

Overview: Studies of Nuclear Structure and Nuclear Astrophysics

- Ingo Wiedenhöver
- NSF Site Visit, John D. Fox Laboratory, Florida State University

The role of the FSU Group in Nuclear Science

- Our science goals are the goals of the field, both at our laboratory and when we use the national facilities.
- We are leaders in ARUNA, which represents university laboratories in the national science community: White paper for LRP
- We produce first-rate science by focusing on the strengths of our laboratory and the fore-front opportunities at national laboratories. (As we hope to show today.)
- We have performed a vigorous experimental program at FSU, including RIB experiments with RESOLUT, Spectrograph experiments and experiments with the new Clarion-2 setup.
- The FSU group has been strongly involved in "early" FRIB experiments and is developing innovative instruments for FRIB.
- The FSU experimental group is part of a "scientific ecosystem" with nuclear theory and astrophysics.
- Our lab serves as a talent-magnet for the field.

ARUNA White Paper@2023 LRP Advancing Science, Educating Scientists, Delivering for Society

See also: Nuclear Physics News 31, 2021 - Issue 4, ARUNA White-paper at https://aruna.physics.fsu.edu

Studies of Nuclear Structure and Nuclear Astrophysics

Assoc. Prof.S. Almaraz-Calderon 1,2Prof.P.D. Cottle 2Asst. Prof.M. Spieker 1,2Prof.S.L. Tabor 2Asst. Prof.V. Tripathi 2Prof.I. Wiedenhöver 1,2

unbound states)

(exotic nuclei, collective excitations,

Fox Lab, ATLAS, NSCL & FRIB

It takes a village: The FSU "Nuclear Network"

- <u>Nuclear Astrophysics Group at LSU:</u>
 J. Blackmon (Resolut, Anasen, SE-SPS), C. Deibel (SE-SPS, SABRE)
- <u>Nuclear Structure group at ORNL</u>
 M. Allmond, A. Macchiavelli, T. Gray (Clarion-2)
- <u>Undergraduate College Collaborators</u>
 L. Riley (Ursinus), A. Kuchera (Davidson)
- <u>Nuclear Theory at FSU</u>
 A. Volya (continuum shell-model), J. Piekarewicz (neutron stars, EOS),
 K. Fossez (ab-initio continuum models)
- <u>Astrophysics Group at FSU</u>
 P. Höflich (SN Ia theory), D. Collins (Structure formation theory),
 E. Hsiao (SN observ.), K. Huffenberger (CMB observ.), Nao Suzuki (SN observ.)
 M. Marengo (Stellar observ.) J. Murphy (SN-II theory)
- <u>Hadronic Physics at FSU</u>
 P. Eugenio, V. Crede, S. Dobbs, S. Capstick
- <u>Relativistic Heavy Ion Physics at FSU</u>
 A. Frawley

The Fox Lab: Research Scientists Accelerator Staff, Shop Staff

Staff supported by NSF / supported by FSU ARUNA

Dr. L.T. Baby (Accelerator Operations, Beam development, RESOLUT)

Dr. Tsz-Leung (Ryan) Tang (Computers, Data acquisition, Accelerator control systems) Brian Schmidt (Tandem & Ion-sources) David Spingler (Linac & Cryogenics) **Powell Barber** (Vacuum, Targets Ge-Detectors, Design) R. Boisseau, J. Aragon

(Instrument Shop) NN, J. Bell (Electronics Shop)

NN J. Bell

FSU: Fox Lab. Graduate Education

FSU graduates 2020-2023

Elizabeth Rubino Nate Gerken Jesus Perello Benjamin Asher Ken Hanselman Peter DeRosa Gordon McCann Caleb Benetti Ashton Morelock Eli Temanson Eilens Lopez-Saavedra, Almaraz-Calderon 11/2023

Tabor Almaraz-Calderon Almaraz-Calderon Almaraz-Calderon Wiedenhoever Tripathi Wiedenhoever Tabor Almaraz-Calderon Wiedenhoever

7/2020 LLNL Staff 5/2021 Platinum Edge Solutions LANL Postdoc 7/2021 6/2021 PNNL Staff 9/2022 LANL Postdoc 12/2022 (Masters) Axcelis Inc. 6/2023 FRIB Postdoc FRIB postdoc 6/2023 UTK postdoc 10/2023 10/2023 CEA Saclay (France) ANL postdoc

Recent / New Developments in the Group and at the Lab

- Sergio Almaraz-Calderon was promoted to Associate Professor with tenure in Fall 2021.
- Assistant Professors Mark Spieker and Vandana Tripathi will apply for promotion and tenure this fall.
- We have built, commissioned and extensively utilized the Clarion-2 Clover Array at FSU, in collaboration with M. Allmond (ORNL). (V. Tripathi)
- We are developing particle-γ capability around the SE-SPS. (M. Spieker)
- We have a new focus area in near-threshold physics and open systems (S. Almaraz-Calderon and I. Wiedenhoever)
- We have begun a collaboration with Mayo Clinic Jacksonville's C. Beltran and K. Furutani to study biological effects of heavy-ion beams. (proposal to State of Florida pending) (S. Almaraz-Calderon)
- We are establishing a triton-beam capability at Fox Lab, which will create worldunique science opportunities (NNSA supported)

