From a57183f8bbabb7fcbc81a5d79b4c111bc826f099 Mon Sep 17 00:00:00 2001 From: "Ryan@fsunuc" Date: Tue, 17 Jan 2023 16:05:37 -0500 Subject: [PATCH] some UI change on add Ex --- heliosmatics.html | 6 +- heliosmatics2.html | 542 ++++++++ heliosmatics2.js | 1115 +++++++++++++++++ index.html | 23 +- instruction.html | 14 +- ANL_logo.gif => logos/ANL_logo.gif | Bin CERN_logo.svg => logos/CERN_logo.svg | 0 FRIB_logo.jpg => logos/FRIB_logo.jpg | Bin FSU_logo_640.png => logos/FSU_logo_640.png | Bin HELIOS_logo.jpg => logos/HELIOS_logo.jpg | Bin ISS_logo.png => logos/ISS_logo.png | Bin .../SOLARIS_favicon.png | Bin SOLARIS_logo.png => logos/SOLARIS_logo.png | Bin simpleInput.py | 18 +- simpleSim.html | 98 +- 15 files changed, 1760 insertions(+), 56 deletions(-) create mode 100644 heliosmatics2.html create mode 100644 heliosmatics2.js rename ANL_logo.gif => logos/ANL_logo.gif (100%) rename CERN_logo.svg => logos/CERN_logo.svg (100%) rename FRIB_logo.jpg => logos/FRIB_logo.jpg (100%) rename FSU_logo_640.png => logos/FSU_logo_640.png (100%) rename HELIOS_logo.jpg => logos/HELIOS_logo.jpg (100%) rename ISS_logo.png => logos/ISS_logo.png (100%) rename SOLARIS_favicon.png => logos/SOLARIS_favicon.png (100%) rename SOLARIS_logo.png => logos/SOLARIS_logo.png (100%) diff --git a/heliosmatics.html b/heliosmatics.html index 93e2991..6817251 100644 --- a/heliosmatics.html +++ b/heliosmatics.html @@ -3,7 +3,7 @@ Heliosmatics - + @@ -447,12 +447,14 @@ function CopyInputs(){ copyText += inputs[i].value + ", "; } } + + copyText += document.getElementById('heavyName').innerHTML; //console.log(copyText); navigator.clipboard.writeText(copyText).then( () => { - alert('setting copied to clipboard.\nCan paste it in Monte Carlo simulation.\n' + copyText); + alert('Setting copied to clipboard.\nCan paste it in Monte Carlo simulation.\n' + copyText); }).catch( () =>{ alert('Cannot copy.'); diff --git a/heliosmatics2.html b/heliosmatics2.html new file mode 100644 index 0000000..9ef8255 --- /dev/null +++ b/heliosmatics2.html @@ -0,0 +1,542 @@ + + + +Heliosmatics 2 + + + + + + + + + +

HELIOSmatics 2

+ +

24F(d,p)25F@10MeV/u

+ + + + + + + + + + + + + + + + + + + + + + + + + +
Beam (A): Beam Ex:MeV
Target (a):
Light (b): Q-value:2.057MeV
Heavy (B):25F
+ +

+ +

+ + + + + + + +
+ HELIOS + + SOLARIS + + ISS +
+

+ + + + + + + + + + + + + + + + + + + + + +
B-field (abs.):T
Beam Energy:MeV/u
+ +

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
Ex [MeV] θcm[deg]Eb[MeV]Zb0[mm]Zb[mm]b[mm]θLabb[deg]Tb[ns]EB[MeV]θLabB[deg]ZB0/2[mm]B[mm]
+ +

+ + + + + + + + + + + + + + + + + + + +
θCM:deg
Array Pos:mm
Recoil Pos:mm
+ + + + + + + + +
Recoil radius, inner [mm]: outter [mm]:
+ +

+ + +
+
+ + + + + + + + + + + + +
+
+
 
 zRange can be changed by Array position.
+ + + + + + + +
eRange:MeV
+
 
+
+
+ + + + + + + + + +
+
+
 
+ + + + + + + + + + + + + + + + + + + +
zRange(Min):mm
zRange(Max):mm
rRange:mm
+
 
+
+
+ +

+ + +
+

DWBA and Monte Carlo Simulation

+ +

DWBA and Ex List:

+Positive parity +Negative parity +Unknown parity +
+ +Max Ex: MeV + +

+ + Beam Jπ: + + + + + + + + + + + + + + + + + + + + + +
Ex [MeV]    Jπ Orbital
+ +

+ + + + + + + + +
Incoming Channel + + +
Outgoing Channel + + +
+ +

+ Cal. DWBA + ONLY Cal. DWBA + + + + + + + + + + + +
min θCM[deg]
max θCM[deg]
+

+ +

Plot config:

+ + + + + + + + + + + + + + + + + +
E vs ZEx (cal.)ThetaCM
ThetaCM vs ZRecoil X vs YRecoil-R vs ThetaCM
Recoil R vs ZTime diff vs ZArray X vs Y
+ +

