

Single-neutron strength in N=29 isotones: Subshell closures and missing vg_{9/2} strength

Paul Cottle

NSF Site Visit, John D. Fox Laboratory, Florida State University

N=29 isotones via the (*d*,*p*) reaction with the SE-SPS

N=29 isotones via the (d,p) reaction with the SE-SPS

PHYSICAL REVIEW C 103, 064309 (2021)

PHYSICAL REVIEW C 106, 064308 (2022)

⁵⁰Ti(d, p) ⁵¹Ti: Single-neutron energies in the N = 29 isotones, and the N = 32 subshell closure

L. A. Riley⁰,¹ J. M. Nebel-Crosson,¹ K. T. Macon⁰,² G. W. McCann⁰,³ L. T. Baby,³ D. Caussyn,³ P. D. Cottle,³ J. Esparza⁰,³ K. Hanselman,³ K. W. Kemper⁰,³ E. Temanson⁰,³ and I. Wiedenhöver³ ¹Department of Physics and Astronomy, Ursinus College, Collegeville, Pennsylvania 19426, USA ²Department of Physics, and Astronomy, Louisiana State University, Baton Rouge, Louisiana 70803, USA ³Department of Physics, Florida State University, Tallahassee, Florida 32306, USA

(Received 9 March 2021; accepted 1 June 2021; published 8 June 2021)

PHYSICAL REVIEW C 108, 044306 (2023)

⁵⁴Fe(d, p) ⁵⁵Fe and the evolution of single neutron energies in the N = 29 isotones

L. A. Riley⁰,¹ I. C. S. Hay⁰,² L. T. Baby² A. L. Conley⁰,² P. D. Cottle⁰,² J. Esparza,² K. Hanselman,² B. Kelly,² K. W. Kemper⁰,² K. T. Macon,³ G. W. McCann⁰,² M. W. Quirin,¹ R. Renom⁰,² R. L. Saunders⁰,¹ M. Spieker⁰,² and I. Wiedenhöver⁰

¹Department of Physics and Astronomy, Ursinus College, Collegeville, Pennsylvania 19426, USA ²Department of Physics, Florida State University, Tallahassee, Florida 32306, USA ³Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana 70803, USA

(Received 27 August 2022; accepted 22 November 2022; published 8 December 2022)

PHYSICAL REVIEW C 109, 024302 (2024)

$g_{9/2}$ neutron strength in the N = 29 isotones and the ${}^{52}Cr(d, p) {}^{53}Cr$ reaction

L. A. Riley⁰,¹ D. T. Simms⁰,¹ L. T. Baby,² A. L. Conley⁰,² P. D. Cottle⁰,² J. Esparza⁰,² K. Hanselman,² I. C. S. Hay⁰,² M. Heinze,¹ B. Kelly⁰,² K. W. Kempero,² G. W. McCann⁰,² R. Renom,² M. Spieker⁰,² and I. Wiedenhöver⁰,² ¹Department of Physics and Astronomy, Ursinus College, Collegeville, Pennsylvania 19426, USA ²Department of Physics, Florida State University, Tallahassee, Florida 32306, USA

Measurement of $g_{9/2}$ strength in the stretched 8⁻ state and other negative parity states via the ⁵¹V(d, p) ⁵²V reaction

I. C. S. Hay⁰,¹ P. D. Cottle⁰,¹ L. A. Riley⁰,² L. T. Baby,¹ S. Baker⁰,¹ A. L. Conley⁰,¹ J. Esparza,¹ K. Hanselman,¹ M. Heinze,² D. Houlihan⁰,¹ B. Kelly⁰,¹ K. W. Kemper⁰,¹ G. W. McCann⁰,¹ R. Renom,¹ A. Sandrik,¹ D. Simms⁰,² M. Spieker⁰,¹ and I. Wiedenhöver⁰

¹Department of Physics, Florida State University, Tallahassee, Florida 32306, USA ²Department of Physics and Astronomy, Ursinus College, Collegeville, Pennsylvania 19426, USA

(Received 26 September 2023; accepted 5 January 2024; published 5 February 2024)

fp orbits and the N=32 subshell closure

4

Single neutron strength in N=29 isotones

fp orbits and the N=32 subshell closure

ron strength in isotones

Single neutron N=29 iso

6

fp orbits and the N=32 subshell closure

⁴⁹Ca: Y. Uozumi *et al.*, Nucl. Phys. A 576, 123 (1994).

⁵¹Ti: L.A. Riley *et al.*, Phys. Rev. C 103, 064309 (2021).

⁵³Cr: H. Junde, Nucl. Data Sheets 110, 2689 (2009).

⁵⁵Fe: L.A. Riley *et al.*, Phys. Rev. C 106, 064308 (2022).

