

Nuclear Astrophysics, Near-threshold Resonances and Continuum Effects

Sergio Almaraz-Calderon

NSF Site Visit, John D. Fox Laboratory, Florida State University

- Development of a ⁴⁴Ti beam at FSU for a measurement of the ⁴⁴Ti(α,p)⁴⁷V reaction with Encore.
- Contribution of low-lying isomers to stellar nucleosynthesis ²⁶Al and ³⁴Cl.
- Detailed spectroscopy studies using CATRiNA + Clarion-2 arrays for Nuclear Astrophysics.
- Near-threshold resonances and continuum effects.

ARUNA

2020

2024

Fabio (ug), Ashton, Ben, Eilens, Jesus, Nate

(Ashton), Mat, Andrew, Rajat, Santiago (ug)

⁴⁴Ti in Supernova explosions

Satellite based observations of ⁴⁴Ti help OPEN ACCESS understand the physics in SN explosions. ⁴⁴Ti is produced near the core, in α -rich regions and can be link to the hydrodynamics of the star. NAL, 961:187 (24pp), 2024 February 1 S.W. Grefenstetteet al. The Continuum Astrophysical Journal,834:19 (2017). Ionization State Si/Mg Jet Normalized B.W. Grefenstetteet al.. Nature 506, 339 (2014). ^⁴Ti Ejecta

The spatial distribution of 44 Ti in *Cas A* compared with the other bright X-ray features as seen by NuSTAR.

THE ASTROPHYSICAL JOURNAL, 961:187 (24pp), 2024 February 1 © 2024. The Author(s), Published by the American Astronomical Society

JWST MIRI/Medium Resolution Spectrograph (MRS) Observations and Spectral Models of the Underluminous Type Ia Supernova 2022xkg

J. M. DerKacy¹, C. Ashall¹ (P. Hoeflich²), E. Baron^{3,4}, M. Shahbandeh⁵, B. J. Shappee⁶, J. Andrews⁷, D. Baade⁸, M. DerKacy (0, C. Ashall (1, F. Roenich Y, E. Daron (0, N. Suanoanour (1, S. S. Snapper (1, S. J. E. Jencson²⁰, K. Krisciunas¹⁰, S. Kumar²⁰, J. Lu²⁰, M. Lundquist²¹, T. B. Mera, ²¹, J. R. Maund²²⁰,
 P. Mazzali^{23,24}, K. Medler²³, N. E. Meza Retamal¹⁸, N. Morrell²⁵, F. Patat⁸, J. Pearson⁹, M. M. Phillips²⁵, M. Shrestha⁹⁽⁰⁾, S. Stangl¹²⁽⁰⁾, C. P. Stevens¹⁽⁰⁾, M. D. Stritzinger²⁶⁽⁰⁾, N. B. Suntzeff¹⁰⁽⁰⁾, C. M. Telesco²⁷⁽⁰⁾ M A Tucker^{28,32} S Valenti¹⁴ L Wang²⁹ and Y Yang^{30,33}

⁴⁴Ti in Supernova explosions

The amount of ⁴⁴Ti ejected is a gauge for the position of the mass cut of the star. The final amount of ⁴⁴Ti depends mostly on the ⁴⁴Ti(α ,p)⁴⁷V reaction.