+ + Array Hit
+ Loop = 1
+ ThetaCM > 10 deg
+ +

+ + + + +
+ +

θCM Calculator

+ +The calculation only give θCM after the bending. +

+ + + + + + + + + + + +
Ex [MeV] : θCM Gate [deg] : X Gate [%] :
+ + + + + + + + + + +
IDpos0(gated)pos1(gated)θ1[deg]θ2[deg]θavg[deg]Δθ[deg]sin(θavg)Δθ
+ + + +
+

+HELIOSmatics was first built by Ben P. Kay in MS Excel around 2010. It was modified by Ryan Tang later. And now it migrated to the web on Dec, 2022. +
+The calculation can be found in the source code (heliosmatics.js or press F12) + +

+ + + + + + + + + + + + diff --git a/heliosmatics2.js b/heliosmatics2.js new file mode 100644 index 0000000..f9d41f7 --- /dev/null +++ b/heliosmatics2.js @@ -0,0 +1,1115 @@ + +function addRow() { + let table = document.getElementById("ExTable"); + let nRow = table.rows.length; + let row = table.insertRow(nRow-1); + + let energy = Math.random()*Math.min(heavy[4], heavy[5], heavy[6]); + let angle = Math.floor(Math.random() * 30) + 10; + + row.innerHTML = ' \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + \ + '; + + CalculateEZ(); + CalculateRZ(); + + //let table2 = document.getElementById("DWBATable"); + //row = table2.insertRow(nRow-1); + //row.innerHTML = '' + (nRow-2) + ' \ + // \ + // '; +} + +function deleteRow(){ + let table = document.getElementById("ExTable"); + let nRow = table.rows.length; + if ( nRow > 3){ + table.deleteRow(nRow-2); + } + CalculateEZ(); + CalculateRZ(); + + //let table2 = document.getElementById("DWBATable"); + //if ( nRow > 3){ + // table2.deleteRow(nRow-2); + //} +} + +var beam = []; //A, Z, Mass, Name, Sn, Sp, Sa +var beamMass; +var target= []; +var light=[]; +var heavy=[]; //A, Z, Mass, Name, Sn, Sp, Sa + +var beamEx; +var BField; +var KEA; +var KE; +var reactionName; + +var Qvalue; +var minKEA; + +var perpDistant = 11.5; //mm, detector prepdicular distance +var bore = 462.0; // mm +var arrayLen = 50 * 10 + 2 * 9 // SOLARIS +var detLen = 50; // SOLARIS +var nDet = 10; // SOLARIS +var detGap = 2; // SOLARIS +var arrayPos = []; + +const c = 299.792468; // mm/ns + +var beam_k_lab; +var E_tot_cm ; +var KE_cm ; +var max_Ex ; +var beta ; +var gamma ; + +var ez_slope ; // MeV/mm + +var alpha ; +var alpha_B ; + +var xList =[]; // for E-Z plot +var yList =[]; // for E-Z plot +var ExList = []; +var Zb0List = []; +var rhoList = []; + +var ZB0List = []; +var rhoBList = []; + +var xRange ; +var yRange = [0, 12]; + +var zList = []; // for R-Z plot +var rbList = []; // for R-Z plot +var rBList = []; // for R-Z plot + +var color = ['rgb(31,119,180)', // muted blue + 'rgb(255,127,14)', // safety orange + 'rgb(44,160,44)', // cooked asparagus green + 'rgb(214,39,40)', // brick red + 'rgb(148,103,189)', // muted purple + 'rgb(140,86,75)', // chestnut brown + 'rgb(277,119,194)', // raspberry yogurt pink + 'rgb(127,127,127)', // middle gray + 'rgb(118,189,34)', // curry yellow-green + 'rgb(23,190,207)']; // blue-teal + +function GetMassFromSym(AZ, id){ + let str = 'massProxy.py?AZ=' + AZ; + + let client = new XMLHttpRequest(); + client.onreadystatechange = function() { + let mass = client.responseText.split(","); + if( id == 0 ){ + beam[0] = parseInt(mass[0]); + beam[1] = parseInt(mass[1]); + beam[2] = parseFloat(mass[2]); + beam[3] = AZ; + beam[4] = parseFloat(mass[4]); + beam[5] = parseFloat(mass[5]); + beam[6] = parseFloat(mass[6]); + } + if( id == 1 ){ + target[0] = parseInt(mass[0]); + target[1] = parseInt(mass[1]); + target[2] = parseFloat(mass[2]); + target[3] = AZ; + } + if( id == 2 ){ + light[0] = parseInt(mass[0]); + light[1] = parseInt(mass[1]); + light[2] = parseFloat(mass[2]); + light[3] = AZ; + } + } + client.open('GET', str, false); + client.send(); + +} + +function GetMassFromAZ(A,Z){ + let str = 'massProxy.py?A=' + A + '&Z=' + Z; + + let client = new XMLHttpRequest(); + client.onreadystatechange = function() { + let mass = client.responseText.split(","); + heavy[2] = parseFloat(mass[2]); + heavy[3] = mass[3]?.trim(); + heavy[4] = parseFloat(mass[4]); + heavy[5] = parseFloat(mass[5]); + heavy[6] = parseFloat(mass[6]); + } + client.open('GET', str, false); + client.send(); + +} + +function