







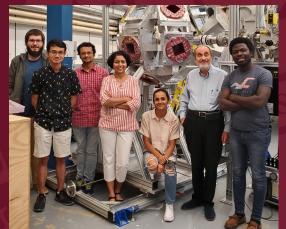
# Nuclear shell evolution & study of exotic nuclei

High resolution  $\gamma$ -ray spectroscopy group

Vandana Tripathi
Graduate Students & Post Doc

NSF Site Visit, John D. Fox Laboratory, Florida State University






















Goals and Plan for 2020-2024

☐ Investigating the N=28 shell closure in exotic nuclei

TIME

FOR

REVIEW

- → beta decay at FRIB
- □ Role of occupancy of the g9/2 orbital in fp shell nuclei
- → CLARION2 @FSU (ORNL and FSU collaboration)
- ☐ Analysis: E18016@NSCL; <sup>14</sup>C + <sup>48,50</sup>Ti @ FSU



Additional space for a title









**Supported by NSF and FSU startup** 

## Details of the work presented can be found in these recent publications:

Phys.Rev. C 109, 014305 (2024)

S.Ajayi\*, V.Tripathi, et al., (\*GS)

Observation of collective modes of excitations in <sup>59</sup>Co, <sup>59</sup>Ni, and <sup>61</sup> Co and the influence of the g<sub>9/2</sub> orbital

Phys.Rev. C 107, 054311 (2023)

S.Bhattacharya\* V.Tripathi, et al., (\*Post Doc)

Coexistence of single-particle and collective excitation in <sup>61</sup> Ni

Phys.Rev. C 108, 024312 (2023)

S. Bhattacharya\*, V.Tripathi, et al., (\*Post Doc)

β- decay of neutron-rich <sup>45</sup> Cl located at the magic number N=28

Phys.Rev.Lett. 129, 212501 (2022)

H.L.Crawford, V.Tripathi, et al., (FRIB first paper)

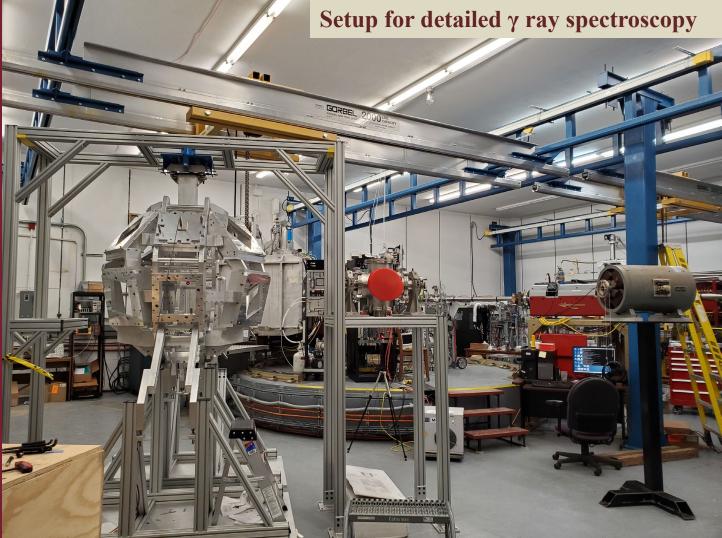
Crossing N = 28 Toward the Neutron Drip Line: First Measurement of Half-Lives at FRIB

Phys.Rev. C 106, 064314 (2022)

V.Tripathi, et al., (NSCL e18016)

β- decay of exotic P and S isotopes with neutron number near 28

Nuclear Inst and Methos in physics Research, A 1041 (2022) 167392 106, 064314 (2022)


T.J. Gray, et al., (CLARION2 commissioning)

CLARION2-TRINITY: A Compton-suppressed HPGe and GAGG:Ce-Si-Si array for absolute cross-section measurements with heavy ions





# and FSU collaboration An ORNI

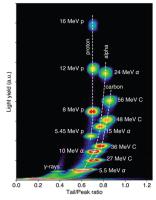


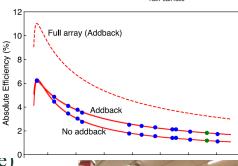
# **CLARION2-TRINITY**

**March 2021** 



project delayed by a year due to covid


**Dec 2021** 


National Laboratory

## **CLARION2-TRINITY: 2021/22**



- CLARION2 is an array of 16 CS HPGe clovers (ORNL,FSU,++), ~4% @ 1 MeV
- LaBr<sub>3</sub>/CeBr<sub>3</sub> detector options from UTK, UNC, Miss.U (Ben Crider)
- TRINITY charged-particle detector (GAGG-Si-Si) and other possibilities
- GAGG:Ce-SiPM component of TRINITY has PID by PSD and can count at 40 kHz / xtl
- Digital data acquisition (PIXIE)
- Commissioning in Dec2021 (NIMA Published)
- First campaign completed Dec 2021 June 2022 (ORNL,FSU)
- 9 clovers (6 ORNL + 3 FSU); 3 rings of GAGG detector
- 10<sup>th</sup> Clover added in 2023 (FSU)
- 1 BeGe to be added in 2024 (Robert Haring Kaye, Westmont College)
- 2 more of rings of GAGG (ORNL) in 2024
- Request for 2 S2 type annular Si detectors in this proposal





