XIAEventBuilder/pixie2root.cpp
2021-12-15 18:44:12 -05:00

451 lines
15 KiB
C++

/**********************************************************/
/* */
/* Modified by Ryan From */
/* */
/* PXI SCAN CODE -- J.M. Allmond (ORNL) -- July 2016 */
/* */
/**********************************************************/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <stdbool.h>
#include "TFile.h"
#include "TTree.h"
#include "TMath.h"
#include "TBenchmark.h"
#define RAND ((float) rand() / ((unsigned int) RAND_MAX + 1)) // random number in interval (0,1)
#define MAX_CRATES 2
#define MAX_BOARDS_PER_CRATE 13
#define MAX_CHANNELS_PER_BOARD 16
#define BOARD_START 2
#define MAX_ID MAX_CRATES*MAX_BOARDS_PER_CRATE*MAX_CHANNELS_PER_BOARD
#define HEADER_LENGTH 4 //unit = words with 4 bytes per word
#define MAX_SUB_LENGTH 2016 //unit = words with 4 bytes per word ; 2004 --> 40 micro-second trace + 4 word header
#define RAWE_REBIN_FACTOR 2.0 // Rebin 32k pixie16 spectra to something smaller to fit better into 8k.
#include "mapping.h"
/////////////////////
// RAW EVENT TYPES //
/////////////////////
struct subevent
{
int chn;
int sln;
int crn;
int id;
int hlen;
int elen;
int trlen; //number of samples
int trwlen; //number of words (two samples per word)
int fcode; //pileup flag
long long int time;
int ctime;
int ctimef;
int energy;
int extra;
short tr[4096];
int esum[4];
int qsum[8];
};
struct subevent subevt[MAX_ID]={0};
int sevtmult=0;
unsigned long long int sevtcount=0;
unsigned long long int pileupcount=0;
unsigned long long int evtcount=0;
int mult[1][4096]={0};
int tdifid[MAX_ID][8192]={0};
/****
int overwrite = 1;
///////////////////////
// Write 2-byte data //
///////////////////////
void write_data2(char *filename, short *data, int xdim, int ydim, int overwrite) { //2byte per channel Write / Add to previous
FILE *FP;
int i;
short *previous;
if(!overwrite) {
//allocate memory for 1d-array for reading in rows of 2d Radware matrix
if ( ( previous = (short *)malloc(xdim * ydim * sizeof(short)) ) == NULL ) {
printf("\nError, memory not allocated.\n");
exit(1);
}
//open previous spectra file
if( (FP=fopen(filename, "r")) != NULL ){
fread(previous, sizeof(short)*xdim*ydim, 1, FP);
fclose(FP);
//update spectra
for (i=0; i<xdim*ydim; i++) {
if(previous[i] < (powf(2,sizeof(short)*8.0)-2))
data[i] = data[i] + previous[i];
}
}
else{
printf("%s did not previously exist, creating ...\n", filename);
}
//Deallocate previous data
free(previous);
}
FP=fopen(filename, "w");
fwrite(data, sizeof(short)*xdim, ydim, FP);
fclose(FP);
}
///////////////////////
// Write 4-byte data //
///////////////////////
void write_data4(char *filename, int *data, int xdim, int ydim, int overwrite) { //4byte per channel Write / Add to previous
FILE *FP;
int i;
int *previous;
if(!overwrite) {
//allocate memory for 1d-array for reading in rows of 2d Radware matrix
if ( ( previous = (int *)malloc(xdim * ydim * sizeof(int)) ) == NULL ) {
printf("\nError, memory not allocated.\n");
exit(1);
}
//open previous spectra file
if( (FP=fopen(filename, "r")) != NULL ){
fread(previous, sizeof(int)*xdim*ydim, 1, FP);
fclose(FP);
//update spectra
for (i=0; i<xdim*ydim; i++) {
if(previous[i] < (powf(2,sizeof(int)*8.0)-2))
data[i] = data[i] + previous[i];
}
}
else{
printf("%s did not previously exist, creating ...\n", filename);
}
//Deallocate previous data
free(previous);
}
FP=fopen(filename, "w");
fwrite(data, sizeof(int)*xdim, ydim, FP);
fclose(FP);
}
******/
///////////////////////////////////
// START OF MAIN FUNCTION //
///////////////////////////////////
int main(int argc, char **argv) {
int i=0, j=0, k=0;
float tempf=0;
div_t e_div;
lldiv_t lle_div;
//temp buffer for each sub event
unsigned int sub[MAX_SUB_LENGTH];
memset(sub, 0, sizeof(sub));
//Reference time and difference for event building
long long int etime, tdif, idtime[MAX_ID]={0}, temptime;
// Check that the corrent number of arguments were provided.
