

Nuclear-structure studies via direct reactions

Detailed studies of the Pygmy Dipole Resonance, α clustering, and octupole as well as hexadecapole collectivity in atomic nuclei

Mark-Christoph Spieker NSF Site Visit, John D. Fox Laboratory, Florida State University

Alex L. Conley Graduate Student Supported on NNSA grant

Dennis Houlihan Graduate Student Supported on NSF grant

Ramiro Renom Undergraduate Student 2021-2022 (Applied Mathematics)

Scott Baker Undergraduate Student Working on Honors Thesis Applied for Graduate School

Proposed Science Projects

- Study of octupole and hexadecapole collectivity in the Ge-Kr mass region at FRIB
 - → (p,p'), (p,2p), and (p,pn) experiments in inverse kinematics using GRETINA and the S800 at FRIB

FRIB

- The microscopic structure of the Pygmy Dipole Resonance (PDR)
 - → Particle-transfer, (d,p) and (t,p), as well as particle- γ coincidence experiments, (d,p γ), with the CeBrA demonstrator and Super-Enge Split-Pole Spectrograph at Florida State University

- α clustering and its possible implications for p-process nucleosynthesis
 - → (⁶Li,d) α -transfer and particle- γ coincidence experiments, (⁶Li,d γ), with the CeBrA demonstrator (CeBrA) and the Super-Enge Split-Pole Spectrograph at Florida State University

Connected Detector Development Projects

- Study of inorganic crystals for a new heavy-ion calorimeter for the S800 and HRS
 - \rightarrow Energy resolution of better than 0.4% needed for charge state identification and experiments with heavy isotopes.

FRIB

- A sub-millimeter resolution focal-plane detector for the SE-SPS
 - → Use new multi-layer thick gaseous electron multiplier (M-THGEM) technology + Micromegas pioneered at FRIB and successfully tested at S800.

- Construction of the full CeBrA+SE-SPS setup for particle-γ coincidence experiments
 - → 14 CeBr₃ detector array. Major upgrade with addition of 3×4 inches and 3×6 inches detectors. MRI in collaboration with Ursinus College and Ohio University has been submitted.

FLORIDA STATE UNIVERSITY

and hexadecapol <u>Ge-Kr mass</u> <u>octupole</u> collectivity in the FRIB at region

Propose experiments with GRETINA+S800 and liquid hydrogen target at FRIB

PHYSICAL REVIEW C 106, 054305 (2022)

Investigation of octupole collectivity near the A = 72 shape-transitional point

M. Spieker[®],^{1,*} L. A. Rilev[®],² P. D. Cottle,¹ K. W. Kemper[®],¹ D. Bazin[®],^{3,4} S. Biswas,³ P. J. Farris,^{3,4} A. Gade,^{3,4}

T. Ginter,³ S. Giraud[•],³ J. Li,³ S. Noji[•],³ J. Pereira,³ M. Smith,³ D. Weisshaar,³ and R. G. T. Zegers^{3,4} ¹Department of Physics, Florida State University, Tallahassee, Florida 32306, USA

²Department of Physics and Astronomy, Ursinus College, Collegeville, Pennsylvania 19426, USA

³Facility for Rare Isotope Beams, Michigan State University, East Lansing, Michigan 48824, USA ⁴Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA

PHYSICAL REVIEW C 109, 014307 (2024)

Proton removal from ^{73,75}Br to ^{72,74}Se at intermediate energies

M. Spieker¹, ^{1,*} D. Bazin^{2,3} S. Biswas² P. D. Cottle¹ P. J. Farris^{2,3} A. Gade^{2,3} T. Ginter² S. Giraud² K. W. Kemper^{0,1}

J. Li,² S. Noji,² J. Pereira,² L. A. Riley ⁶, ⁴ M. K. Smith,² D. Weisshaar ⁶,² and R. G. T. Zegers^{2,3}
 ¹Department of Physics, Florida State University, Tallahassee, Florida 32300, USA
 ²Facility for Rare Isotope Beams, Michigan State University, East Lansing, Michigan 48824, USA
 ³Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA
 ⁴Department of Physics and Astronomy, Ursinus College, Collegeville, Pennsylvania 19426, USA
 ⁶ (Received 12 August 2023; accepted 13 December 2023; published 3 January 2024)

(Received 27 June 2022; revised 13 August 2022; accepted 21 October 2022; published 2 November 2022)