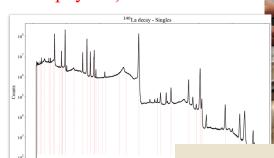







# summary LECM -2022




# γ-ray Spectroscopy with CLARION2 @ FSU

Tuesday at 10:20 pm EST, August 9, 2022 - Vandana Tripathi and Mitch Allmond ~40 in attendance



Contributed talks (Topics from Nuclear Structure to Astrophysics)

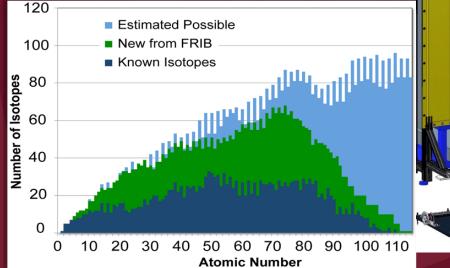
- I. Wiedenhoever (FSU)
- Tim Gray (ORNL)
- Bob Kaye (Westmont)
- Ram Yadav (SCSU)
- Peter Bender (UML)
- Sergio Almaraz (FSU)
- Libby Richard-McCutchan (BNL)
- Catur Wibisono (FSU)
- Rebeka Lubna (FRIB-MSU)
- Scott Marley (LSU)
- Soumik Bhattacharya (FSU)
- Ben Crider (MSU)



Energy (keV)

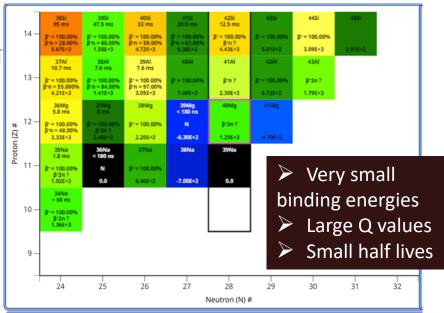
La-140 is a well-known chronometer used to date a nuclear event. Decay data based on work from 1990.

100μCi <sup>140</sup>La source produced at **UMass Lowell Research Reactor**  $(^{nat}La(n,\gamma))$  - measured for 4 Halflives at FSU using Clarion2






# **FDSi** Experiment FRIB: Day














- Exotic Na-P isotopes with N~28
- Limited experimental information
- Refinement of theoretical predictions

## FRIB PAC1: E21062 Motivation



- Evolution of proton and neutron SPE as a function of increasing neutron excess
- Understanding emergent collective phenomenon and shape changes
- Understanding β delayed neutron emission in these very neutron rich nuclei









## **Lansing State Journal**

**NEWS** 

## The first experiment at MSU's FRIB is Wednesday. Here's what scientists hope to learn.



**Mark Johnson** Lansing State Journal

Published 9:42 p.m. ET May 9, 2022

DOE Office of Science @ @does... · 11h "What I am most excited about @FRIBLab is

been chosen as a Visiting Scholar Program for Experimental Science: frib.msu.edu/

the dive into the unknown which may present some unanticipated results." -Vandana Tripathi @floridastate, who has

frib.msu.edu/news/2022/2022

EAST LANSING — Michigan State University believes its Facility for Rare Isotope Beams will unlock the door to new discoveries — and scientists could find the first key this week.

Though the FRIB officially opened last Monday, smaller lead-up experiments have been underway for months. However, Wednesday is the first time scientists will blast a particle beam from FRIB's 400-kilowatt linear accelerator at full power. When that beam collides with a target element — say, magnesium or aluminum — the element's protons and neutrons break apart, forming new variations called isotopes. The rare variations of those isotopes are what the FRIB will unlock.



The first experiment at MSU's FRIB is Wednesday. Here's what scientists hope to learn.

A team of scientists from around the country will conduct the first experiment at Michigan State's ... Lansing State Journal on MSN.com · 22h

# FRIB day 1 experiment: E21062

Allmond, James (Mitch); Crawford, Heather; Crider, Benjamin; Grzywacz, Robert; Tripathi, Vandana

Decay Spectroscopy Near N=28: Shell Structure, Shapes and Weak Binding



- The first FRIB experiment to run in the first week of May 2022
- Expect 1 kW of power
- Complete FDSi setup





are included in Table I.