Order of Importance of Reactions Producing ⁴⁴Ti at $\eta = 0.002$ **REACTION RATE MULTIPLIED BY 1/100 REACTION RATE MULTIPLIED BY 100** ⁴⁴Ti Change ⁴⁴Ti Change Rank Reaction Reaction (percent) (percent) $^{44}\text{Ti}(\alpha, p)^{47}\text{V}$ +208 $^{44}\text{Ti}(\alpha, p)^{47}\text{V}$ -931 $^{12}C(\alpha, \gamma)^{16}O$ $^{44}\text{Ti}(\alpha, \gamma)^{48}\text{Cr}$ 2 -72-66 $^{40}Ca(\alpha, \gamma)^{44}Ti$ 27 Al(α , *n*)³⁰P 3 -66-60 ${}^{30}\text{Si}(\alpha, n){}^{33}\text{S}$ 20 Ne(α , γ)²⁴Mg 4 -16-33 ${}^{30}\text{Si}(p, \gamma){}^{31}\text{P}$ $^{12}C(\alpha, \gamma)^{16}O$ 5 -9.2+18 ${}^{36}Ar(\alpha, p){}^{39}K$ -7.9 ${}^{40}Ca(\alpha, \gamma){}^{44}Ti$ +156 ⁵⁹Ni(p, n)⁵⁹Cu 23 Na(α , p) 26 Mg 7 -4.7-4.7 ${}^{59}Ni(p, \gamma){}^{60}Cu$ 39 K(α , p) 42 Ca -4.7+4.78 $^{44}\text{Ti}(\alpha, \gamma)^{48}\text{Cr}$ $^{27}Al(p, \gamma)^{28}Si$ 9 +2.8+4.3 $^{27}Al(\alpha, n)^{30}P$ $^{24}Mg(\alpha, \gamma)^{28}Si$ +2.7+4.210.....

S.E. Boggs et al. Science 348, 670 (2015). 5×10⁻⁵ **Rest Frame** 4×10⁻ Cts sec⁻¹ keV⁻¹ 3×10⁻ 2×10⁻ 10 -1×10 65 70 75 60 80 55 Energy (keV)

SN1987A 55- to 80-keV backgroundsubtracted spectrum measured with NuSTAR.

The et al. Astrophy. J., 504, 500 (1998). Magkotsios et al. Astrophys. J. Supl. Ser. 191, 66 (2010).

Development of a ⁴⁴Ti beam at FSU

Several unsuccessful attempts at ANL for making a ⁴⁴Ti beam [In-flight production ANL#1659 ECR2 and ECR3 ANL#1876]

VOLUME 84, NUMBER 8PHYSICAL REVIEW LETTERS21 FEBRUARY 2000The 44 Ti(α, p) Reaction and its Implication on the 44 Ti Yield in SupernovaeA. A. Sonzogni, ¹ K. E. Rehm, ¹ I. Ahmad, ¹ F. Borasi, ² D. L. Bowers, ¹ F. Brumwell, ¹ J. Caggiano, ¹ C. N. Davids, ¹
J. P. Greene, ¹ B. Harss, ¹ A. Heinz, ¹ D. Henderson, ¹ R. V. F. Janssens, ¹ C. L. Jiang, ¹ G. McMichael, ¹ J. Nolen, ¹
R. C. Pardo, ¹ M. Paul, ³ J. P. Schiffer, ¹ R. E. Segel, ² D. Seweryniak, ¹ R. H. Siemssen, ¹ J. W. Truran, ⁴ J. Uusitalo, ¹
I. Wiedenhöver, ¹ and B. Zabransky¹ $II FEBRUARY 2000Was mixed with 50 mg of <math>^{nat}$ TiO₂ and placed inside a cop-

was mixed with 50 mg of ^{nat}TiO₂ and placed inside a copper insert for a negative-ion Cs-sputter source. The ⁴⁴Ti activity from the pellet was measured to be \sim 38 μ Ci.

From the ion source a beam of ⁴⁴TiO⁻ was extracted and injected into the tandem accelerator at ATLAS. After stripping in the terminal of the tandem, a ⁴⁴Ti⁸⁺ beam was

Development of a ⁴⁴Ti beam at FSU

Several unsuccessful attempts at ANL for making a ⁴⁴Ti beam

We will use SNICS source + Tandem accelerator at FSU to produce an ⁴⁴Ti beam using the original cathodes from (~20 yrs ago) for a measurement of the ⁴⁴Ti(α ,p) reaction.

Measurement of the ⁴⁴Ti(α ,p)⁴⁷V reaction with Encore at FSU

- Encore active target was developed at FSU (B. Asher), it has been used to measure fusion and (α,p) reactions.
- MUSIC at ANL has been successfully used to measure several (α,p) reactions.

Ben Asher is now a staff scientists at PNNL

B.W. Asher, SA, et al. Phys. Rev. C 103, 044615 (2021).B.W. Asher, SA, et al. NIM A 1014, 165724 (2021).B.W. Asher, SA, et al. Eur. Phys. J. A 57, 272 (2021).