Physics Letters B 841 (2023) 137932

Contents lists available at ScienceDirect Physics Letters B

journal homepage: www.elsevier.com/locate/physletb

Hexadecapole strength in the rare isotopes ^{74,76}Kr

M. Spieker^{a,a}, S.E. Agbemava^b, D. Bazin^{b,c}, S. Biswas^b, P.D. Cottle^a, P.J. Farris^{b,c}, A. Gade^{b,c}, T. Ginter^b, S. Giraud^b, K.W. Kemper^a, J. Li^b, W. Nazarewicz^{K,c}, S. Nojl^b, J. Pereira^b, L.A. Riley^d, M. Smith^b, D. Weisshar^b, R.G.C. Zegers^{b,c,c}

³ Department of Physics, Florida State University, Taliahassee, Fl. 32306, USA Facility for Rare Ecotope Beams, Michigan State University, East Lansing, MI 48824, USA ⁶ Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824, USA ¹ Department of Physics and Astronomy, Ursinus College, Collegeville, PI 19426, USA

Still an open question what causes this sudden strength increase.

- For reference, ²²⁴Ra, which we believe to be statically octupole deformed, has $B(E3; 3_1^- \rightarrow 0_1^+) = 42(3)$ Weisskopf Units (W.u.).
- Mass A = 70 80 nuclei are not believed to be octupole deformed.

6

Prolate-oblate shape transition in Kr isotopes & hexadecapole collectivity

[In collaboration with S. Agbemava and W. Nazarewicz (FRIB/MSU)]

NSE

= axially symmetric hexadecapole deformation

⁷⁴Kr (CHFB+LQRPA)

- We were able to determine β₂, β₃, and β₄ from our inverse kinematics (p,p') experiments on ^{74,76}Kr.
- Mixing between oblate and prolate configuration influences B(E2; 2⁺₁ → 0⁺₁) but appears to have only minor influence on B(E4; 4⁺₁ → 0⁺₁) strength. The latter is linked to prolate configuration.
- \rightarrow In agreement with CHFB+LQRPA predictions?

[Data from MS et al., PLB 841, 137932 (2023) and E. Clement et al., Phys. Rev. C 75, 054313 (2007)]

Continue program at FRIB [proposal ready; not PAC approved]

- We will continue mining the existing data set.
 → Currently analyzing ⁷⁴Kr(p,pn) and ⁷²Se(p,pn). The latter is analyzed by undergraduate student Alyssa Himmelreich at Ursinus College working with Professor Riley. I am a co-advisor for her project. [^{73,75}Br(p,2p): MS et al., PRC 109, 014307 (2024)]
- Propose (p,p') experiments with ^{70,72}Kr and ⁷⁰Se with GRETINA+S800+LH₂ target
- → Proposal was submitted to PAC-2, rated highly, but not recommended for beamtime.
- Possibly extend program to neutron-rich side, i.e., ⁹⁰Se (Z=34, N=56) which is supposedly a doubly octupole magic nucleus.

FLORIDA STATE UNIVERSITY

Continue program with experiments at FSU

Project #2

(PDF H O ygmy Dipole Resonance he microscopic structure

PHYSICAL REVIEW LETTERS 125, 102503 (2020)

Accessing the Single-Particle Structure of the Pygmy Dipole Resonance in ²⁰⁸Pb

M. Spieker⁶,^{1*} A. Heusler⁶,² B. A. Brown⁶,³⁴ T. Faestermann⁶,⁵ R. Hertenberger⁶,⁶ G. Potel⁶,⁷ M. Scheck⁶,⁸⁹ N. Tsoneva⁶,¹⁰ M. Weinert⁶,¹¹ H.-F. Wirth⁶, and A. Zilges⁶,¹¹ ¹Department of Physics, Florida State University, Tallahassee, Florida 32306, USA ²Niebuhr-Str. 19c, Berlin D-10629, Germany ³National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824, USA ⁴Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA ⁴Department of Physics and Astronomy, Michigan State University East Lansing, Michigan 48824, USA ⁴Pepartment of Physik, Ludwig-Maximilians-Universität München, Garching D-85748, Germany ⁶Fakultät für Physik, Ludwig-Maximilians-Universität München, Garching D-85748, Germany ⁷Lawrence Livermore National Laboratory, Livermore, California 94550, USA ⁸School of Computing, Engineering, and Physical Sciences, University of West of Scotland, Paisley PAI 2BE, United Kingdom ⁸SUPA, Scottish Universities Thysics Alliance, United Kingdom
 ¹⁰Extreme Light Infrastructure (ELI-NP), Horia Hulubei National Institute of Physics and Nuclear Engineering (IFIN-HH), Bucharest-Mägurele RO-077125, Romania ¹¹Institut für Kernphysik Luikersit zu Köln, Zühjoher Strabe 77, Köln D-50937, Germany ¹¹Institut für Kernphysik Luiversites Physics PAI 2BE, Orige 77, Könnania