### Crossing N = 28 Toward the Neutron Drip Line: First Measurement of Half-Lives at FRIB

H. L. Crawford<sup>®</sup>, <sup>1,\*</sup> V. Tripathi, <sup>2</sup> J. M. Allmond, <sup>3</sup> B. P. Crider, <sup>4</sup> R. Grzywacz, <sup>5</sup> S. N. Liddick, <sup>6,7</sup> A. Andalib, <sup>6,8</sup> E. Argo, <sup>6,8</sup> C. Benetti, <sup>2</sup> S. Bhattacharya, <sup>2</sup> C. M. Campbell, <sup>1</sup> M. P. Carpenter, <sup>9</sup> J. Chan, <sup>5</sup> A. Chester, <sup>6</sup> J. Christie, <sup>5</sup> B. R. Clark, <sup>4</sup> I. Cox, <sup>5</sup> A. A. Doetsch, <sup>6,8</sup> J. Dopfer, <sup>6,8</sup> J. G. Duarte, <sup>10</sup> P. Fallon, <sup>1</sup> A. Frotscher, <sup>1</sup> T. Gaballah, <sup>4</sup> T. J. Gray, <sup>3</sup> J. T. Harke, <sup>10</sup> J. Heideman, <sup>5</sup>

H. Heugen, <sup>5</sup> R. Jain, <sup>6,8</sup> T. T. King, <sup>3</sup> N. Kitamura, <sup>5</sup> K. Kolos, <sup>10</sup> F. G. Kondev, <sup>9</sup> A. Laminack, <sup>3</sup> B. Longfellow, <sup>10</sup> R. S. Lubna, <sup>6</sup> Luitel, M. Madurga, R. Mahajan, M. J. Mogannam, C. Morse, S. Neupane, A. Nowicki, T. H. Ogunbek

J. Ong, 10 C. Porzio, 1 C. J. Prokop, 12 B. C. Ras Schaedig, <sup>6,8</sup> D. Seweryniak, <sup>9</sup> K. Siegl, <sup>5</sup> M. Sin <sup>1</sup>Nuclear Science Division, Lawrence Be <sup>2</sup>Department of Physics, Florid <sup>3</sup>Physics Division, Oak Ridge Na <sup>4</sup>Department of Physics and Astronomy, Miss <sup>5</sup>Department of Physics and Astronomy <sup>6</sup>Facility for Rare Isotope Beams, Mic. <sup>7</sup>Department of Chemistry, Michiga <sup>8</sup>Department of Physics and Astronomy, 1 N <sup>9</sup>Argonne National I <sup>10</sup>Lawrence Livermore Nation <sup>11</sup>Brookhaven National <sup>12</sup>Los Alamos National La <sup>13</sup>Department of Physics and Astronomy, 1

Featured in Physics

(Received 19 July 2022; acce

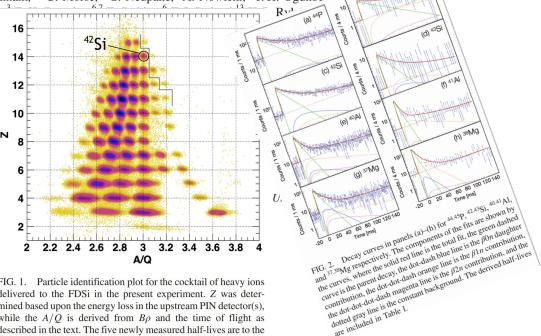
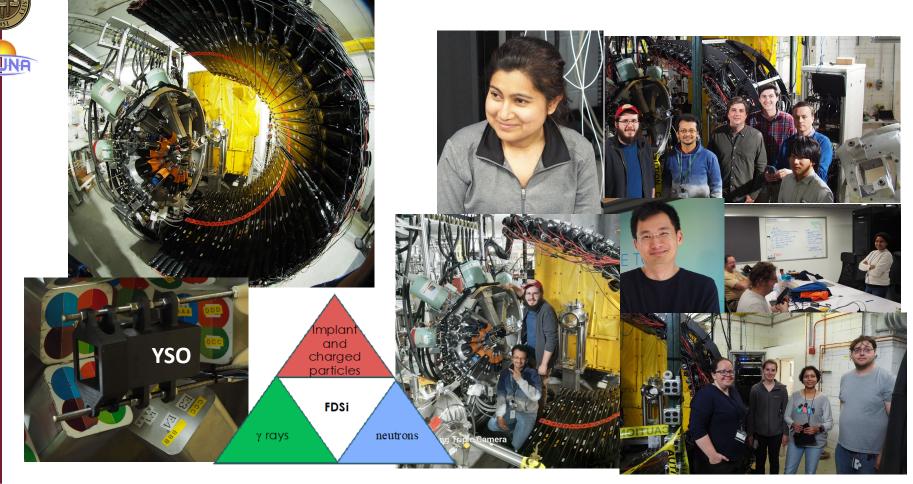
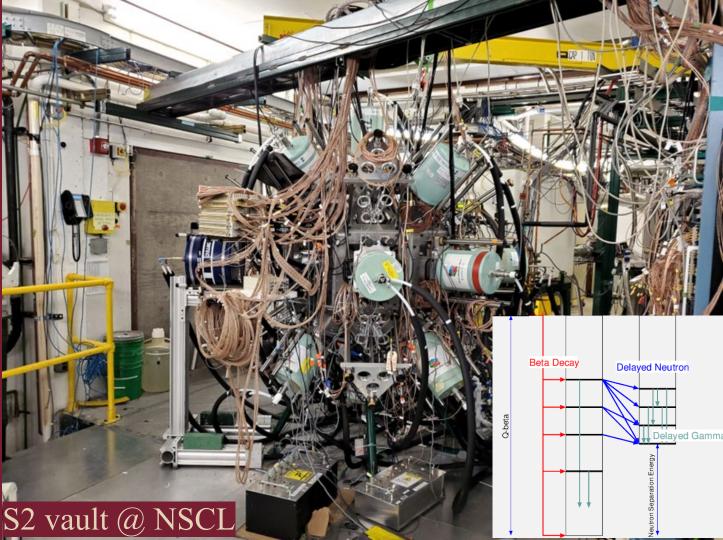




FIG. 1. Particle identification plot for the cocktail of heavy ions delivered to the FDSi in the present experiment. Z was determined based upon the energy loss in the upstream PIN detector(s), while the A/Q is derived from  $B\rho$  and the time of flight as described in the text. The five newly measured half-lives are to the right of the solid gray line from Z = 12-15.