The John D. Fox Accelerator Laboratory

- 9 MV Tandem + 8 MV Linac
- Beam Energy profile

- In-flight Radioactive beams with RESOLUT
- Super-Enge
 Split Pole Spectrograph
- New: Clarion-2

Tandem: Pelletron-charged 9 MV FN-tandem Linac: 14 Superconducting cavities Niobium on Cu, Split-Ring (Atlas-design)

ARU

RESOLUT: a radioactive beam facility at FSU

In-flight production of radioactive beams in inverse kinematics,

⁷ Li(d, ³ He) ⁶ He	18-29 MeV	~1· 10⁴ pps	(40% pure)
⁷ Li(p,n) ⁷ Be	25-35 MeV	~2 · 10 ⁵ pps	(80% pure)
⁷ Li(d,p) ⁸ Li	20-30 MeV	~5 · 10⁴ pps	(90% pure)
⁷ Li(³ He,n) ⁸ B	30-45 MeV	~1 · 10⁴ pps	(10% pure)
⁷ Li(³ He,n) ¹⁰ N	27-55 MeV	~1 · 10³ pps	(10% pure)
¹⁸ O(d,n) ¹⁷ F	80 MeV	~2 · 10⁵ pps	(80% pure)
¹⁸ O(d,p) ¹⁹ O	95 MeV	~5 · 10⁴ pps	(90% pure)
¹⁸ O(³ He,n) ¹⁸ Ne	70 MeV	~2· 10⁴ pps	(25% pure)
²⁴ Mg(d,n) ²⁵ Al	98 MeV	~2· 10⁴ pps	(35% pure)

Beams can be "purified" off-line by tracking / rf-correlations

FSU John D. Fox Lab; Operations data

Accelerator operates for experiments around 3000 h /year Fox Lab Beamtime by Experiment 2020: 2600 hrs (Includes Covid-19 shutdown) 2020-2023 Focus: Comm./Exp. of SE-SPS + Sabre **RIB** Experiments 2021: 3096 hrs Focus: Exp. with SE-SPS + Sabre 2022 3216 hrs Focus: Exp. with Clarion-2, SE-SPS Linac upgrade (5 Resonators obtained from Atlas) 2023 2712 hrs Focus: SF-SPS + Resolut External groups: LSU and ORNL dominate, close collaborators

on ANASEN, SE-SPS and Clarion-2

SE-SPS Clarion2 RIB-Resolut SIB-Resolut Gamma Array Other

Fox Lab Beamtime by Group 2020-2023

Current and Proposed Budgets

	Rev	Revised Budgets 2020-2024			Proposed Budgets 2024-2028			
	Aug-20	Aug-21	Aug-22	Aug-23	Jul-24	Jul-25	Jul-26	Jul-27
Faculty #	6 (4#)	6 (4#)	6	6	6	6	6	6
Senior Personnel	1.25	1.25	1.25	1.25	1.25	1.25	1.25	1.25
Tech Staff #	2	3	3	3	2	2	2	2
PD #	1	1	0	0	<mark>1</mark>	<mark>1</mark>	<mark>1</mark>	<mark>1</mark>
GS #	9	9	9	8	<mark>9</mark>	<mark>9</mark>	<mark>9</mark>	<mark>9</mark>
Faculty Summer	95,887#	100,689#	145,563	159,448	171,084	181,727	187,178	192,794
Grad. Students	218,430	218,430	251,183	220,632	270,027	278,128	286,472	295,066
Total Salary	633,781#	644,612#	688,414	726,132	808,136	837,801	862,845	888,640
Personnel&fringe	773,943#	787,468#	857,349	910,506	997,460	1,031,370	1,059,599	1,088,674
Other (Tuition)	44,517*	45,357*	46,230*	33,012*	100,026	101,027	102,037	103,057
000	100,000	98,000	0	24,073	<mark>30,000</mark>	<mark>35,000</mark>	<mark>35,000</mark>	<mark>30,000</mark>
Travel	93,000	93,000	93,000	71,640	<mark>85,000</mark>	<mark>85,000</mark>	<mark>85,000</mark>	<mark>85,000</mark>
Cryo Materials	111,000	105,000	105,000	105,000	<mark>127,528</mark>	<mark>134,842</mark>	<mark>142,918</mark>	<mark>153,657</mark>
Other Materials	132,589	125,816	119,005	89,946	216,919	227,766	239,153	248,112
REU	45,264	45,264	45,264	30,176	0	0	0	0
Indirect Cost	599,687	600,095	634,152	635,635	772,150	800,268	826,022	852,359
Total	1.9 M \$	1.9 M \$	1.9 M \$	1.9 M \$	2.33 M\$	2.42 M\$	2.49 M\$	2.56 M\$