(Received 9 June 2020; accepted 28 July 2020; published 2 September 2020)

PHYSICAL REVIEW LETTERS 127, 242501 (2021)

Microscopic Structure of the Low-Energy Electric Dipole Response of ¹²⁰Sn

M. Weinerto,^{1,*} M. Spickero,² G. Potelo,³ N. Tsonevao,⁴ M. Müschero,¹ J. Wilhelmy,¹ and A. Zilgeso,¹ ¹Institute for Nuclear Physics, University of Cologne, 50937 Köln, Germany ²Department of Physics, Florida State University, Tallahasee, Florida 32506, USA ³Lawrence Livermore National Laboratory, Livermore, California 94550, USA ⁴Extreme Light Infrastructure (ELI-NP), Horia Hulubei National Institute of Physics and Nuclear Engineering (IFIN-HH), Bucharest-Mägurelk RO-077125, Romania

(Received 21 June 2021; revised 7 September 2021; accepted 28 October 2021; published 6 December 2021)

PHYSICAL REVIEW C 108, 014311 (2023)

Experimental study of excited states of 62 Ni via one-neutron (d, p) transfer up to the neutron-separation threshold and characteristics of the pygmy dipole resonance states

M. Spicker[®],^{1,*} L. T. Baby[®],¹ A. L. Conley[®],¹ B. Kelly[®],¹ M. Müscher[®],² R. Renom[®],¹ T. Schüttler[®],² and A. Zilges[®],² ¹Department of Physics, Florida State University, Taliahassee, Florida 32306, USA ²Institute for Nuclear Physics, University of Cologne, 2037 Köh, Germany

(Received 5 May 2023; accepted 28 June 2023; published 10 July 2023)

... and how we can possibly perform similar experiments at FRIB.

The r process and neutron capture (n, γ) rates

How and where are the elements heavier than iron synthesized?

 10^{0}

 10^{1}

[A New Era of Discovery: The 2023 Long Range Plan for Nuclear Science]

[Figure 1: https://www.ligo.org/science/Publication-GW170817MMA/] [Figure 2: M. Mumpower et al., PPNP 86, 86 (2016)]

[Figure 3: H. Lenske and N. Tsoneva, EPJA 55, 238 (2019)] [Figure 4: X. Roca-Maza et al., PRC 85, 024601 (2012)]

Appearance of PDR is also strongly model-dependent!

Pygmy Dipole Resonance (PDR)Isovector Giant Dipole Resonance (IVGDR)The valence neutrons (light blue) oscillate
against the N = Z coreAll protons (red) oscillate against all neutrons
(blue)= smaller (pygmy) dynamic dipole moment= large (giant) dynamic dipole moment

11

Neutron skins in neutron-rich

Massive neutron skins expected in neutronrich isotopes ($\sim 0.4 - 0.6$ fm). Reminder PREX result indicates ~ 0.28 fm for ²⁰⁸Pb.

From the PDR to the neutron skin to neutron-star radii

What can we expect at FRIB?

[M. Kortelainen et al., PRC 88, 031305(R) (2013)]

Are the PDR strength and neutron-skin thickness correlated?

Strength increase has microscopic

14

The microscopic structure of the PDR and its influence on the B(E1) distribution

The *E*1 strength of the PDR strongly depends on the position of the Fermi level and shows a clear correlation with the occupation of the orbits with the orbital angular momenta less than $3\hbar$ ($l \le 2$). We also found a strong correlation between the isotopic dependence of the neutron skin thickness and the pygmy dipole strength. [T. Inakura *et al.*, PRC 84, 021302(R) (2011)]

Significant strength increase observed above N=28 for Cr isotopes

Experiment

⁵⁵Ni ⁵⁶Ni ⁵⁷Ni ⁵⁸NIi 52**N**i 53NI; 54NI; These are not *r*-process nuclei. However, are Inakura's prediction and its 50 F microscopic interpretation correct? ⁴⁹Mn e- capture e- capture Stable 48Cr ⁴⁹Cr ⁵¹Cr ⁵²Cr 53Cr 55Cr Stable e- capture Stable Stable 47V ⁴⁸V ⁴⁹V $2d_{5/2}^{+1}$ $2d_{3/2}^{+1}$ $3s_{1/2}^{+1}$ e- capture ⁴⁶Ti ⁴⁷Ti ⁴⁸Ti Stable Stable