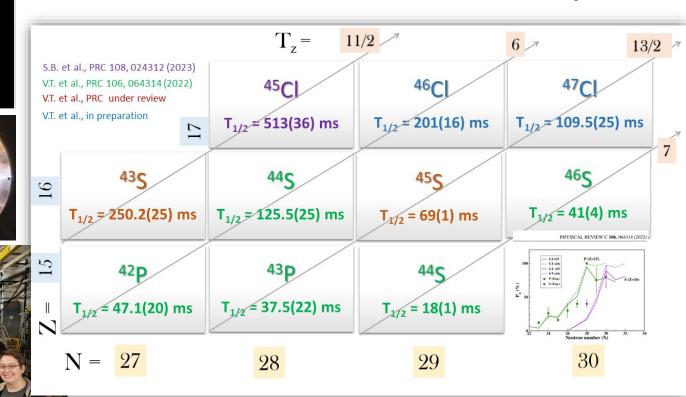


# FRIB day1: FSU team was there!







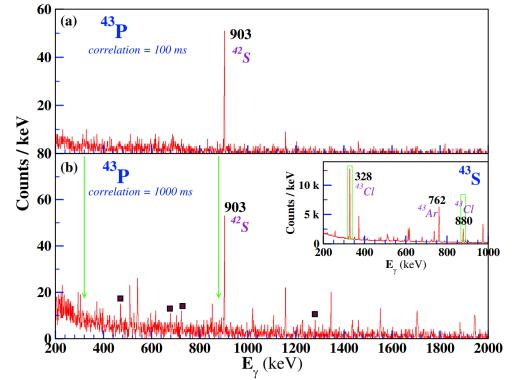

NSCL Exp 18016: Dec 2019
Analysis and Publication



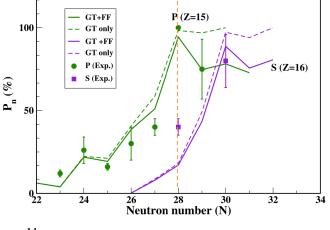
# NSCL E18016: experiment performed in Dec 2019

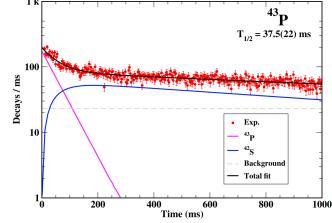
16 Clovers + Si DSSD as implant detector






<sup>47</sup>Cl




- $\square$  P<sub>n</sub> = 100% for <sup>43</sup>P (N=28)
- ☐ Mostly P<sub>1n</sub>
- $\square$  P<sub>n</sub> decreases for N=29, FF



# **PRC 106, (2022):** $\beta$ decay of <sup>43</sup>P













# β decay of <sup>46</sup>S studied for the first time

1p1h states expected to be populated move to high energies

VANDANA TRIPATHI et al.

PHYSICAL REVIEW C 106, 064314 (2022)

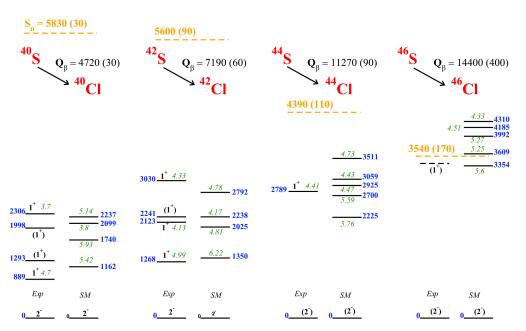
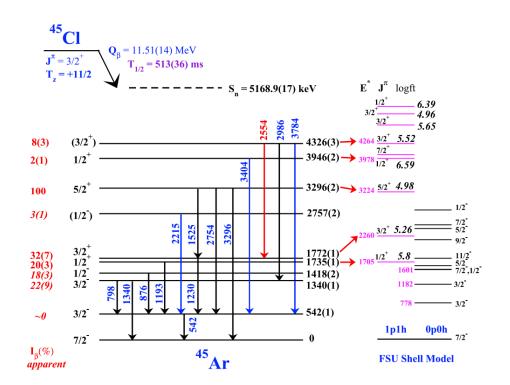



FIG. 17.  $\beta$  decay of even-even S isotopes from A=40 to 46. Data for  $^{40,42}$ S are from NNDC [31]. Only the  $1^+$  states expected to be populated via allowed GT transitions along with SM prediction are shown. As mentioned in the text we could not isolate the weakly populated bound 1+ state in  $^{46}$ Cl. The focus is to illustrate that with increasing neutron number the GT strength imbibed by the  $1^+$  states moves to higher energies eventually residing in the neutron unbound states for  $^{46}$ S.