if (argc != 2 && argc != 3 ) {
printf("Incorrect number of arguments:\n");
printf("%s datafile <outFile>\n", argv[0]);
return 1;
}
printf("=====================================\n");
printf("=== evt --> root ===\n");
printf("=====================================\n");
//CERN ROOT things
TString inFileName = argv[1];
TString outFileName = inFileName;
if( argc >= 3 ){
outFileName = argv[2];
}else{
outFileName.Remove(inFileName.First('.'));
outFileName.Append(".root");
}
printf(" in file : %s \n", inFileName.Data());
printf(" our file : %s \n", outFileName.Data());
printf(" number of detector channal: %d \n", MAX_ID);
printf("------------------------ Event building time window : %d tics = %d nsec \n", EVENT_BUILD_TIME, EVENT_BUILD_TIME*10);
TFile * outRootFile = new TFile(outFileName, "recreate");
outRootFile->cd();
TTree * tree = new TTree("tree", "tree");
unsigned long long evID = -1;
double energy[NCLOVER];
unsigned long long etimestamp[NCLOVER];
double bgo[NBGO];
double other[NOTHER];
unsigned short pileup[NCLOVER];
//const int maxMulti = 40;
//double energy[maxMulti];
//unsigned timestamp[maxMulti];
//short detID[maxMulti];
int multi;
tree->Branch("evID", &evID, "event_ID/l");
///tree->Branch("detID", detID, Form("det ID[%d]/B", NCLOVER));
tree->Branch("e", energy, Form("energy[%d]/D", NCLOVER));
tree->Branch("t", etimestamp, Form("energy_time_stamp[%d]/l", NCLOVER));
tree->Branch("p", pileup, Form("pile_up_flag[%d]/s", NCLOVER));
tree->Branch("bgo", bgo, Form("BGO_energy[%d]/D", NBGO));
tree->Branch("other", other, Form("other_energy[%d]/D", NOTHER));
tree->Branch("multi", &multi, "multiplicity/I");
//open list-mode data file from PXI digitizer
FILE *fpr;
long int fprsize,fprpos;
if ((fpr = fopen(argv[1], "r")) == NULL) {
fprintf(stderr, "Error, cannot open input file %s\n", argv[2]);
return 1;
}
//get file size
fseek(fpr, 0L, SEEK_END);
fprsize = ftell(fpr);
rewind(fpr);
TBenchmark gClock;
gClock.Reset();
gClock.Start("timer");
/////////////////////
// MAIN WHILE LOOP //
/////////////////////
while (1) { //main while loop
/////////////////////////////////
// UNPACK DATA AND EVENT BUILD //
/////////////////////////////////
//CERN data clear
for( int haha = 0; haha < NCLOVER; haha++){
energy[haha] = TMath::QuietNaN();
etimestamp[haha] = 0;
pileup[haha] = 0;
}
for( int haha = 0; haha < NBGO; haha++) bgo[haha] = TMath::QuietNaN();
for( int haha = 0; haha < NOTHER; haha++) other[haha] = TMath::QuietNaN();
multi = 0;
evID++;
etime=-1; tdif=-1; sevtmult=0;
//memset(&subevt, 0, sizeof(subevt)); //not needed since everything is redefined (except maybe trace on pileup evts)
while (1) { //get subevents and event build for one "event"