GetMass(){ + + GetMassFromSym(document.getElementById('beam').value, 0); + GetMassFromSym(document.getElementById('target').value, 1); + GetMassFromSym(document.getElementById('light').value, 2); + + beamMass = beam[2]; + + heavy[0] = beam[0]+target[0]-light[0]; + heavy[1] = beam[1]+target[1]-light[1]; + GetMassFromAZ(heavy[0], heavy[1]); + + document.getElementById('heavyName').innerHTML = heavy[3]; + document.getElementById('heavySp').innerHTML = 'Sn: ' + heavy[4] + ' MeV, Sp: ' + heavy[5] + ' MeV, Sa : ' + heavy[6] + ' MeV'; + + //document.getElementById('n0').innerHTML = beam[0] + "," + beam[1] + "," + beam[2] + //document.getElementById('n1').innerHTML = target[0] + "," + target[1] + "," + target[2] + //document.getElementById('n2').innerHTML = light[0] + "," + light[1] + "," + light[2] + //document.getElementById('n3').innerHTML = heavy[0] + "," + heavy[1] + "," + heavy[2] + +} + +function CalConstants(){ + + beamEx = parseFloat(document.getElementById('beamEx').value); + + beam[2] = beamMass + beamEx; + + BField = parseFloat(document.getElementById('BField').value); + KEA = document.getElementById('KEA').value; + KE = KEA * beam[0]; + + reactionName = beam[3] +"(" + target[3] + "," + light[3] + ")" + heavy[3] + "@" + KEA + "MeV/u, " + BField.toFixed(1) + " T"; + + Qvalue = - heavy[2] - light[2] + beam[2] + target[2] ; + minKEA = (Math.pow(light[2] + heavy[2],2) - Math.pow(beam[2] + target[2],2))/2/target[2]/beam[0]; + + document.getElementById('reactionName').innerHTML = reactionName; + document.getElementById('minKEA').innerHTML = "min Beam Energy: " + minKEA.toFixed(3) + " MeV/u"; + document.getElementById('Q-value').innerHTML = Qvalue.toFixed(3); + + beam_k_lab = Math.sqrt(Math.pow(beam[2] + KE,2) - Math.pow(beam[2],2)); + E_tot_cm = Math.sqrt(Math.pow(target[2] + beam[2],2) + 2*target[2]*KE); + KE_cm = E_tot_cm - beam[2] - target[2]; + max_Ex = KE_cm + Qvalue; + beta = beam_k_lab/(beam[2] + target[2] + KE); + gamma = 1./Math.sqrt(1-beta*beta); + + ez_slope = Math.abs(BField) * c * light[1]*beta/2/Math.PI/1000; // MeV/mm + alpha = ez_slope/beta; + alpha_B = alpha * heavy[1]/light[1]; + +} + +function CalArrayPos(){ + let haha = parseFloat(document.getElementById('posArray').value); + arrayPos = []; + for( let i = 0; i < nDet; i++){ + let kaka = []; + if( haha < 0 ){ + kaka.push(haha - (i+1) * detLen - i * detGap); + kaka.push(haha - (i) * detLen - i * detGap); + }else{ + kaka.push(haha + (i) * detLen + i * detGap); + kaka.push(haha + (i+1) * detLen + i * detGap); + } + arrayPos.push(kaka); + } +} + +function SetSSType(){ + let helios = document.getElementById('HELIOS').checked; + let solaris = document.getElementById('SOLARIS').checked; + let iss = document.getElementById('ISS').checked; + + if ( helios == true ) { + perpDistant = 11.5; + detGap = 5; + detLen = 50; + nDet = 6; + } + if ( solaris == true ) { + perpDistant = 11.5; + detGap = 5; + detLen = 50; + nDet = 10; + } + if ( iss == true ) { + perpDistant = 20; + detGap = 5; + detLen = 100; + nDet = 5; + } + arrayLen = detLen * nDet + detGap * (nDet-1); + + CalArrayPos(); + //document.getElementById('n1').innerHTML = perpDistant; +} + +function CalculateEZ(){ + + let tableEx = document.getElementById("ExTable"); + let nRow = tableEx.rows.length; + + xList = []; + yList = []; + ExList = []; + Zb0List = []; + rhoList = []; + ZB0List = []; + rhoBList = []; + + //alert("CalculateEZ called, nRow = " + nRow); + + for( let i = 1; i < nRow-1; i++){ + let Ex = parseFloat(document.getElementById("Ex" + i).value); + let theta = parseFloat(document.getElementById("theta" + i).value); + + ExList.push(Ex); + //alert( i, ", Ex : " + Ex); + + let haha1 = E_tot_cm*E_tot_cm - Math.pow(heavy[2] + Ex + light[2],2); + let haha2 = E_tot_cm*E_tot_cm - Math.pow(heavy[2] + Ex - light[2],2); + let k_cm = Math.sqrt(haha1*haha2)/2/E_tot_cm; + + let cs = Math.cos(theta*Math.PI/180.); + let ss = Math.sin(theta*Math.PI/180.); + let qb = Math.sqrt(light[2]*light[2]+k_cm*k_cm); + + let