# UG Researchers Diya & Wonmin

Best poster: Physics Department Acknowledged in the paper



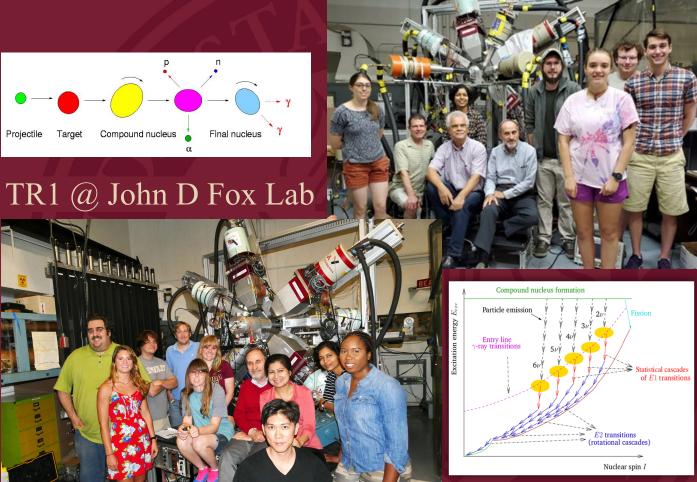

Based on our experiment and shell model calculation using the "FSU" interaction we provided evidence in favor of a 3/2<sup>+</sup> ground state for <sup>45</sup>Cl

PRC 108 (2023): β decay of <sup>45</sup>Cl

Analysis led by Dr Soumik Bhattacharya (Post doc: 2021-23)

For  $^{43}$ Cl, the likely gs is  $\frac{1}{2}$ +; shell evolution







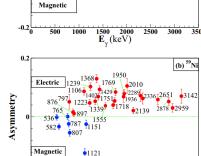





Analysis and Publication

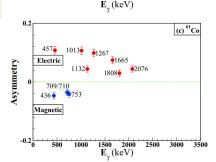


Electric




# Polarization





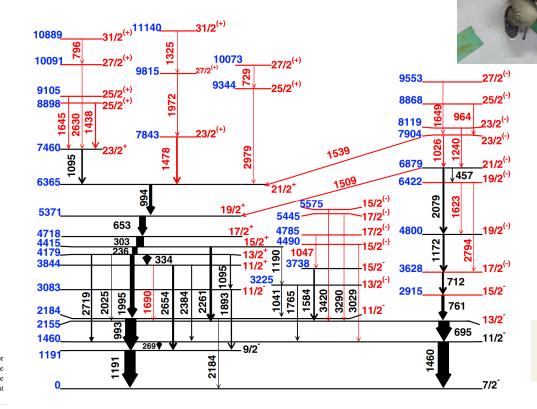





(a) 59Co

3000 3500




1500 2000

2500 3000

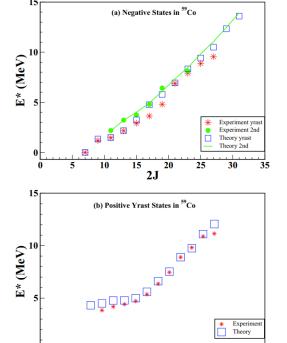
FIG. 2. The plot of polarization asymmetry vs energy of  $\nu$  ray for (a) <sup>59</sup>Co, (b) <sup>59</sup>Ni, and (c) <sup>61</sup>Co. Point 709, 710 in (c) represents the two transitions 709 and 710 keV which are magnetic in nature. The points in red are electric transitions while the points in blue represent magnetic transitions.

# PhD thesis: Samuel Ajayi

High spin y-ray spectroscopy of "fp" shell nuclei  $\rightarrow$ Role of  $g_{0/2}$  orbital in  $^{59}$ Co,  $^{61}$ Co,  $^{59}$ Ni

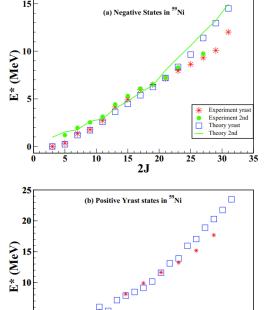


# Status of the state-of-the-art calculations

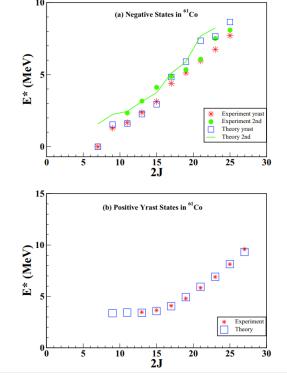

# **SDPFSDG** interaction

Y. Utsuno et al.,




Comparison of positive parity and negative states with SM Discrepancies at high spin (focus on red stars and blue boxes)