// memset(&subevt[sevtmult], 0, sizeof(subevt[sevtmult])); //not needed since everything is redefined (except maybe trace on pileup evts)
//read 4-byte header
if (fread(sub, sizeof(int)*HEADER_LENGTH, 1, fpr) != 1) break;
subevt[sevtmult].chn = sub[0] & 0xF; /// channel in digitizer
subevt[sevtmult].sln = (sub[0] & 0xF0) >> 4; /// digitizer ID
subevt[sevtmult].crn = (sub[0] & 0xF00) >> 8; /// crate
subevt[sevtmult].id = subevt[sevtmult].crn*MAX_BOARDS_PER_CRATE*MAX_CHANNELS_PER_BOARD + (subevt[sevtmult].sln-BOARD_START)*MAX_CHANNELS_PER_BOARD + subevt[sevtmult].chn;
subevt[sevtmult].hlen = (sub[0] & 0x1F000) >> 12;
subevt[sevtmult].elen = (sub[0] & 0x7FFE0000) >> 17;
subevt[sevtmult].fcode = (sub[0] & 0x80000000) >> 31;
subevt[sevtmult].time = ( (long long int)(sub[2] & 0xFFFF) << 32) + sub[1];
subevt[sevtmult].ctime = (sub[2] & 0x7FFF0000) >> 16;
subevt[sevtmult].ctimef = (sub[2] & 0x80000000) >> 31;
subevt[sevtmult].energy = (sub[3] & 0xFFFF);
subevt[sevtmult].trlen = (sub[3] & 0x7FFF0000) >> 16;
subevt[sevtmult].trwlen = subevt[sevtmult].trlen / 2;
subevt[sevtmult].extra = (sub[3] & 0x80000000) >> 31;
//rebin raw trap energy from 32k to ....
tempf = (float)subevt[sevtmult].energy/RAWE_REBIN_FACTOR;// + RAND;
subevt[sevtmult].energy = (int)tempf;
//check lengths (sometimes all of the bits for trace length are turned on ...)
/* if (subevt[sevtmult].elen - subevt[sevtmult].hlen != subevt[sevtmult].trwlen) {
printf("SEVERE ERROR: event, header, and trace length inconsistencies found\n");
printf("event length = %d\n", subevt[sevtmult].elen);
printf("header length = %d\n", subevt[sevtmult].hlen);
printf("trace length = %d\n", subevt[sevtmult].trwlen);
printf("Extra = %d\n", subevt[sevtmult].extra);
printf("fcode = %d\n", subevt[sevtmult].fcode);
//sleep(1);
//return 0;
} */
//CERN fill tree
///========== need a mapping, can reduce the array size, speed up.
int ch = map[subevt[sevtmult].id];
if ( 0 <= ch && ch < NCLOVER ){
energy[ch] = subevt[sevtmult].energy;
etimestamp[ch] = subevt[sevtmult].time;
pileup[ch] = subevt[sevtmult].fcode;
multi++;
}
if ( 100 <= ch && ch < 100 + NBGO ){
bgo[ch-100] = subevt[sevtmult].energy;
}
if ( 200 <= ch && ch < 200 + NOTHER){
other[ch-200] = subevt[sevtmult].energy;
}
//Set reference time for event building
if (etime == -1) {
etime = subevt[sevtmult].time;
tdif = 0;
}
else {
tdif = subevt[sevtmult].time - etime;
if (tdif < 0) {
printf("SEVERE ERROR: tdiff < 0, file must be time sorted\n");
printf("etime = %lld, time = %lld, and tdif = %lld\n", etime, subevt[sevtmult].time, tdif);
return 0;
}
}
//Check for end of event, rewind, and break out of while loop
if (tdif > EVENT_BUILD_TIME) {
fseek(fpr, -sizeof(int)*HEADER_LENGTH, SEEK_CUR); //fwrite/fread is buffered by system ; storing this in local buffer is no faster!