NSF

Measurement of the ⁴⁴Ti(α ,p)⁴⁷V reaction with Encore at FSU

Undergraduate Research

Ben Asher is now a staff scientists at PNNL

SA, et al. Phys. Rev. C 103, 044615 (2021).SA, et al. NIM A 1014, 165724 (2021).SA, et al. Eur. Phys. J. A 57, 272 (2021).

Bajron Alvin Zenelaj, FSU Honor's thesis 2023. "Fusion Reaction Measurements with the Encore Active Target Detector".

Attended CEU @ APS-DNP in New Orleans, LA. Alvin is now a grad student at University of North Carolina (UNC).

9

Measurement of the ⁴⁴Ti(α,p)⁴⁷V reaction with Encore at FSU

In the proposed measurement, the ⁴⁴Ti beam will be delivered to the Encore detector which will be filled with helium gas for a direct measurement of the ⁴⁴Ti(α ,p)⁴⁷V reaction in the Gamow window. ⁴He @ 400 Torr.

⁴⁴Ti @ ~ 4 MeV/u with an expected beam rate of a few kHz.

A. Sonzogni et al. Phys. Rev. Lett.84, 1651 (2000).V. Margerin et al. Phys. Lett B, 7321, 358 (2014).

G.S. Andrew Peters

Isomeric contributions to stellar nucleosynthesis: ²⁶Al

-rays

Decay chain	Mean life* (yr)	Line energies (MeV) (Branching ratios)	Site [Detected]	Nuclea process
$^{7}\text{Be} \rightarrow ^{7}\text{Li}$	0.21	0.478 (0.1)	Novae	Expl.H
${}^{56}\text{Ni} \rightarrow {}^{56}\text{Co}^+ \rightarrow {}^{56}\text{Fe}$	0.31	<u>0.847</u> (1.0) <u>1.238</u> (0.68)	SN	NSE
		2.598 (0.17) 1.771 (0.15)	[SN1987A]	
			[SN1991T]	
57 Co $\rightarrow 57$ Fe	1.1	0.122(0.86) 0.136(0.11)	SN	NSE
			[SN1987A]	
$^{22}\text{Na}^+ \rightarrow ^{22}\text{Ne}$	3.8	1.275 (1.0)	Novae	Expl.H
$^{44}\text{Ti} \rightarrow {}^{44}\text{Sc}^+ \rightarrow {}^{44}\text{Ca}$	89	<u>1.157</u> (1.0)	SN	α -NSE
		$\underline{0.068}(0.95)$ $\underline{0.078}(0.96)$	[Cas A]	
$^{26}\text{Al}^+ \rightarrow ^{26}\text{Mg}$	1.04×10^{6}	<u>1.809</u> (1.0)	WR, AGB	St.H
			Novae	Expl.H
			SNII	St.Ne
			[inner Galaxy,Vela,	Expl.N
			Cygnus, Orion]	ν
${}^{60}\text{Fe} \rightarrow {}^{60}\text{Co} \rightarrow {}^{60}\text{Ni}$	2.2×10^{6}	$\underline{1.332}(1.0)$ $\underline{1.173}(1.0)$	SN	n-capt
			[Galaxy]	
e ⁺	$10^{5} - 10^{7}$	0.511	SNIa	β^+ -de
			[Galactic bulge]	