2*Summer Salary from "startup funds" * Dean provided 5 "tuition waivers"

Budget: Observations

- The proposal budget is restrained, representing "constant effort" relative to the previous years.
- Comparing 2020 dollars with 2024, using 4% p.a. "general" inflation:
 1.9 M\$ translates to 2.24, 2.33, 2.43, 2.53 M\$
- We are requesting 2.33, 2.42, 2.49, 2.56 M\$ for years 1,2,3,4.
- Risk for the cryogenic operation comes from recent and projected exponential price increase for Helium => We have submitted an MRI Track-3 proposal to NSF in parallel, aiming to eliminate this risk for budgets and operations in the long term

NSF MRI Track-3 Helium recovery proposal, under review

- Fox Lab Cryosystem (1,2,3,4) is closed, but loses 40-50% of helium on warm-up.
- Helium cost has been growing über-exponentially: \$17/ccf (2017), \$30/ccf (2020), \$86/ccf (2023)
- Proposal: acquire, install compressor and purifier (A,B) to recover and purify nearly all helium into cylinders (C). Total proposed budget: \$335 k

C J	FY	Quantity	Liquid Equiv.	Price incl.	Campaigns
CONT 010-2020		(SCF)	(LHe)	54% indir.cost	#
0			Helium del	iveries	L
	2018	67,064	2,711	\$17,309	2
2	2019	29,576	1,196	\$7,634	1
Ś	2020	19,158	775	\$8,703	1
	2021	24,545	992	\$12,043	1
	2022	46,722	1,889	\$29,500	1
		, incl	uding accidenta	losses (see text)	
• •	2019	29,576	1,196		
Ś	2021	21,000	849		
		Pro	jected without h	elium recovery	
`	2023	47,000	1,900	\$62,247	2
-	2024	47,000	1,900	\$65,359	2
	2025	47,000	1,900	\$68,631	2

ഷ

CENTAUR – NNSA Center

- Texas A&M as lead institution, director Sherry Yennello, with FSU, LSU, Wash U. (St. Louis), U. of Wash., U.Tenn., U.Mass Lowell, <u>https://centaur.tamu.edu/</u>, part of the "Stewardship Science Academic Alliance" program at NNSA
- Centaur Round 2 beginning 1/2024, for five years, FSU receives ~\$289 k annually for 3 graduate students, equipment, travel.

Research projects are synergistic with, but separate from NSF:

- 1. S. Almaraz-Calderon: Fission-product analysis from exotic nuclei in Encore active-target
- 2. P.D. Cottle: Nuclear Science Summer Camp in Bay County, Fl.
- 3. M. Spieker: Spectroscopy of actinide nuclei using transfer reactions.
- 4. V. Tripathi: Spin-correlation in fission-products to test models of fission dynamics.
- 5. I. Wiedenhöver: Development of a triton-beam at the FSU accelerator.

Fox Lab Tritium-Beam Project (NNSA-funded, Centaur)

- New injector to Tandem, using tritium-loaded Ti cathodes in dedicated "20-cathode SNICS"
- FSU will not handle tritium as gas.
- "Fume-hood" enclosure for set up and operation, vented above roof, continuous tritium monitoring.
- Design, procedures safety review 10/2023 ✓ D.Stracener (ORNL), J.Ashenfelter (Yale), Amy Allen (FSU)
- Design beams: 8-17 MeV, 20 nA on target
- Projected comm. 3/2024, operation 8/2024
- Creates world-unique science resource
- Workshop on scientific opportunities at FSU March 14-15 2024.

University Support; Strong leverage of NSF funds

- Significant ongoing contributions from FSU to Fox Lab:
- Recurring: Salaries of 2 instrument shop, 2 electronics shop, 1 technical, 0.75 computer personnel, 1 grants specialist
- Shop-time is free (grants pays materials)
 2 CNC mills, CNC Laithe, CNC Water-jet, Welders
- Laboratory utility-bill annually (approx.) \$150,000
- Other FSU support over last grant period: Fume-hood enclosure for triton-beam source \$90,000 FSU Contribution to 1 Clover detector \$120,000 Misc. other equipment \$95,000

This proposal represents an invigorated FSU group, including two Assistant Professors with strong programs at FSU and FRIB.

The FSU laboratory is a pillar of graduate education in the USA -

- and undergraduate research as well.
- The SE-SPS and Clarion-2 foster growing external collaborations, the triton beam will add more.
- We are thankful for the NSF-support, which has allowed us to get here.

... and are asking for the funding to fulfill the potential of the laboratory and the scientists around it.