break;
}
//time between sequential events for a single channel ; useful for determining optimal event building time
temptime = (subevt[sevtmult].time - idtime[subevt[sevtmult].id])/100; //rebin to 1 micro-second
if ( temptime >= 0 && temptime < 8192) {
tdifid[subevt[sevtmult].id][temptime]++;
}
idtime[subevt[sevtmult].id]=subevt[sevtmult].time; //store time for next subevent of channel
// total pileups
if (subevt[sevtmult].fcode==1) {
pileupcount++;
}
//more data than just the header; read entire sub event
fseek(fpr, -sizeof(int)*HEADER_LENGTH, SEEK_CUR);
if (fread(sub, sizeof(int)*subevt[sevtmult].elen, 1, fpr) != 1) break;
/*
//trace
k=0;
for (i = subevt[sevtmult].hlen; i < subevt[sevtmult].elen; i++) {
subevt[sevtmult].tr[i - subevt[sevtmult].hlen + k] = sub[i] & 0x3FFF;
subevt[sevtmult].tr[i - subevt[sevtmult].hlen + k + 1] = (sub[i]>>16) & 0x3FFF;
k=k+1;
}
// if (subevt[sevtmult].id == 4 && subevt[sevtmult].fcode == 1) DB(subevt[sevtmult].tr);
//continue if no esum or qsum
if (subevt[sevtmult].hlen==HEADER_LENGTH) {
sevtmult++;
continue;
}
//esum
if (subevt[sevtmult].hlen==8 || subevt[sevtmult].hlen==16) {
for (i=4; i < 8; i++) {
subevt[sevtmult].esum[i-4] = sub[i];
}
}
//qsum
if (subevt[sevtmult].hlen==12) {
for (i=4; i < 12; i++) {
subevt[sevtmult].qsum[i-4] = sub[i];
}
}
//qsum
if (subevt[sevtmult].hlen==16) {
for (i=8; i < 16; i++) {
subevt[sevtmult].qsum[i-8] = sub[i];
}
}
*/
sevtmult++;
} //end while loop for unpacking sub events and event building for one "event"
if (sevtmult==0) break; //end main WHILE LOOP when out of events
mult[0][sevtmult]++; //Histogram raw sub event multiplicity
sevtcount += sevtmult;
evtcount++; //event-built number
/////////////////////////////////////
// END UNPACK DATA AND EVENT BUILD //
/////////////////////////////////////
//event stats, print status every 10000 events
lle_div=lldiv(evtcount,10000);
if ( lle_div.rem == 0 ) {
fprpos = ftell(fpr);
tempf = (float)fprsize/(1024.*1024.*1024.);
gClock.Stop("timer");
double time = gClock.GetRealTime("timer");
gClock.Start("timer");
printf("Total SubEvents: \x1B[32m%llu \x1B[31m(%d%% pileup)\x1B[0m\nTotal Events: \x1B[32m%llu (%.1f <mult>)\x1B[0m\nPercent Complete: \x1B[32m%ld%% of %.3f GB\x1B[0m\nTime used:%3.0f min %5.2f sec\033[3A\r",
sevtcount, (int)((100*pileupcount)/sevtcount), evtcount, (float)sevtcount/(float)evtcount, (100*fprpos/fprsize), tempf, TMath::Floor(time/60.), time - TMath::Floor(time/60.)*60.);
}
//cern fill tree
outRootFile->cd();
tree->Fill();
} // end main while loop
/////////////////////////
// END MAIN WHILE LOOP //
/////////////////////////
fprpos = ftell(fpr);
tempf = (float)fprsize/(1024.*1024.*1024.);
printf("Total SubEvents: \x1B[32m%llu \x1B[31m(%d%% pileup)\x1B[0m\nTotal Events: \x1B[32m%llu (%.1f <mult>)\x1B[0m\nPercent Complete: \x1B[32m%ld%% of %.3f GB\x1B[0m\n\033[3A\n",
sevtcount, (int)((100*pileupcount)/sevtcount), evtcount, (float)sevtcount/(float)evtcount, (100*fprpos/fprsize), tempf);
//cern save root
outRootFile->cd();
tree->Write();
outRootFile->Close();
fclose(fpr);
gClock.Stop("timer");
double time = gClock.GetRealTime("timer");
printf("\n==================== finished.\r\n");
printf("Total time spend : %3.0f min %5.2f sec\n", TMath::Floor(time/60.), time - TMath::Floor(time/60.)*60.);
return 0;
}