Theory: J. Piekarewicz, Covariant Density Functional Theory calculations with the FSUGarnet covariant energy density functional

Single neutron strength in N=29 isotones

fp orbits and the N=32 subshell closure

Analysis of ${}^{52}Cr(d,p\gamma){}^{53}Cr$ underway (L.A. Riley *et al.* at Ursinus College) to try to untangle $p_{3/2}$ from $p_{1/2}$ and $f_{5/2}$ from $f_{7/2}$ to improve *fp* single neutron energies.

fp orbits and the *N*=32 subshell closure

Volume 27B, number 7

PHYSICS LETTERS

2 September 1968

THE INFLUENCE OF 2p-1h CONFIGURATIONS ON THE LOW-LYING STATES OF ⁵¹Ti

R. N. GLOVER A.W.R.E., Aldermaston, Berkshire, UK

and

A. DENNING, G. BROWN Nuclear Physics Laboratory, University of Bradford, UK

Received 24 July 1968

Experimental evidence for 2p-1h configurations in 51 Ti is obtained from study of the reaction 49 Ti(t, p) 51 Ti. To account for the relative intensities of the (t,p) transitions such configurations need to be included in shell-model calculations.

As part of a programme linking (t,p) and (d,p) studies to the same final nucleus we have examined odd-A nuclei with one neutron beyond closed shells or sub-shells e.g. ^{27}Mg [1], ^{51}Ti , ^{59}Fe [2] and ^{89}Sr [3]. Two-nucleon transfer reactions like the (t,p) reaction may be expected to excite configurations other than those seen in the (d,p) reaction and hence provide a more exacting test of theoretical calculations.

For N = 29 nuclei shell-model calculations [e.g.4] are based on configurations obtained by coupling the odd neutron in either the $2p_{2}^{2}$, $2p_{1}^{2}$ or $1f_{2}^{4}$ orbit to the even parity states of the proton core. A fair description of the level positions below ≈ 3 MeV excitation and of the spectroscopic factors observed in (d,p) reactions is then ob-

⁵¹ Ti	data from	n the 4	⁹ Ti(t,p) and	1 ⁵⁰ Ti(d,p) re	actions.
12000	19 19 19 19	A STATE	(t,p) Rel. Int.		
Ex	J^{π}	L	Expt	Theory	Expt S(d,p)

Ex	J^{π}	L	Expt	Theory	S(d,p)
0	3-	2	1.0	1.0	0.82
1.16	1- 2	4	0.10	0.35	0.59
1.43	7-	0	1.38	-	0.075
1.56	5-	2	0.62	0.09	0.04
2.14	57	2	0.12	0.003	0.28
2.19	3-	2	0.23	0.34	0.06
2.69	1-	0	26.0	-	0.01
2.90	1-2	4	0.25	0.41	0.34

Use ${}^{49}\text{Ti}(t,p)$ reaction to distinguish between 5/2⁻ and 7/2⁻ states in ${}^{51}\text{Ti}$

Summed g9/2 strength observed in (d,p) 100 80 % of sum rule 60 40 20 0 49Ca 51Ti 52V 53Cr 55Fe ⁴⁹Ca: Y. Uozumi *et al.*, Nucl. Phys. A 576, 123 (1994).

⁵¹Ti: L.A. Riley *et al.*, Phys. Rev. C 103, 064309 (2021).

⁵²V: I.C.S. Hay *et al.*, Phys. Rev. C 109, 024302 (2024).

⁵³Cr: L.A. Riley *et al*., Phys. Rev. C 108, 044306 (2023).

⁵⁵Fe: L.A. Riley *et al.*, Phys. Rev. C 106, 064308 (2022).

Open questions:

1) Are we using the right sum rule?

Kay, Schiffer and Freeman [Phys. Rev. Lett. 111, 042502 (2013)]:
Spectroscopic strengths quenched by short-range correlations between nucleons, as in (*e*,*e'p*). Maximum spectroscopic strength is 55±10% of that expected from mean field theory.
John Millener (private communication during the last few weeks):
Calculations of 1ħω excitations introduce spurious states. Sum

rule must correct for this.

Even with these caveats, we still may be missing $vg_{9/2}$ strength.

More open questions:

2) Is there a substantial amount of $vg_{9/2}$ strength above the particle thresholds? Piekarewicz Covariant Density Functional Theory calculations say that $vg_{9/2}$ unbound in ⁴⁸Ca, ⁵⁰Ti and ⁵²Cr; bound by only 1.4 MeV in ⁵⁴Fe.

3) Are we missing a substantial amount of $vg_{9/2}$ strength distributed among many bound states?

How to search for $vg_{9/2}$ strength with greater sensitivity

• Use the $(\alpha, {}^{3}He)$ reaction

⁵¹V(α , ³He)⁵²V at 32 MeV: Incoming α and outgoing ³He differ in *L* by 6.8ħ. ⁵¹V(d,p)⁵²V at 16 MeV: Incoming *d* and outgoing *p* differ in *L* by 1.1ħ.

• Particle-γ coincidences with CeBrA.

Going forward

• Work on pinning down J^{π} assignments using particle- γ coincidences and the ⁴⁹Ti(*t*,*p*)⁵¹Ti reaction to reduce uncertainties in single neutron energies.

Hunt for missing vg_{9/2} strength using (α,³He) reactions and particle-γ coincidences.

Single neutron strength in N=29 isotones

Postscript: M_n/M_p in ⁴²Si via Coulex and (p,p') – FRIB expt 21001

Ursinus/FSU/MSU collaboration (PDC co-spokesperson)

Coulex measurement completed summer 2023 (being analyzed).

(p,p') scheduled for late March 2024.

L.A. Riley et al., Phys. Rev. C 100, 044312 (2019).

n strength in stones Single neutr N=29 i