15

Possible cause: Change of single-particle structure

⁴⁹Cr: $J_{gs}^{\pi} = {}^{5/2} \rightarrow (1f_{5/2})^{-1} (2d_{5/2})^{+1}, (1f_{5/2})^{-1} (2d_{3/2})^{+1}$ ⁵¹Cr: $J_{gs}^{\pi} = {}^{7/2} \rightarrow (1f_{7/2})^{-1} (2d_{5/2})^{+1}, (1f_{7/2})^{-1} (1g_{9/2})^{+1}$ ⁵³Cr: $J_{gs}^{\pi} = {}^{3/2} \rightarrow (2p_{3/2})^{-1} (2d_{5/2})^{+1}, (2p_{3/2})^{-1} (2d_{3/2})^{+1}, (2p_{3/2})^{-1} (3s_{1/2})^{+1}$ All these neutron one-particle one-hole (1p-1h) configurations can contribute to $J^{\pi}=1^{-}$ states' (PDR) wave functions

[https://people.physics.anu.edu.au/~ecs103/chart/]

Map possible microscopic change with (d,p) reactions on highlighted nuclei **Experiment**

[P. Ries et al., PRC 100, 021301(R) (2019)] fraction [%] 1.4 average upto shell closure above shell closure 1.2 Significant 1 strength increase 0.8 0.6 ⁵⁰Cr PDR 0.4 0.2 52Cr⁵⁴Cr 0 26 28 30 Neutron number

16

Possible cause: Change of single-particle structure

⁴⁹Cr: $J_{gs}^{\pi} = {}^{5/2} \rightarrow (1f_{5/2})^{-1} (2d_{5/2})^{+1}, (1f_{5/2})^{-1} (2d_{3/2})^{+1}$ ⁵¹Cr: $J_{gs}^{\pi} = {}^{7/2} \rightarrow (1f_{7/2})^{-1} (2d_{5/2})^{+1}, (1f_{7/2})^{-1} (1g_{9/2})^{+1}$ ⁵³Cr: $J_{gs}^{\pi} = {}^{3/2} \rightarrow (2p_{3/2})^{-1} (2d_{5/2})^{+1}, (2p_{3/2})^{-1} (2d_{3/2})^{+1}, (2p_{3/2})^{-1} (3s_{1/2})^{+1}$ All these neutron one-particle one-hole (1p-1h) configurations can contribute to $J^{\pi}=1^{-}$ states' (PDR) wave functions

[https://people.physics.anu.edu.au/~ecs103/chart/]

18

Results for possible PDR states populated in ⁶¹Ni(d,p)⁶²Ni

Undergraduate Research

Early hands-on research experience for both Ramiro Renom and Scott Baker. Ramiro is co-author on <u>five</u> peer-reviewed publications! PHYSICAL REVIEW C 108, 014311 (2023)

Experimental study of excited states of 62 Ni via one-neutron (d, p) transfer up to the neutron-separation threshold and characteristics of the pygmy dipole resonance states

M. Spicker[®],^{1,*} L. T. Baby[®],¹ A. L. Conley[®],¹ B. Kelly[®],¹ M. Müscher[®],¹ R. Renom[®],¹ T. Schüttler[®],² and A. Zilges[®]² ¹Department of Physics, Florida State University, Tallahassee, Florida 32306, USA ²Institute for Nuclear Physics, University of Cologne, 50937 Köln, Germany

(Received 5 May 2023; accepted 28 June 2023; published 10 July 2023)

"PDR" E1 strength increases with increasing neutron excess in Ni isotopes

Is this E1 strength increase linked to the low-*l* single-particle strength shifting down in energy?

[M. Müscher, A. Zilges (University of Cologne, Germany), private communication (2023)]

Is this E1 strength increase linked to the low-*l* single-particle strength shifting down in energy?

[M. Müscher, A. Zilges (University of Cologne, Germany), private communication (2023)]

Experimental (γ, γ^{*}) Data

~
$$B(E1; 0_1^+ \rightarrow 1_i^-)$$
 strength

Results for possible PDR states populated in ⁶¹Ni(d,p)⁶²Ni

• Intensity ratios from ${}^{62}\text{Ni}(\gamma,\gamma')$ were used to identify J = 1 states up to 8.5 MeV.

