;
}
if( id == 1 ){
orbitB.theta = P.Theta();
orbitB.phi = P.Phi();
orbitB.rho = P.Pt() / abs(detGeo.Bfield) / Z / c * 1000; //mm
orbitB.vt = P.Beta() * TMath::Sin(P.Theta()) * c ; // mm / nano-second
orbitB.vp = P.Beta() * TMath::Cos(P.Theta()) * c ; // mm / nano-second
orbitB.t0 = TMath::TwoPi() * orbitB.rho / orbitB.vt; // nano-second
orbitB.z0 = orbitB.vp * orbitB.t0;
orbitB.detID = -1;
orbitB.detRowID = -1;
}
}
int HELIOS::CalArrayHit(TLorentzVector Pb, int Zb){
e = Pb.E() - Pb.M();
detX = TMath::QuietNaN();
rhoHit = TMath::QuietNaN();
CalTrajectoryPara(Pb, Zb, 0);
int targetLoop = 1;
int inOut = array.detFaceOut == true ? 1: 0; //1 = from Outside, 0 = from inside
bool debug = false;
if( debug ) {
printf("===================================\n");
printf("theta : %f deg, phi : %f deg \n", orbitb.theta * TMath::RadToDeg(), orbitb.phi * TMath::RadToDeg());
printf("z0: %f mm, rho : %f mm \n", orbitb.z0, orbitb.rho);
printf(" inOut : %d = %s \n", inOut, inOut == 1 ? "Out" : "in");
printf(" z range : %.2f - %.2f \n", detGeo.zMin, detGeo.zMax);
printf("-----------------------------------\n");
}
std::vector<double> zPossible;
std::vector<int> dID; //detRowID
int iStart = ( detGeo.BfieldSign == 1 ? 0 : -array.mDet );
int iEnd = ( detGeo.BfieldSign == 1 ? 2 * array.mDet : array.mDet );
for( int i = iStart; i < iEnd ; i++){
double phiD = TMath::TwoPi()/array.mDet * i ;
double dphi = orbitb.phi - phiD;
double aEff = array.detPerpDist - (xOff * TMath::Cos(phiD) + yOff * TMath::Sin(phiD));
double hahaha = asin( aEff/ orbitb.rho - detGeo.BfieldTheta * sin(dphi));
int n = 2*targetLoop + inOut;
double zP = orbitb.z0 /TMath::TwoPi() * ( detGeo.BfieldSign * dphi + n * TMath::Pi() + pow(-1, n) * hahaha );
if( debug ) {
double xP = GetXPos(zP) ;
double yP = GetYPos(zP) ;
printf("phiD: %4.0f, dphi: %6.1f, mod(pi): %6.1f, Loop : %9.5f, zHit : %8.3f mm, (x,y) = (%7.2f, %7.2f) \n",
phiD * TMath::RadToDeg(),
(orbitb.phi-phiD) * TMath::RadToDeg(),
fmod(orbitb.phi-phiD, TMath::Pi())*TMath::RadToDeg(),
zP/orbitb.z0, zP, xP, yP );
}
///Selection
if( !TMath::IsNaN(zP) && 0< zP/orbitb.z0 && TMath::Max(0, targetLoop-1) < zP/orbitb.z0 && zP/orbitb.z0 < targetLoop ) {
zPossible.push_back(zP);
dID.push_back(i);
}
}
/*
if( zPossible.size() == 0 ){ // will not happen
zHit = TMath::QuietNaN();
xPos = TMath::QuietNaN();
yPos = TMath::QuietNaN();
loop = -1;
detID = -1;
detRowID = -1;
return -1 ;
}*/
if( debug ) printf("-----------------------------------\n");
double dMin = 1;
for( int i = 0; i < (int) zPossible.size(); i++){
double dd = abs(zPossible[i]/orbitb.z0 - (targetLoop - (1-inOut)));
if( debug ) printf(" %d | zP : %8.3f mm; loop : %9.5f ", i, zPossible[i], zPossible[i]/orbitb.z0);
if( dd < dMin) {
orbitb.z = zPossible[i];
dMin = dd;
orbitb.effLoop = zPossible[i]/orbitb.z0;
orbitb.loop = TMath::Ceil(orbitb.effLoop);
orbitb.detRowID = (12+dID[i])%4;
orbitb.t = orbitb.t0 * orbitb.effLoop;
double phiD = TMath::TwoPi()/array.mDet * dID[i] ;
double dphi = orbitb.phi - phiD ;
if( debug ) {
// Check is in or out
double hitDir = cos( orbitb.z/orbitb.z0 * TMath::TwoPi() - detGeo.BfieldSign * dphi );
printf(" hitDir : %4.1f ", hitDir);
if( ( inOut == 1 && hitDir > 0 ) || (inOut == 0 && hitDir < 0 ) ) {
printf(" != %f ", array.detPerpDist);
orbitb.z = TMath::QuietNaN();
orbitb.loop = -1;
orbitb.detRowID = -1;
return - 2;
}
// this must be false, otherwise, calculation error
double xPos = GetXPos(orbitb.z ) ;
double yPos = GetYPos(orbitb.z ) ;
double a = xPos * cos(phiD) + yPos * sin(phiD);
printf(" a : %f ", a);
if( abs(a - array.detPerpDist) > 0.01) {
printf(" != %f ", array.detPerpDist);
orbitb.z = TMath::QuietNaN();
orbitb.loop = -1;
orbitb.detRowID = -1;
return -3;
}
}
}
if(debug) printf("\n");
}
// calculate x, y, R
orbitb.x = GetXPos(orbitb.z) ;
orbitb.y = GetYPos(orbitb.z) ;
orbitb.R = GetR(orbitb.z);
return 1; // return 1 when OK
}
int HELIOS::CalRecoilHit(TLorentzVector PB, int ZB){
CalTrajectoryPara(PB, ZB, 1);
orbitB.z = detGeo.recoilPos;
orbitB.x = GetRecoilXPos(detGeo.recoilPos) ;
orbitB.y = GetRecoilYPos(detGeo.recoilPos) ;
orbitB.R = GetRecoilR(detGeo.recoilPos);
orbitB.effLoop = orbitB.z/orbitB.z0;
orbitB.t = orbitB.t0 * orbitB.effLoop ;
return 1;
}
#endif