Eb = gamma * qb - gamma * beta * k_cm * cs - light[2]; + + let Zb0 = (gamma*beta* qb - gamma * k_cm * cs )/alpha; //mm + Zb0List.push(Zb0); + + let rho = k_cm * ss/c/light[1]/Math.abs(BField) * 1000; // mm + rhoList.push(rho); + let Zb = Zb0 * (1- Math.asin(perpDistant/rho/2)/Math.PI); + + let thetaLab = 180 - Math.atan2(k_cm * ss, gamma * (beta * qb - k_cm * cs)) * 180/Math.PI; + + let Tcyc = (light[2] + Eb)/alpha/c; + + tableEx.rows[i].cells[2].innerHTML = Eb.toFixed(3); + tableEx.rows[i].cells[3].innerHTML = Zb0.toFixed(1); + tableEx.rows[i].cells[4].innerHTML = Zb.toFixed(1); + tableEx.rows[i].cells[5].innerHTML = (2*rho).toFixed(1); + tableEx.rows[i].cells[6].innerHTML = thetaLab.toFixed(2); + tableEx.rows[i].cells[7].innerHTML = Tcyc.toFixed(2); + + let qB = Math.sqrt(heavy[2]*heavy[2]+k_cm*k_cm); + let EB = gamma * qB + gamma * beta * k_cm * cs - heavy[2]; + let thetaLab_B = Math.atan2(-k_cm * ss, gamma * (beta * qB + k_cm * cs)) * 180/Math.PI; + let ZB0 = (gamma*beta* qB + gamma * k_cm * cs )/alpha_B; //mm + let rhoB = k_cm * ss/c/heavy[1]/Math.abs(BField) * 1000; // mm + ZB0List.push(ZB0); + rhoBList.push(rhoB); + + tableEx.rows[i].cells[8].innerHTML = EB.toFixed(3); + tableEx.rows[i].cells[9].innerHTML = thetaLab_B.toFixed(2); + tableEx.rows[i].cells[10].innerHTML = (ZB0/2).toFixed(2); + tableEx.rows[i].cells[11].innerHTML = (2*rhoB).toFixed(2); + + let xxx = []; + let yyy = []; + + for( let j = 0; j < 100 ; j++){ + let thetaCM = Math.PI/Math.log10(100) * Math.log10(100/(100-j)) ; + let temp = Math.PI * ez_slope / beta / k_cm * perpDistant / Math.sin(thetaCM); // perpDistant / 2/ rho(thetaCM) + if( !isFinite(temp) ) continue; + let pxTemp = 1. /alpha * (gamma * beta * qb - gamma * k_cm * Math.cos(thetaCM)) * (1 - Math.asin(temp)/Math.PI) ; + let pyTemp = gamma * qb - light[2] - gamma * beta * k_cm * Math.cos(thetaCM); + if( !isNaN(pxTemp) && !isNaN(pyTemp) ){ + xxx.push(pxTemp); + yyy.push(pyTemp); + } + }; + + xList.push(xxx); + yList.push(yyy); + + }; + + PlotEZ(); + AdjustRangeEZ(); + +} + +function PlotEZ(){ + + SetSSType(); + Plotly.purge("Plot_EZ"); + + let nEx = xList.length; + let data = []; + + for( let i = 0; i < nEx; i++){ + let kaka = color[i%10]; + let newData = { + x : xList[i], + y : yList[i], + mode:"lines", + type:"scatter", + name:"Ex="+ExList[i], + marker : { color : kaka} + } + data.push(newData); + } + + let haha = parseFloat(document.getElementById('posArrayRange').value); + let xStart = (haha < 0 ? haha - arrayLen - 100 : haha - 100); + let xEnd = (haha < 0 ? haha + 100: haha + arrayLen + 100); + + xRange = [xStart, xEnd]; + //document.getElementById('n0').innerHTML = xRange; + + let haha2 = parseFloat(document.getElementById('eRangeSlider').value); + yRange = [0, haha2]; + + let layout = { + xaxis: {range: xRange, title: { text : "Z [mm]", standoff : 1}, mirror : "allticks", linewidth : "1"}, + yaxis: {range: yRange, title: "Energy [MeV]" , mirror : "allticks", linewidth : "1"}, + title: reactionName, + dragmode : "pan", + margin: { l: 40, r: 40, b : 60, t : 40}, + legend: {yanchor:"top", xanchor:"left", x:"0.01",y:"0.99" } + }; + + + Plotly.newPlot( "Plot_EZ", data, layout, {responsive: true}); + + PlotThetaCMLine(document.getElementById('thetaCM').value); + PlotBore(); + + PlotRZ(); +} + +function PlotThetaCMLine(thetaCM){ + let cs = Math.cos(thetaCM * Math.PI /180); + let ss = Math.sin(thetaCM * Math.PI /180); + + let zzList = []; + let eList = []; + + for( let z = -2000; z < 2000; z+=30){ + zzList.push(z); + + let kaka = Math.pow(gamma * ss,2); + let a1 = light[2]*light[2]*(1-kaka); + let haha = (cs*Math.sqrt(alpha*alpha*z*z + a1) - kaka * ez_slope * z)/(1-kaka)- light[2]; + eList.push(haha); + } + + Plotly.addTraces("Plot_EZ", {x : zzList, + y: eList, + name:"thetaCM=" + thetaCM , + marker : { color : 'rgb(100,100,100)'}, + line : {dash : 'solid', width : 1 } + } + , 0); +} + +function PlotBore(){ + let zzList = []; + let eList = []; + + for( let z = -2000; z < 2000; z+=30){ + zzList.push(z); + + let haha = Math.sqrt((z*z+Math.PI*Math.PI*bore*bore)*alpha*alpha + light[2]*light[2]) - light[2]; + eList.push(haha); + } + + Plotly.addTraces("Plot_EZ", {x : zzList, y: eList, name:"Bore", marker : { color : 'rgb(200,200, 200)'} }, 0); +} + +function CalculateRZ(){ + // this rquire ZB0List and rhoBList from CalculateEZ(); + + zList = []; + rbList = []; + rBList = []; + + for( let z = -2000; z < 4000; z += 2 ) zList.push(z); + + // cal the heavy recoil first + for( let i = 0; i < ZB0List.length; i++){ + let rrr = [] + for( let j = 0; j < zList.length; j++){ + if( zList[j] < 0 ){ + rrr.push(NaN); + }else{ + rrr.push(2*rhoBList[i] *Math.abs( Math.sin(zList[j] * Math.PI / ZB0List[i]))); + } + } + rBList.push(rrr); + } + + // cal the light recoil first + for( let i = 0; i < Zb0List.length; i++){ + let rrr = [] + for( let j = 0; j < zList.length; j++){ + if( target[0] > light[0] ){ + if( zList[j] > 0 ){ + rrr.push(NaN); + }else{ + rrr.push(2*rhoList[i] *Math.abs( Math.sin(zList[j] * Math.PI / Zb0List[i]))); + } + }else{ + if( zList[j] < 0 ){ + rrr.push(NaN); + }else{ + rrr.push(2*rhoList[i] *Math.abs( Math.sin(zList[j] * Math.PI / Zb0List[i]))); + } + } + } + rbList.push(rrr); + } + + PlotRZ(); + AdjustRecoilPos(); +} + +function PlotRZ(){ + Plotly.purge("Plot_RZ"); + + let data = []; + let nEx = ExList.length; + + for(let i = 0 ; i < nEx; i++ ){ + let kaka = color[i%10]; + let newData = { + x : zList, + y : rBList[i], + mode : "lines", + type : "scatter", + name : "Ex="+ExList[i] + ",theta=" + document.getElementById('theta'+(i+1)).value, + marker : { color : kaka} + } + data.push(newData); + } + for(let i = 0 ; i < nEx; i++ ){ + let kaka = color[i%10]; + let newData = { + x : zList, + y : rbList[i], + mode : "lines", + line : {dash : 'dashdot', width : 1 }, + type : "scatter", + name : "Ex="+ExList[i] + ",theta=" + document.getElementById('theta'+(i+1)).value, + marker : { color : kaka} + } + data.push(newData); + } + + let xxx = [parseInt(document.getElementById('zRange1').value), parseInt(document.getElementById('zRange2').value)]; + let yyy = [0, parseInt(document.getElementById('rRange').value)]; + + let layout = { + xaxis: {range: xxx, title: { text : "Z [mm]", standoff : 1}, mirror : "allticks", linewidth : "1"}, + yaxis: {range: yyy, title: "R [mm]" , mirror : "allticks", linewidth : "1"}, + title: reactionName, + showlegend : true, + dragmode : "pan", + margin: { l: 40, r: 40, b : 60, t : 40}, + legend: { yanchor:"top", xanchor:"left", x:"0.01",y:"0.99"} + }; + + Plotly.newPlot( "Plot_RZ", data, layout, {responsive: true}); + +} + +function CalZ(theta, k_cm, qb){ + let cs = Math.cos(theta*Math.PI/180.); + let ss = Math.sin(theta*Math.PI/180.); + + let Zb0 = (gamma*beta* qb - gamma * k_cm * cs )/alpha; //mm + let rho = k_cm * ss / c/ light[1]/ Math.abs(BField) * 1000; // mm + + return Zb0 * ( 1 - Math.sin( perpDistant/2/rho ) / Math.PI ); +} + +function SearchThetaCM(Z, thetaMin, k_cm, qb){ + + let step = 0.01; + + for( let yy = thetaMin; yy < 180; yy += step){ + if( yy > 12 ) step = 0.1; + if( yy > 20 ) step = 0.5; + if( yy > 40 ) step = 1.0; + let z1 = CalZ(yy, k_cm, qb); + let z2 = CalZ(yy+step, k_cm, qb); + //console.log(Z, ", ", yy.toFixed(3), ", ", z1.toFixed(3), ", ", z2.toFixed(3), ", ", (z2-z1).toFixed(3) ); + if( z1 > z2 ){ /// in the bending range + continue; + }else{ + if( Z < z1 ){ + // return yy; + break; + } + if( z1<= Z && Z <= z2 ){ // do a linear approximation + return (Z-z1)/(z2-z1)*step + yy; + } + } + } + return NaN; +} + +function CalThetaCM(){ + let ex = parseFloat(document.getElementById('Ex0').value); + let angGate = parseFloat(document.getElementById('thetaCMGate').value); + let xGate = parseFloat(document.getElementById('XGate').value); + + CalArrayPos(); + + let haha1 = E_tot_cm*E_tot_cm - Math.pow(heavy[2] + ex + light[2],2); + let haha2 = E_tot_cm*E_tot_cm - Math.pow(heavy[2] + ex - light[2],2); + let k_cm = Math.sqrt(haha1*haha2)/2/E_tot_cm; + let qb = Math.sqrt(light[2]*light[2]+k_cm*k_cm); + + let table = document.getElementById('thetaCMTable'); + let nRow = table.rows.length; + if( nRow > 1 ){ + for( let i = nRow-1; i > 0; i -- ){ + table.deleteRow(i); + } + } + + for( let i = 0; i < arrayPos.length; i++){ + let row = table.insertRow(i+1); + row.insertCell().innerHTML = i; + + let p1 = (arrayPos[i][0] + detLen * (100. - xGate)/200.); + let p2 = (arrayPos[i][1] - detLen * (100. - xGate)/200.); + + row.insertCell().innerHTML = arrayPos[i][0] + "(" + p1 + ")"; + row.insertCell().innerHTML = arrayPos[i][1] + "(" + p2 + ")"; + + ///Search thetaCM for Z + let a1 = SearchThetaCM(p1, angGate, k_cm, qb); + let a2 = SearchThetaCM(p2, angGate, k_cm, qb); + row.insertCell().innerHTML = a1.toFixed(2); + row.insertCell().innerHTML = a2.toFixed(2); + + let am = (a2+a1)/2; + let da = Math.abs(a2-a1); + + row.insertCell().innerHTML = am.toFixed(2); + row.insertCell().innerHTML = da.toFixed(2); + row.insertCell().innerHTML = (Math.sin(am*Math.PI/180) * da * Math.PI/180).toExponential(2); + + } + +} + +document.getElementById('beam').addEventListener('keypress', + function(e){ + if(e.keyCode == 13){ + GetMass(); + CalConstants(); + } + }, false +); + +document.getElementById('beamEx').addEventListener('keypress', + function(e){ + if(e.keyCode == 13){ + CalConstants(); + } + }, false +); + +document.getElementById('target').addEventListener('keypress', + function(e){ + if(e.keyCode == 13){ + GetMass(); + CalConstants(); + } + }, false +); + +document.getElementById('light').addEventListener('keypress', + function(e){ + if(e.keyCode == 13){ + GetMass(); + CalConstants(); + } + }, false +); + +document.getElementById('BField').addEventListener('keypress', + function(e){ + //document.getElementById('n0').innerHTML = e.keyCode; + if(e.keyCode == 13){ + document.getElementById('BRange').value = this.value; + CalConstants(); + CalculateEZ(); + CalculateRZ(); + CalThetaCM(); + } + }, false +); + +document.getElementById('BRange').oninput = function(){ + document.getElementById('BField').value = this.value; + CalConstants(); + CalculateEZ(); + CalculateRZ(); + AdjustRangeEZ(); + CalThetaCM(); +} + +document.getElementById('KEA').addEventListener('keypress', + function(e){ + if(e.keyCode == 13){ + document.getElementById('KEARange').value = this.value; + CalConstants(); + CalculateEZ(); + CalculateRZ(); + CalThetaCM(); + } + }, false +); + +document.getElementById('KEARange').oninput = function(){ + document.getElementById('KEA').value = this.value; + CalConstants(); + CalculateEZ(); + CalculateRZ(); + CalThetaCM(); +} + +document.getElementById('thetaCM').addEventListener('keypress', + function(e){ + if(e.keyCode == 13){ + document.getElementById('thetaCMRange').value = this.value; + CalConstants(); + CalculateEZ(); + AdjustRecoilPos(); + } + }, false +); + +document.getElementById('thetaCMRange').oninput = function(){ + document.getElementById('thetaCM').value = this.value; + CalConstants(); + CalculateEZ(); + AdjustRecoilPos(); +} + +function AdjustRangeEZ(){ + let haha = parseFloat(document.getElementById('posArray').value); + let xStart = (haha < 0 ? haha - arrayLen - 100 : haha - 100); + let xEnd = (haha < 0 ? haha + 100: haha + arrayLen + 100); + + CalArrayPos(); + + xRange = [xStart, xEnd]; + yRange = [0, parseFloat(document.getElementById('eRangeSlider').value)]; + + //document.getElementById('n0').innerHTML = pos; + //document.getElementById('n2').innerHTML = arrayLen; + //document.getElementById('n1').innerHTML = xRange; + + let shapeArray = []; + for( let i = 0; i < nDet; i++){ + let newBlock = { + type: 'rect', + xref: 'x', + yref: 'paper', + x0 : arrayPos[i][0], + x1 : arrayPos[i][1], + y0 : 0, + y1 : 1, + fillcolor : '#9999FF', + opacity : 0.1, + line : { width : 0} } + shapeArray.push(newBlock); + } + + var update = { + 'xaxis.range' : xRange, + 'yaxis.range' : yRange, + 'shapes' : shapeArray + } + Plotly.relayout("Plot_EZ", update); +} + +document.getElementById('posArray').addEventListener('keypress', + function(e){ + if(e.keyCode == 13){ + document.getElementById('posArrayRange').value = this.value; + AdjustRangeEZ(); + AdjustRecoilPos(); + CalThetaCM(); + } + }, false +); + +document.getElementById('posArrayRange').oninput = function(){ + document.getElementById('posArray').value = this.value; + AdjustRangeEZ(); + AdjustRecoilPos(); + CalThetaCM(); +} + +function AdjustRecoilPos(){ + let pos1 = parseInt(document.getElementById('posRecoil').value); + let pos2 = pos1+10; + + let radius1 = parseInt(document.getElementById('innerRecoil').value); + let radius2 = parseInt(document.getElementById('outterRecoil').value); + + //document.getElementById('n0').innerHTML = pos1; + + let shapeRecoil = { + type: 'rect', + xref: 'x', + yref: 'y', + x0 : pos1, + x1 : pos2, + y0 : radius1, + y1 : radius2, + fillcolor : '#FF0000', + opacity : 0.4, + line : { width : 0} + }; + + let totalShape = []; + for( let i = 0; i < nDet; i++){ + let newhaha = { + type: 'rect', + xref: 'x', + yref: 'y', + x0 : arrayPos[i][0], + x1 : arrayPos[i][1], + y0 : 0, + y1 : perpDistant, + fillcolor : '#9999FF', + opacity : 0.1, + line : { width : 0} }; + totalShape.push(newhaha); + } + totalShape.push(shapeRecoil); + + var update = { + 'shapes' : totalShape + } + Plotly.relayout("Plot_RZ", update); + +} + +document.getElementById('posRecoil').addEventListener('keypress', + function(e){ + if(e.keyCode == 13){ + document.getElementById('posRecoilRange').value = this.value; + AdjustRecoilPos(); + } + }, false +); + +document.getElementById('posRecoilRange').oninput = function(){ + document.getElementById('posRecoil').value = this.value; + AdjustRecoilPos(); +} + +document.getElementById('innerRecoil').addEventListener('keypress', + function(e){ + if(e.keyCode == 13){ + AdjustRecoilPos(); + } + }, false +); + +document.getElementById('outterRecoil').addEventListener('keypress', + function(e){ + if(e.keyCode == 13){ + AdjustRecoilPos(); + } + }, false +); + +function AdjustRangeRZ(){ + + let zmin = parseInt(document.getElementById('zRange1').value); + let zmax = parseInt(document.getElementById('zRange2').value); + let rmax = parseInt(document.getElementById('rRange').value); + + let update = { + 'xaxis.range' : [zmin, zmax], + 'yaxis.range' : [0, rmax] + } + Plotly.relayout("Plot_RZ", update); +} + +document.getElementById('zRange1').addEventListener('keypress', + function(e){ + if(e.keyCode == 13){ + document.getElementById('zRange1Slider').value = this.value; + AdjustRangeRZ(); + } + }, false +); + +document.getElementById('zRange1Slider').oninput = function(){ + document.getElementById('zRange1').value = this.value; + AdjustRangeRZ(); +} + +document.getElementById('zRange2').addEventListener('keypress', + function(e){ + if(e.keyCode == 13){ + document.getElementById('zRange2Slider').value = this.value; + AdjustRangeRZ(); + } + }, false +); + +document.getElementById('zRange2Slider').oninput = function(){ + document.getElementById('zRange2').value = this.value; + AdjustRangeRZ(); +} + +document.getElementById('rRange').addEventListener('keypress', + function(e){ + if(e.keyCode == 13){ + let rrrr = parseInt(this.value); + if ( rrrr < 1 ){ + document.getElementById('rRange').value = 1; + rrrr = 1; + } + document.getElementById('rRangeSlider').value = rrrr; + AdjustRangeRZ(); + + } + }, false +); + +document.getElementById('rRangeSlider').oninput = function(){ + document.getElementById('rRange').value = this.value; + AdjustRangeRZ(); +} + +document.getElementById('eRange').addEventListener('keypress', + function(e){ + if(e.keyCode == 13){ + let rrrr = parseInt(this.value); + if ( rrrr < 1 ){ + document.getElementById('eRange').value = 1; + rrrr = 1; + } + document.getElementById('eRangeSlider').value = rrrr; + AdjustRangeEZ(); + } + }, false +); + +document.getElementById('eRangeSlider').oninput = function(){ + document.getElementById('eRange').value = this.value; + AdjustRangeEZ(); +} + +window.logMeThis = function(){ + SetSSType(); + CalculateEZ(); + CalculateRZ(); +} + +var FuncEx = window.logMeThis.bind(null, "Ex"); +window.addEventListener('keypress', FuncEx); + +var FuncThetaCM = window.logMeThis.bind(null, "thetaCM"); +window.addEventListener('keypress', FuncThetaCM); + +window.checkSSType = function(){ + SetSSType(); + CalculateEZ(); + CalThetaCM(); + CalculateRZ(); +} + +var FuncCheckSSType = window.checkSSType.bind(null, "SSType"); +document.getElementById('HELIOS').addEventListener('click', FuncCheckSSType); +document.getElementById('SOLARIS').addEventListener('click', FuncCheckSSType); +document.getElementById('ISS').addEventListener('click', FuncCheckSSType); + +document.getElementById('Ex0').addEventListener('keypress', + function(e){ + if(e.keyCode == 13){ + CalThetaCM(); + } + }, false +); + +document.getElementById('thetaCMGate').addEventListener('keypress', + function(e){ + if(e.keyCode == 13){ + CalThetaCM(); + } + }, false +); + +document.getElementById('XGate').addEventListener('keypress', + function(e){ + if(e.keyCode == 13){ + CalThetaCM(); + } + }, false +); + + +function HalfCylinder(r, y, d, up){ + let a = []; + let b = []; + let c = []; + + let nStep = 60; + let step = 2*r/nStep; + + for( let i = 0; i <= nStep ; i++){ + let x = -r + i * step; + a.push(x); + c.push(Math.sqrt(r*r - x*x) * up); + b.push(y); + } + + + for( let i = 0; i <= nStep; i ++){ + let x = r - i * step; + a.push(x); + c.push(Math.sqrt(r*r - x*x) * up); + b.push(y+d); + } + + + let haha = []; + haha.push(a); + haha.push(b); + haha.push(c); + + return haha; +} + +function detMesh(startPos, phi){ + let aaa = 110; // prepdist + let len = 500; // detLen + let www = 100; //det width + + let a =[]; + let b =[]; + let c =[]; + + let cs = Math.cos(phi * Math.PI / 180); + let ss = Math.sin(phi * Math.PI / 180); + + let A0 = aaa * cs - www / 2 * ss; + let A1 = aaa * ss + www / 2 * cs; + let B0 = aaa * cs + www / 2 * ss; + let B1 = aaa * ss - www / 2 * cs; + + a.push(A0); b.push(A1); c.push(startPos); + a.push(B0); b.push(B1); c.push(startPos); + a.push(B0); b.push(B1); c.push(startPos + len); + a.push(A0); b.push(A1); c.push(startPos + len); + + let haha = []; + haha.push(a); + haha.push(b); + haha.push(c); + + return haha; + +} + +function Helix(theta, phi, rho, sign, nCyc){ + // sign = B-field + // nCyc < 0 = updatream + + let a = []; + let b = []; + let c = []; + + let deg = Math.PI/180; + let nStep = 100; + let ts = Math.tan(theta * deg); + let zRange = nCyc * rho/ts * Math.PI * 2; + let zStep = zRange/nStep; + + + for( let i = 0; i < nStep; i++){ + let zzz; + zzz = i * zStep; + b.push(zzz); + a.push( rho * ( Math.sin( ts * zzz / rho - phi * deg ) + Math.sin(phi * deg) ) ); + c.push( rho * sign * (Math.cos( ts * zzz / rho - phi * deg ) - Math.cos(phi * deg)) ); + } + + let haha = []; + haha.push(a); + haha.push(b); + haha.push(c); + + return haha; + +} + + +function Plot3D(){ + + let u1 = HalfCylinder(bore, -1000, 2500., 1); + let d1 = HalfCylinder(bore, -1000, 2500., -1); + + let line1 = Helix(40, 0, 80, -1, -1); + let line2 = Helix(2, 180, 10, -1, 0.5); + + let data = [ + {type : 'mesh3d', x : u1[0], y : u1[1], z : u1[2], hoverinfo: 'none', opacity : 0.2, color : "#DDDDDD"} + ,{type : 'mesh3d', x : d1[0], y : d1[1], z : d1[2], hoverinfo: 'none', opacity : 0.2, color : "#DDDDDD"} + ,{type : 'scatter3d', mode : 'lines', x : line1[0], y : line1[1], z : line1[2], name : "haha"} + ,{type : 'scatter3d', mode : 'lines', x : line2[0], y : line2[1], z : line2[2], name : "kaka"} + ]; + + + /* + let data = []; + + for( let i = 0; i < 1; i++){ + let haha = detMesh(-200, 360/6*i + 90); + + console.log(haha[0], "| ", haha[1], "| ", haha[2]); + data.push( + {type : 'mesh3d', x : haha[0], y : haha[1], z : haha[2], hoverinfo: 'none', opacity : 1.0, color : "#FF0000"} + ); + }*/ + + let layout = { + aspectmode: 'manual', + aspectratio:{ x : 0.5, y : 0.5, z : 2.5 }, + margin: { l: 40, r: 40, b : 60, t : 40}, + }; + + Plotly.newPlot('Plot_3D', data, layout); + +} + + +GetMass(); +CalConstants(); +SetSSType(); +CalculateEZ(); +CalculateRZ(); +AdjustRecoilPos(); +CalThetaCM(); + +//Plot3D(); diff --git a/index.html b/index.html index db9f0fd..28c7149 100644 --- a/index.html +++ b/index.html @@ -3,7 +3,7 @@ SOLARIS Si-Array Mode Simulation - + @@ -96,7 +96,7 @@
- +
Simulation @@ -107,6 +107,7 @@