R. Diehl, et al. A&A 522, A51 (2010).

R. Diehl, et al. Nucl. Phys. A 777, 70 (2006).

Allende Meteorite – Large ²⁶Mg content

Isomeric contributions to stellar nucleosynthesis: ²⁶Al

Isomeric contributions to stellar nucleosynthesis: ²⁶Al Study of the ${}^{26m}AI(p,\gamma){}^{27}Si$ via the ^{26m}Al(d,p)²⁷Al reaction ²⁸Si 26Si 27Si PHYSICAL REVIEW C 104, 065807 (2021) ILIADIS ET AL. E_v (keV) Experimental study of the ²⁴Na^m(d, p) ²⁵Na reaction and implications for the influence of the ²⁴Al^m isomer on rp-process nucleosynthesis 2070 N. Gerken[®], S. Almaraz-Calderon, B. W. Asher, E. Lopez-Saveedra, L. T. Baby, K. W. Kemper, A. Morelock, J. F. Perello, A. Volva, and I. Wiedenhöver Department of Physics, Florida State University, Tallahassee, Florida 32306, USA (p, y) (p.α) ke< β⁺(7.2s) actor Isomeric Kinematics Counts/100 USDB L=0 C²S 0 USDB L=2 C^2S Experimental L=0 C²S Nate Gerken is now at Spectrosc 23Na Diehl et al. PAS PlatinumEdge solutions 0.84 Me uclear Inst. and Methods in Physics Research, A 899 (2018) 6-9 Contents lists available at ScienceDirect (private company) Nuclear Inst. and Methods in Physics Research, A 0.2 journal homepage: www.elsevier.com/locate/nima مماللممطللمة Development of an Isomeric beam of 26Al for nuclear reaction studies B.W. Asher^a, S. Almaraz-Calderon^{a,*}, O. Nusair^b, K.E. Rehm^b, M.L. Avila^b, A.A. Chen^d, C.A. Dickerson^b, C.L. Jiang^b, B.P. Kay^b, R.C. Pardo^b, D. Santiago-Gonzalez^{c,b}, R. Talwar Energy (MeV) Isomer on the Destruction of ²⁶Al in the Galaxy S. Almaraz-Calderon,^{1,*} K. E. Rehm,² N. Gerken,¹ M. L. Avila,² B. P. Kay,² R. Talwar,² A. S. Bottoni,² A. A. Chen,³ C. M. Deibel,⁴ C. Dickerson,² K. Hanselman,¹ C. R. Hoffmar ²⁷Al Apparent Excitation Energy (MeV) S. A. Kuvin,⁵ O. Nusair,² R. C. Pardo,² D. Santiago-Gonzalez,^{4,2} J. Sethi,² and C.

13

Constraint of the ²⁶Al^g(n,p)²⁶Mg and ²⁶Al^g(n,α)²³Na reactions

Constraint of the ²⁶Al^m(n,p)²⁶Mg and ²⁶Al^m(n,α)²³Na reactions

ARUNA

Isomeric contributions to stellar nucleosynthesis: ³⁴Cl

https://www.phy.anl.gov/atlas/pac/app_exp.html

The ³⁴Cl(p,γ)³⁵Ar reaction relevant in nova environments and in the classifications of presolar grain.
 (Sulfur isotopic ratios, production of ³⁴S)

33Ar 173.0 ms ε = 100.00% εp = 38.70%	34Ar 844.5 ms ε = 100.00%	35Ar 1.7756 s ε = 100.00%	36Ar STABLE 0.3336%	37Ar 35.04 d ε = 100.00%
32Cl 298 ms ε = 100.00% εα = 0.05% εp = 0.03%	33Cl 2.511 s ε = 100.00%	34Cl 1.5264 s ε = 100.00%	35CI STABLE 75.76%	36Cl 3.01E+5 y β ⁻ = 98.10% ε = 1.90%
31S	325	33S	34S	35S
2.5534 s	STABLE	STABLE	STABLE	87.37 d
ε = 100.00%	94.99%	0.75%	4.25%	β ⁻ = 100.00%
30P	31P	32P	33P	34P
2.498 min	STABLE	14.268 d	25.35 d	12.43 s
ε = 100.00%	100%	β ⁻ = 100.00%	β ⁻ = 100.00%	β ⁻ = 100.00%

Ground and isomeric state information for $^{34}_{17}CI$				
E(level) (MeV)	Јп	Mass Excess (keV)	T _{1/2}	Decay Modes
0.0	0+	-24440.09 5	1.5264 s <i>14</i>	ε = 100.00%
0.1464	3+	-24293.69 5	32.00 min 4	ε = 55.40% IT = 44.60%

THE ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 252:2 (17pp), 2021 January © 2020. The American Astronomical Society. All rights reserved.

https://doi.org/10.3847/1538-4365/abc41

Astromers: Nuclear Isomers in Astrophysics

G. Wendell Misch^{1,2,3,4}, Surja K. Ghorui^{5,3}, Projjwal Banerjee⁶, Yang Sun^{3,7,8}, and Matthew R. Mumpower^{1,2,4}

The CATRiNA neutron detector array

32 - C_6D_6 liquid scintillators detectors (EJ315). Pulse shape discrimination. E_n via Time-of-flight. Structure in the Pulse-height.