35




15

2J



Experimen











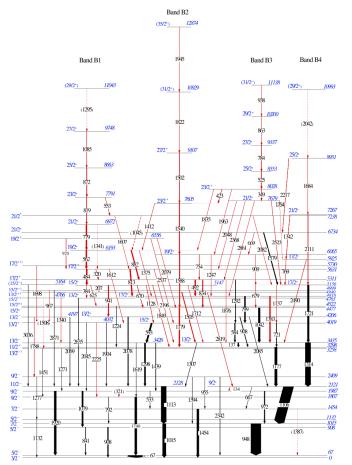
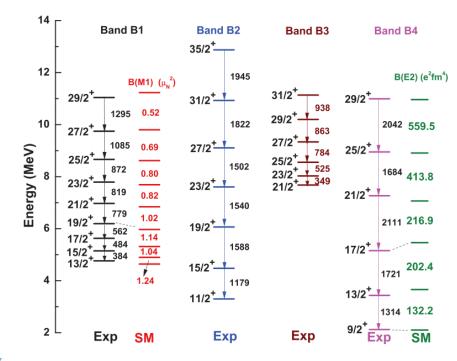




FIG. 2. Level scheme for  $^{61}$ Ni from present work. The newly found transitions and repositioned transitions are shown in red. The width of the transitions represents the corresponding relative intensity. For clarity and easy comprehension of the level scheme, the energy values for the levels and the  $\gamma$  rays are labeled to the nearest integer values. The accurate energy values up to one decimal place are listed in Table I with corresponding error.



# **More Results**

**Post Doc : Dr Soumik** 







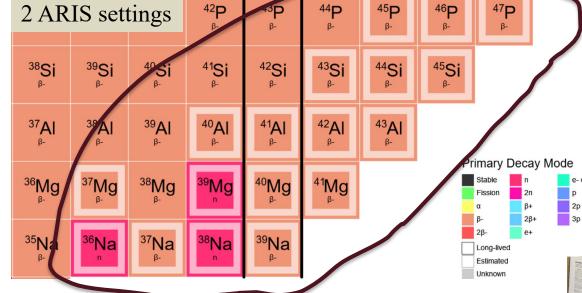




Look Ahead ...

2024

# Goals and Plans: 2024-2028

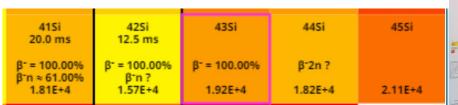

- ☐ Investigating the N=28 shell closure in exotic nuclei
- $\rightarrow$   $\beta$  decay at FRIB, rerun 21062B and analysis
- → Phd thesis of GS Mac Wheeler
- $\square$  Investigating fp shell nuclei to isolate the role of g  $_{9/2}$  orbital, collective phenomenon, magnetic rotation bands and more
- → CLARION2 @FSU: <sup>69</sup>Zn, <sup>62</sup>Ni, <sup>69</sup>Ga (New GS student)
- → Shell model interaction refinement
- PAC3 proposal to FRIB, expand the landscape to even more exotic nuclei, understand delayed neutron emission







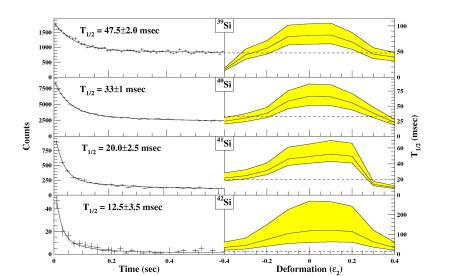
# Feb 25-March 3, 2024








#






45**P** 







# β decay of very exotic Si isotopes

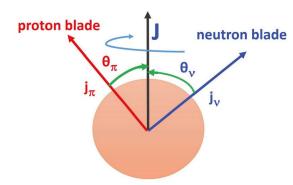
S. Grevy et al., PLB 594, (2004) 252 GANIL

VT et al., (38,40Si) PRC 95, 024308 (2017)

BA, VT et al., (37,39Si) PRC 100, 014323 (2019)

 $^{40}$ Si  $t_{1/2} = 27.6 (14) \text{ ms}$ 

 $^{39}$ Si  $t_{1/2} = 38.6 (13) \text{ ms}$ 


TABLE 3. Half-lives  $T_{1/2}$  and beta-delayed neutron emission rates  $P_n(\%)$  of Si isotopes

