#define Analyzer_cxx #include "Analyzer.h" #include #include #include #include #include #include #include //############################################ User setting int rawEnergyRange[2] = {500, 6000}; // in ch int energyRange[3] = {1, 100, 2000}; // keV {resol, min, max} double BGO_threshold = 100; // in ch TString e_corr = "correction_e.dat"; //############################################ end of user setting ULong64_t NumEntries = 0; ULong64_t ProcessedEntries = 0; Float_t Frac = 0.1; ///Progress bar TStopwatch StpWatch; vector> eCorr; //############################################ histogram declaration TH2F * heVID; TH1F * he[NCRYSTAL]; TH2F * hgg[NCRYSTAL][NCRYSTAL]; TH2F * hcoin; ///----- after calibration and BGO veto TH2F * heCalVID; TH1F * heCal[NCRYSTAL]; TH2F * hcoinBGO; //############################################ BEGIN void Analyzer::Begin(TTree * tree){ TString option = GetOption(); NumEntries = tree->GetEntries(); printf("======================== Histograms declaration\n"); heVID = new TH2F("heVID", "e vs ID; det ID; e [ch]", NCRYSTAL, 0, NCRYSTAL, rawEnergyRange[1] - rawEnergyRange[0], rawEnergyRange[0], rawEnergyRange[1]); heCalVID = new TH2F("heCalVID", Form("eCal vs ID (BGO veto > %.1f); det ID; Energy [keV]", BGO_threshold), NCRYSTAL, 0, NCRYSTAL, (energyRange[2] - energyRange[1])/energyRange[0], energyRange[1], energyRange[2]); for( int i = 0; i < NCRYSTAL; i ++){ he[i] = new TH1F( Form("he%02d", i), Form("e -%02d", i), rawEnergyRange[1] - rawEnergyRange[0], rawEnergyRange[0], rawEnergyRange[1]); heCal[i] = new TH1F(Form("heCal%02d", i), Form("eCal -%02d (BGO veto > %.1f); Energy [keV]; count / %d keV", i, BGO_threshold, energyRange[0]), (energyRange[2] - energyRange[1])/energyRange[0], energyRange[1], energyRange[2]); } for( int i = 0; i < NCRYSTAL; i++){ for( int j = i+1; j < NCRYSTAL; j++){ //hgg[i][j] = new TH2F(Form("hgg%02d%02d", i, j), Form("e%02d vs e%02d; e%02d; e%02d", i, j, i, j), // (rawEnergyRange[1] - rawEnergyRange[0])/2, rawEnergyRange[0], rawEnergyRange[1], // (rawEnergyRange[1] - rawEnergyRange[0])/2, rawEnergyRange[0], rawEnergyRange[1]); } } hcoin = new TH2F("hcoin", "detector coin.; det ID; det ID", NCRYSTAL, 0, NCRYSTAL, NCRYSTAL, 0 , NCRYSTAL); hcoinBGO = new TH2F("hcoinBGO", Form("detector coin. (BGO veto > %.1f); det ID; det ID", BGO_threshold), NCRYSTAL, 0, NCRYSTAL, NCRYSTAL, 0 , NCRYSTAL); printf("======================== End of histograms declaration\n"); printf("======================== Load parameters.\n"); eCorr = LoadCorrectionParameters(e_corr); StpWatch.Start(); printf("======================== Start processing....\n"); } //############################################ PROCESS Bool_t Analyzer::Process(Long64_t entry){ ProcessedEntries++; /*********** Progress Bar ******************************************/ if (ProcessedEntries>NumEntries*Frac-1) { TString msg; msg.Form("%llu", NumEntries/1000); int len = msg.Sizeof(); printf(" %3.0f%% (%*llu/%llu k) processed in %6.1f sec | expect %6.1f sec\n", Frac*100, len, ProcessedEntries/1000,NumEntries/1000,StpWatch.RealTime(), StpWatch.RealTime()/Frac); StpWatch.Start(kFALSE); Frac+=0.1; } b_energy->GetEntry(entry); b_time->GetEntry(entry); //b_pileup->GetEntry(entry); b_bgo->GetEntry(entry); //b_other->GetEntry(entry); //b_multiplicity->GetEntry(entry); if( multi == 0 ) return kTRUE; ///=========== Looping Crystals for( int detID = 0; detID < NCRYSTAL ; detID ++){ //======== baics gate when no energy or pileup if( TMath::IsNaN(e[detID])) continue; //if( pileup[detID] == 1 ) continue; //======== Fill raw data heVID->Fill( detID, e[detID]); he[detID]->Fill(e[detID]); for( int detJ = detID +1; detJ < NCRYSTAL; detJ++) { if( TMath::IsNaN(e[detJ])) continue; //hgg[detID][detJ]->Fill(e[detID], e[detJ]); // x then y hcoin->Fill(detID, detJ); } //======== BGO veto for( int kk = 0; kk < NBGO ; kk++){ if( TMath::IsNaN(bgo[kk]) ) continue; if( bgo[kk] > BGO_threshold ) { return kTRUE; } } //========= apply correction double eCal = 0 ; int order = (int) eCorr[detID].size(); for( int i = 0; i < order ; i++){ eCal += eCorr[detID][i] * TMath::Power(e[detID], i); } heCalVID->Fill( detID, eCal); heCal[detID]->Fill(eCal); for( int detJ = detID +1; detJ < NCRYSTAL; detJ++) { if( TMath::IsNaN(e[detJ])) continue; hcoinBGO->Fill(detID, detJ); } } return kTRUE; } //############################################ TERMINATE void Analyzer::Terminate(){ printf("============================== finishing.\n"); gROOT->cd(); int canvasXY[2] = {1200 , 1200} ;// x, y int canvasDiv[2] = {2,2}; TCanvas *cCanvas = new TCanvas("cCanvas", "" ,canvasXY[0],canvasXY[1]); cCanvas->Modified(); cCanvas->Update(); cCanvas->cd(); cCanvas->Divide(canvasDiv[0],canvasDiv[1]); gStyle->SetOptStat("neiou"); cCanvas->cd(1); cCanvas->cd(1)->SetLogz(1); heVID->Draw("colz"); cCanvas->cd(2); cCanvas->cd(2)->SetLogz(1); heCalVID->Draw("colz"); cCanvas->cd(3); cCanvas->cd(3)->SetLogz(1); hcoin->Draw("colz"); cCanvas->cd(4); cCanvas->cd(4)->SetLogz(1); hcoinBGO->Draw("colz"); printf("=============== loaded AutoFit.C, try showFitMethos()\n"); gROOT->ProcessLine(".L armory/AutoFit.C"); printf("=============== Analyzer Utility\n"); gROOT->ProcessLine(".L armory/Analyzer_Utili.c"); gROOT->ProcessLine("listDraws()"); }