APSNews

1200

counts/10 channel

Now a Nuclear Physicist at Los Alamos, APS Bridge Program Grad Says Nuclear Security is His Calling

"[My mom] was my savior," says Jesus Penello. "She said, "Listen, you did not go this far just to quit."

By Liz Boatman | February 16, 202

March 2023 (Volume 32, Number 3) Aff Joan Yang Yang Maka Control (2017 Joan Andrey Control Aff Joan Andrey Control Aff Joan Andrey Attack in Kana Attack and Analysis Andrey Attack and Analysis Andrey Attack and Analysis Attack Manufah Janah (1994) (2021 Manufah Janah Andrey Manufah Andrey Manufah

NE213

Jesus Perello, who exceed his doctorate in physics from Porida State University in 2021, is now a physicial at Les Alama

Jesus Perello is currently a postdoc fellow at LANL

Nuclear Inst. and Methods in Physics Research, A 930 (2019) 196-202

Contents lists available at ScienceDirect

Nuclear Inst. and Methods in Physics Research, A

journal homepage: www.elsevier.com/locate/nima

Characterization of the CATRiNA neutron detector system J.F. Perello, S. Almaraz-Calderon^{*}, B.W. Asher, L.T. Baby, N. Gerken, K. Hanselman Department of Physics, Florida State University, Tallahassee, FL 32306, USA

Nuclear Astrophysics studies with CATRiNA

- Detailed resonance spectroscopy of 26 Si needed for determination of the 25 Al(p, γ) 26 Si reaction rate.
- States in ²⁶Si were populated via the ²⁴Si(³He,n) reaction.
- A n/ γ coincidence measurement was performed using CATRiNA detectors and a set of HPGe detectors.

PHYSI covering nuc	CAL R	EVIEW	С					
Highlights	Recent	Accepted	Collections	Authors	Referees	Search	Press	About
Low-ly astrop	ying res ohysica	sonances $^{25}\mathrm{Al}\Big(p,$	s in $^{26}{ m Si}$ re $\gamma ight)^{26}{ m Si}$ re	elevant eaction	for the c rate	letermi	nation	of the
J. F. Pere McCann, Phys. Rev	llo, S. Almar A. B. Morek /. C 105 , 03!	az-Calderon, E ock, V. Tripathi 5805 – Publisl	3. W. Asher, L. T , I. Wiedenhöve ned 24 March 2	. Baby, C. Be er, and B. Suc 2022	enetti, K. W. Ke darsan	mper, E. Lop	oez-Saave	dra, G. W.

Spectrum unfolding with CATRiNA

Using a statistical Bayesian inference method to analyze the pulse-height spectra.

Characterization and description of a spectrum unfolding method for the CATRiNA neutron detector array

A.B. Morelock ^{a,*}, J.F. Perello ^a, S. Almaraz-Calderon ^a, B.W. Asher ^a, K. Brandenburg ^b, J. Derkin ^b, G. Hamad ^b, Y. Jones-Alberty ^b, E. Lopez Saavedra ^a, T. Massey ^b, Z. Meisel ^b, N. Singh ^b, D. Soltesz ^b, S.K. Subedi ^b, A. Voinov ^b, J. Warren ^b

Fabio Rivero, FSU Honor's thesis, 2020.

bd

 "Neutron Spectrum Unfolding with Deuterated Liquid Scintillator Detectors".
 U Fabio is now a grad student at to University of Notre Dame (ND).