| parent                 | $T_{1/2}$          |                    |                     |                       |                       |                     | $P_n(\%)$ |                  |                |                 |               |
|------------------------|--------------------|--------------------|---------------------|-----------------------|-----------------------|---------------------|-----------|------------------|----------------|-----------------|---------------|
|                        | Exp.               | Exp. err.          | $GT+FF,Q_{exp.}$    | $GT, Q_{exp.}$        | $GT+FF,Q_{tho}$       | $GT,Q_{tho.}$       | Exp.      | $GT+FF,Q_{exp.}$ | $GT, Q_{exp.}$ | $GT+FF,Q_{tho}$ | $GT,Q_{tho.}$ |
| Si36(j0p)              | $503 \mathrm{ms}$  | 2                  | 374.684  ms         | 375.703  ms           | 368.398  ms           | 369.402  ms         | 12(5)     | 3.64             | 3.62           | 3.69            | 3.67          |
| Si37(j5n)              | $141.0\mathrm{ms}$ | 3.5                | 126.122  ms         | $128.797~\mathrm{ms}$ | 118.215  ms           | 120.698  ms         | 17(13)    | 6.24             | 6.37           | 6.48            | 6.62          |
| Si38(j0p)              | $63 \mathrm{ms}$   | 8                  | 90.237  ms          | $91.606~\mathrm{ms}$  | 72.161  ms            | 73.260  ms          | 25(10)    | 18.54            | 18.78          | 20.02           | 20.27         |
| Si39(j3n,Ex.=0.10 MeV) | $41.2 \mathrm{ms}$ | 4.1                | 41.853  ms          | $45.973~\mathrm{ms}$  | 34.097  ms            | 37.218  ms          | 33(3)     | 31.12            | 34.18          | 32.87           | 35.88         |
| Si39(j5n)              | $41.2 \mathrm{ms}$ | 4.1                | 36.442  ms          | 37.687  ms            | 31.405  ms            | 32.466  ms          | 33(3)     | 20.34            | 21.04          | 21.37           | 22.10         |
| Si39(j7n,Ex.=0.04 MeV) | $41.2 \mathrm{ms}$ | 4.1                | 44.007  ms          | $45.225~\mathrm{ms}$  | 36.894  ms            | 37.906  ms          | 33(3)     | 23.24            | 23.89          | 24.53           | 25.20         |
| Si40(j0p)              | $31.2 \mathrm{ms}$ | 2.6                | 24.433  ms          | 25.409  ms            | 23.967  ms            | 24.923  ms          | 38(5)     | 30.64            | 31.40          | 30.80           | 31.57         |
| Si41(j3n)              | $20.0 \mathrm{ms}$ | 2.5                | 10.922  ms          | 11.438  ms            | 14.092  ms            | 14.789  ms          | >55       | 57.00            | 59.67          | 55.34           | 58.05         |
| Si42(j0p)              | $12.5 \mathrm{ms}$ | 3.5                | 8.959  ms           | $9.394~\mathrm{ms}$   | 10.665  ms            | 11.188  ms          |           | 76.90            | 77.65          | 76.33           | 77.01         |
| Si43(j1n,Ex.=0.05 MeV) | 30 # ms            | >260ns             | 8.381  ms           | $9.305~\mathrm{ms}$   | 6.192  ms             | $6.827~\mathrm{ms}$ |           | 90.87            | 99.86          | 91.44           | 99.87         |
| Si43(j3n)              | 30 # ms            | $>260 \mathrm{ns}$ | 10.248  ms          | 11.410  ms            | 7.646  ms             | $8.469~\mathrm{ms}$ |           | 89.52            | 99.23          | 90.06           | 99.28         |
| Si44(j0p)              | 4 # ms             | $>360 \mathrm{ns}$ | 8.809  ms           | 10.563  ms            | 6.069  ms             | 7.194  ms           |           | 87.25            | 100.00         | 88.02           | 100.00        |
| Si45(j1n)              | $4\#\mathrm{ms}$   |                    | 6.914  ms           | $8.989~\mathrm{ms}$   | 3.998  ms             | 5.036  ms           |           | 80.95            | 100.00         | 83.27           | 100.00        |
| Si45(j3n,Ex.=0.12 MeV) | $4\#\mathrm{ms}$   |                    | $8.649~\mathrm{ms}$ | 11.452  ms            | 4.710  ms             | $6.014~\mathrm{ms}$ |           | 79.63            | 100.00         | 82.06           | 100.00        |
| Si46(j0p)              |                    |                    | -                   | -                     | $3.466~\mathrm{ms}$   | $4.650~\mathrm{ms}$ |           | -                | -              | 90.46           | 100.00        |
| Si47(j1n)              |                    |                    | -                   | -                     | $2.480 \mathrm{\ ms}$ | 3.792  ms           |           | -                | -              | 85.32           | 100.00        |
| Si48(j0p)              |                    |                    | -                   | -                     | 1.715  ms             | $2.665~\mathrm{ms}$ |           | -                | -              | -               | -             |









- The semiclassical model (SCM): Macchiavelli et al.
- The SCM describes schematically how the energy states of a shears band are generated from the coupling of long spin vector of proton particles (or holes) jπ and neutron holes (or particles) jv.
- he effective interaction V  $[I(\theta)]$  between the proton and neutron angular momenta, dynamics of the system gives rise to a rotation like spectrum consisting of M1 transitions.

# $\cos[\theta(I)] = \frac{\overrightarrow{j_{\pi}}.\overrightarrow{j_{\nu}}}{|\overrightarrow{j_{\pi}}|.|\overrightarrow{j_{\nu}}|} = \frac{I(I+1) - j_{\pi}(j_{\pi}+1) - j_{\nu}(j_{\nu}+1)}{2\sqrt{[j_{\pi}(j_{\pi}+1)j_{\nu}(j_{\nu}+1)]}}.$

# Magnetic Rotation band in "fp" shell nuclei Clarion 2

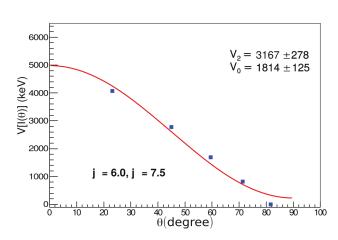
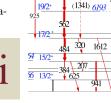




FIG. 11. SCM fit with the experimental data for magnetic rotational band B1.