[T. Schüttler, M. Müscher, A. Zilges, et al.]

- $17 J^{\pi} = 1^{-}$ candidates populated in 61 Ni(d,p) 62 Ni through l = 2 angular momentum transfers.
- → No l = 0 transfers were observed below S_n! → Consequently, neutron $(2p_{3/2})^{-1}(2d_{5/2})^{+1}$ and $(2p_{3/2})^{-1}(2d_{3/2})^{+1}$ 1p-1h configurations need to be responsible for E1 strength increase in ⁶²Ni (N=34) if Inakura's predictions are correct.
- ⁶²Ni(γ,γ') up to threshold will show whether strength increases further and whether more 1⁻ states, populated in (d,p) and (γ,γ'), can be identified. (HIγS experiment up to S_n performed)
- Detailed theoretical calculations will then be needed (LSSM, SSRPA, RQTBA+PVC, QPM, ...).

Results for possible PDR states populated in ⁶¹Ni(d,p)⁶²Ni

Intensity ratios from ${}^{62}\text{Ni}(\gamma,\gamma')$ were used to identify J = 1 states up to 8.5 MeV.

[T. Schüttler, M. Müscher, A. Zilges, et al.]

- 17 $J^{\pi} = 1^{-}$ candidates populated in ⁶¹Ni(d,p)⁶²Ni through l = 2 angular momentum transfers.
- → No l = 0 transfers were observed below S_n! → Consequently, neutron $(2p_{3/2})^{-1}(2d_{5/2})^{+1}$ and $(2p_{3/2})^{-1}(2d_{3/2})^{+1}$ 1p-1h configurations need to be responsible for E1 strength increase in ⁶²Ni (N=34) if Inakura's predictions are correct.
- ⁶²Ni(γ,γ') up to threshold will show whether strength increases even further and whether more 1⁻ states, populated in (d,p) and (γ,γ'), can be identified. (HIγS experiment up to S_n performed)
- Detailed theoretical calculations will then be needed (LSSM, SSRPA, RQTBA+PVC, QPM, ...).

Data and Results

Coincident y-ray detection with the CeBrA demonstrator at SE-SPS

Combining reaction and decay selectivity to study the structure of excited states.

So, we decided to build the CeBr₃ Array (CeBrA) demonstrator.

Motivation

Coincidence timing between $\text{CeBr}_3 \gamma$ -ray detectors and focal-plane scintillator.

Coincident γ-ray detection with the CeBrA demonstrator at SE-SPS

PID eliminates prompt events resulting from other reactions. To eliminate random background, further timing gates are needed.

Heureka! [Archimedes]

Coincidence timing between $CeBr_3 \gamma$ -ray detectors and focal-plane scintillator.

Coincident y-ray detection with the CeBrA demonstrator at SE-SPS

PID eliminates prompt events resulting from other reactions. To eliminate random background, further timing gates are needed.

Heureka! [Archimedes]

Particle- γ coincidence matrix for selecting the excitation and decay of specific excited states

ARUNA

Coincident γ -ray detection with the CeBrA demonstrator at SE-SPS

Bottom line: We can measure particle-γ angular correlations in (d,pγ) with SE-SPS+CeBrA!

Particle- γ angular correlations for spin-parity assignments and determination of multipole mixing ratios. ${}^{52}Cr(d,p\gamma){}^{53}Cr$

28

Particle-y angular correlations for spin-parity

GEANT4 simulation of CeBr₃ detectors

- FSU undergraduate student Scott Baker working on simulation of our CeBr₃ detectors using GEANT4 as part of his honors thesis.
- → Benchmark of simulation against data measured with standard calibration sources.

2" x 2" Detector Efficiencies

[[]Figure 2: A. Ratkiewicz et al., PRL 122, 052502 (2019)]

Future plans for PDR studies at FSU

- Measure γ-ray strength function in ⁶²Ni via ⁶¹Ni(d,pγ)⁶²Ni using surrogate method and CeBrA demonstrator. [Thesis experiment for B. Kelly]
- Continue (d,p) program to study PDR in fp-sd shell. [new grad student after B. Kelly graduation]
- Study neutron 2p-2h structure of PDR in ⁶²Ni via ⁶⁰Ni(t,p)⁶²Ni. [new grad student after B. Kelly graduation]
- Study γ decay of PDR states directly if CeBrA MRI gets funded. (higher FEP of array needed!)