Characterization and description of a spectrum unfolding method for the CATRiNA neutron detector array

A.B. Morelock ^{a,*}, J.F. Perello ^a, S. Almaraz-Calderon ^a, B.W. Asher ^a, K. Brandenburg ^b, J. Derkin ^b, G. Hamad ^b, Y. Jones-Alberty ^b, E. Lopez Saavedra ^a, T. Massey ^b, Z. Meisel ^b, N. Singh ^b, D. Soltesz ^b, S.K. Subedi ^b, A. Voinov ^b, J. Warren ^b

Unfolding vs ToF with CATRiNA

Ashton is currently a postdoc at UTK/FSU

Resonance spectroscopy, CATRiNA + CHARON

Breakout of the Hot CNO cycle via the ${}^{14}O(\alpha,p){}^{17}F \rightarrow$ resonances in ${}^{18}Ne$.

---> rp-process

Breakout I

-------> Breakout II ······>> HCNO I

Neutron and charged-particles were measured in coincidence with CATRINA + CHARON.

Resonance spectroscopy, CATRiNA + CHARON

Breakout of the Hot CNO cycle via the ${}^{14}O(\alpha,p){}^{17}F \rightarrow$ resonances in ${}^{18}Ne$.

Undergraduate Research

Valarie Milton, FSU BSc. 2023. "Commissioning of the neutron - chargedparticle coincidence setup at FSU". Attended CEU @ APS-DNP in New Orleans, LA. Valarie is now a grad student at Louisiana State University (LSU).

Resonance spectroscopy, CATRiNA + Clarion-2

- ³⁴Ar → Waiting point in the rp-process
 (³³Cl(p,γ)³⁴Ar) and αp-process (³⁰S(α,p)³³Cl).
- Presolar grain characterization.
- Final abundances and energy output in XRBs.
- → Resonance parameters largely undetermined!

THE ASTROPHYSICAL JOURNAL, 608:L61–L64, 2004 June 10 © 2004. The American Astronomical Society. All rights reserved. Printed in U.S.A.

THE NUCLEAR REACTION WAITING POINTS: $^{22}\rm{Mg},\,^{26}\rm{Si},\,^{30}\rm{S},\,AND$ $^{34}\rm{Ar}$ and bolometrically double-peaked type I X-ray bursts

JACOB LUND FISKER AND FRIEDRICH-KARL THIELEMANN

Deibel et al. PRC 84, 045802 (2011). Long et al. PRC 97, 054613 (2018). Kennington et al. PRL 124, 252702 (2020).

Resonance spectroscopy, CATRiNA + Clarion-2

- ³⁴Ar → Waiting point in the rp-process
 (³³Cl(p,γ)³⁴Ar) and αp-process (³⁰S(α,p)³³Cl).
- Presolar grain characterization.
- Final abundances and energy output in XRBs.
- → Resonance parameters largely undetermined!

G.S. Matthew Mestayer

→ Perform a measurement of the ³²S(³He,n)³⁴Ar reaction.

→ ³He beam and ~200 μ g/cm² ³²S(ZnS) Use **CATRiNA + Clarion + Charged-particle** coincidences to study the resonance structure in ³⁴Ar.

ARUNA

Figure from K. Fossez.

At low excitation energies, well-bound nuclei can be considered as closed quantum systems.

Moving towards drip lines, or higher in excitation energy, the continuum coupling becomes gradually more important, changing the nature of weakly bound states.

Couplings to the continuum states play a significant role in the structure and reactions of these systems.

NSF

, <u>T. Nilsson ^h</u> .R. Winkler ^t

Experimental studies of the ¹¹Be/¹⁰Be branching ratio obtained unexpectedly high results that raised questions about the decay mechanism and led to speculations about a possible nuclear dark decay channel.

Elkamhawy, et al. PL B, 821,136610 (2021).

 0.30_{f}

0.25

 E_{R} [MeV]

Measurement of the ¹⁰Be(d,n)¹¹B* \rightarrow p/ α reaction in Inverse Kinematics at Florida State University.

Using a ¹⁰Be beam from RESOLUT produced via the ⁹Be(d,p)

Open questions

- Does the p-resonance have an alpha strength?
- Is there a close 3/2⁺ state responsible for the β⁻α decay?
- Is it a threshold effect consequence of coupling with the continuum?
- \rightarrow New Experiments to study the mirror nucleus ¹¹C

The ⁷Li(⁷Li,t)¹¹B reaction with Super Enge Split Pole Spectrograph (SE - SPS) at FSU.