Band B1

(1295)

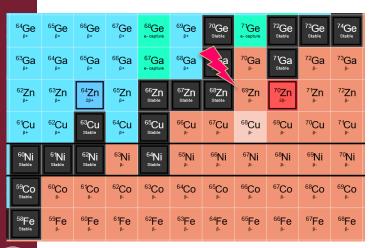
11043

8663

SB, VT et al.,

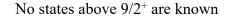
PHYSICAL REVIEW C 107, 054311 (2023)

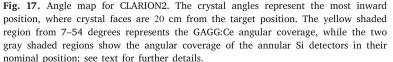





# Polarization measurements, neutron rich beams like <sup>14</sup>C, <sup>18</sup>O New GS,PD







- $\square$  E\*, J,  $\pi$  together determine a nuclear state completely
- ☐ Allowing for a detailed comparison with theoretical predictions



# Angular distribution & Polarization 360 315 270 F6 C3 B2 D4 B1 J10 B2 H8 90 45 B2 F8 G7 Theta (deg)

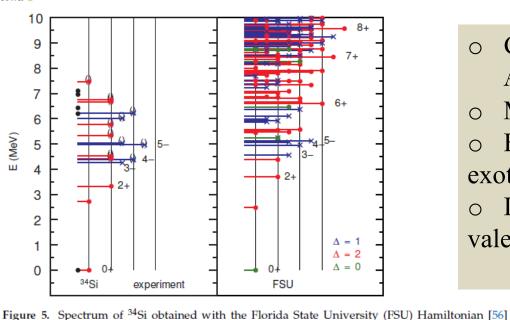
 $^{69}$ Zn












Review The Nuclear Shell Model towards the Drip Lines

 $\Delta = 2$  (red) and negative for  $\Delta = 1$  (blue).

B. Alex Brown 💿





compared to experiment. The length of the horizontal lines are proportional to the the angular momentum, J. The experimental parity is indicated by blue for negative parity and red for positive parity. Experimental spin-parity,  $J^{\pi}$ , values that are tentative are shown by "()", and those with multiple of no  $I^{\pi}$  assignments are shown by the black points. The calculated results are obtained with the FSU Hamiltonian with pure  $\Delta$  configurations. The parities are positive for  $\Delta=0$  (green) and

- Collaboration with Alexander Volya
- More experiments
- Expand the fit to more exotic nuclei
- Include  $g_{9/2}$  orbital in the valence space













## β-decay of <sup>45,46</sup>P and <sup>48,49</sup>Cl:

First Forbidden beta decays and the physics of the continuum

Our recent investigation of neutron rich isotopes P and Cl with N around 28 revealed interesting results

- a) The P<sub>n</sub> value for P isotopes peaked at 100% for <sup>43</sup>P (N=28) but then fell to about 80% for <sup>44</sup>P (N=29) due to the increased role of first forbidden beta decays. Extending this systematics to higher neutron number will be useful for a better understanding of beta-decay of extremely neutron-rich nuclei.
- b) For <sup>47</sup>Cl decay, the P<sub>n</sub> is about 93% and we observe several states in <sup>46</sup>Ar which should likely have positive parity. Exploring how beta-delayed transitions proceeding through broad unbound states can illuminate physics of overlapping resonances, interference, and probe effects of continuum.

Goal: Extend the  $\beta$ -decay studies to hitherto unexplored isotopes of P and Cl (discovery) and do detailed spectroscopy.

Further, explore physics of overlapping resonances and interference in the continuum through beta delayed neutron emission.





# Continue Collaborative work CLARION 2

Study of <sup>72</sup>Ga
 <sup>4</sup>He + <sup>70</sup>Zn
 35 MeV alpha beam (LINAC)
 Ben Crider, Mississippi State University
 Robert Haring Kaye, Westmont College, CA

Lifetime measurements (DSAM) using implanted targets made at UMass Lowell
 Peter Bender, University of Massachusetts, Lowell

3. Look for fully aligned 7<sup>+</sup> state in <sup>40</sup>Cl predicted by the FSU shell model interaction Rebeka Lubna, Facility for Rare Isotope Beams

4. Sergio A. Calderon / P. Cottle (FSU)



Rebeka Lubna







# **Timeline**

Year 1 Year 2 Year 3 Year 4

2024-2025 2025-2026

2026-2027

2027-2028

Samuel Ajayi graduating

New Graduate Student

E21062B: analysis and publication (MW)

CLARION 2: <sup>72</sup>Ga & more (BC & BK)

CLARION 2: <sup>69</sup>Zn (FSU new GS)

CLARION 2: FSU PD

FRIB PAC3 proposal

**CLARION 2: MW** 

Mac Wheeler graduating

Collaborative experiments













# **Thanks**

**Questions?**