Single-particle structure studies of PDR with SOLARIS at FRIB [49Ca(d,py)⁵⁰Ca]

of interest for PDR studies

In collaboration with T.L. Tang (FSU), A. Couture (LANL), B. Kay (ANL).

32

Project #3

 α clustering and its possible implications for p-process nucleosynthesis

FLORIDA STATE UNIVERSITY

[Thesis experiments for D. Houlihan]

34

Coincident γ-ray detection with the CeBrA demonstrator at SE-SPS

Combining reaction and decay selectivity to study the structure of excited states.

Q_{α} values from Ba to Pb

Cluster strength expected at comparably low excitation energy!

The *p* process and the neutron-deficient Sm and Gd nuclei – (γ, α) reactions

Possible influence on p process

 γ -induced reactions predominantly excite states via dipole transitions (E1 and M1).

If pre-clustered states have enhanced B(E1) strength, a (γ , α) enhancement might result.

Call it Trojan horse or surrogate.

The *p* process and the neutron-deficient Sm and Gd nuclei – (γ, α) reactions

The *p* process and the neutron-deficient Sm and Gd nuclei – (γ, α) reactions

Perform (⁶Li,d) α -transfer experiments with SE-SPS and detect γ -ray transitions from excited states in coincidence with CeBrA.

A new focal plane detector for the SE-SPS

Needs

- Energy resolution of 15 keV or better (improve position resolution of ~ 2 mm by factor of ~ 4).
- Higher rate capabilities (currently limited to ~ 2kHz).

Solution: Piggyback on recent developments at S800 spectrograph for drift chambers

- New S800 Micro-Pattern Gaseous Detector (MPGD)-based readout of drift chamber improved position resolution from 0.5 mm to 0.25 mm.
- \rightarrow Factor 4 improvement achievable!
- New S800 drift chamber design allowed for rates as high as 20 kHz
- \rightarrow Factor 10 increase in rates achievable!

[Figures and information: M. Cortesi et al., Journal of Instrumentation 15, P03025 (2020)]

A new focal plane detector for the SE-SPS

Needs

- Energy resolution of 15 keV or better (improve position resolution of $\sim 2 \text{ mm}$ by factor of ~ 4).
- Higher rate capabilities (currently limited to \sim 2kHz).

Solution: Piggyback on recent developments at **S800** spectrograph for drift chambers

roved

new S800 drift chamber design allowed for rates as high as 20 kHz

 \rightarrow Factor 10 increase in rates achievable!

[Figures and information: M. Cortesi et al., Journal of Instrumentation 15, P03025 (2020)]

Proposed Science Projects

- FRIB
- Study of octupole and hexadecapole collectivity in the Ge-Kr mass region at FRIB
 - → (p,p'), (p,2p), and (p,pn) experiments in inverse kinematics using GRETINA and the S800 at FRIB

- The microscopic structure of the Pygmy Dipole Resonance (PDR)
 - → Particle-transfer, (d,p) and (t,p), as well as particle- γ coincidence experiments, (d,p γ), with the CeBrA demonstrator and Super-Enge Split-Pole Spectrograph at Florida State University

- α clustering and its possible implications for p-process nucleosynthesis
 - → $(^{6}\text{Li},d) \alpha$ -transfer and particle- γ coincidence experiments, $(^{6}\text{Li},d\gamma)$, with the CeBrA demonstrator (CeBrA) and the Super-Enge Split-Pole Spectrograph at Florida State University

Project Timeline

ARU	Year 1 ⁷² Se(p,pn) ⁷¹ Se GRETINA+S800 A. Himmelreich (Ursinus w. Riley)	Year 2 ⁷⁴ Kr(p,pn) ⁷³ Kr GRETINA+S800	Year 3 ^{70,72} Kr(GRETINA+S	p,pX)	Year 4
	⁶¹ Ni(d,pγ) ⁶² Ni CeBrA+SE-SPS B. Kelly	⁵³ Cr(d,p) ⁵⁴ Cr SE-SPS New student #1	SE-SPS	e #1 γ) ⁵⁰ Ca	⁶⁰ Ni(t,p) ⁶² Ni SE-SPS New student #1
	¹⁴² Nd(⁶ Li,dγ) ¹⁴⁶ Sm CeBrA+SE-SPS D. Houlihan	CeBrA-	i,dγ) ¹⁴⁸ Gd +SE-SPS pulihan	CeB	(⁶ Li,dγ) ⁹⁶ Ru rA+SE-SPS v student #2
NST 42	Planning of new FP detector (Construction of new FP detector (New student #1)		Commissioning of new FP detector