LETTER • OPEN ACCESS
β^- p and $\beta^-\alpha$ decay of the ¹¹ Be neutron halo ground state
J Okołowicz ^{4,1} 🕩, M Płoszajczak ² and W Nazarewicz ³ 🝺
Published 30 August 2022 • © 2022 IOP Publishing Ltd
Journal of Physics G: Nuclear and Particle Physics, Volume 49, Number 10

To be continued ... Further studies on ¹¹B and ¹¹C

Near-threshold resonances and continuum effects

ิล

The proton dripline nucleus ⁸B has a very small Sp ~ 138 keV. \rightarrow it presents an ideal case to study nuclear OQS, and continuum effects!

G.S. Rajat Aggarwal

Halo structure of ⁸B determined from intermediate energy proton elastic scattering in inverse kinematics

G.A. Korolev^{a,*}, A.V. Dobrovolsky^a, A.G. Inglessi^a, G.D. Alkhazov^a, P. Egelhof^b, A. Estradé^b, I. Dillmann^b, F. Farinon^b, H. Geissel^b, S. Ilieva^b, Y. Ke^b, A.V. Khanzadeev^a, O.A. Kiselev^b, J. Kurcewicz^b, X.C. Le^b, Yu.A. Litvinov^b, G.E. Petrov^a, A. Prochazka^b, C. Scheidenberger^b, L.O. Sergeev^a, H. Simon^b, M. Takechi^b, S. Tang^b, V. Volkov^b, A.A. Vorobyov^a, H. Weick^b, V.I. Yatsoura^a

Received: 22 June 2022	L. Yang ¹² , C. J. Lin ^{® 13} , H. Yamaguchi ^{® 24} , A. M. Moro ^{® 5,6} , N. R. Ma ¹² ,				
Accepted: 7 November 2022	D. X. Wang', K. J. Cook ⁽¹⁾ ^(ACA) , M. Mazzocco ⁽¹⁾ , P. W. Wen', S. Hayakawa ⁽¹⁾ J. S. Wang ⁽¹⁾ , Y. Y. Yang ¹² , G. L. Zhang ¹³ , Z. Huang ¹³ , A. Inoue ¹⁴ , H. M. Jia ¹				
Published online: 23 November 2022	D. Kahl @ ¹⁵ , A. Kim ¹⁶ , M. S. Kwag ¹⁷ , M. La Commara ¹⁸ , G. M. Gu ¹⁷ , S. Okamoto ¹⁹				

A ⁷Be beam from RESOLUT to measure the ⁷Be(d,n)⁸B reaction and the decay from resonances in halo nucleus ⁸B.

Collaboration with FSU theorist A. Volya and K. Fossez.

Structure of a triplet of Near-threshold resonances in ¹⁵F

The observation of a unique triplet of narrow resonances between 2p- and 3p-emission thresholds in ¹⁵F requires further characterization to understand their properties.

Girad-Alcindor et al. PRC 105, L051301 (2022).

F. de Grancey et al. Physics Letters B 758, 26 (2016). GSMCC

A measurement of the ${}^{14}O(d, n){}^{15}F$ reaction and subsequent charged-particle decays with RESOLUT. Beam production via the ${}^{14}N(p,n){}^{14}O$ reaction.

A study on the mirror ¹⁵C will also be pursued via the [°] ¹³C(t,p) reaction using the newly developed *triton beam*.[°]

Collaboration with FSU theorist A. Volya and K. Fossez.

Summary

- Development of a ⁴⁴Ti beam at FSU for a measurement of the ${}^{44}\text{Ti}(\alpha,p){}^{47}\text{V}$ reaction with Encore.
- Contribution of low-lying isomers to stellar nucleosynthesis ²⁶Al and ³⁴Cl.
- Detailed spectroscopy studies of the ³⁴Ar waiting point nucleus using CATRiNA + Clarion-2 arrays.
- Near-threshold resonances and continuum effects ¹¹B, ⁸B, and ¹⁵F.

Thank you!