





# Studies of Nuclear Structure and Nuclear Astrophysics

- Research Activity of I. Wiedenhöver and Graduate Students
  - Big-Bang Nucleosynthesis
  - Type-Ia SN-ejecta and X-Ray-Burst Timescales / Nucleosynthesis
  - Super-radiance and Continuum Interactions
  - Collectivity in exotic N=28 nuclei







# Topic 1: Big-Bang Nucleosynthesis (Section 4.1)

- Measurement of d+<sup>7</sup>Be reactions affecting destruction of <sup>7</sup>Li during Big-Bang nucleosynthesis (BBN)
  - Experiments at FSU with SE-SPS and Sabre
  - Experiments at TRIUMF with ANASEN

# How to investigate the Big One

1) WMAP, Planck: Cosmic Microwave Background analysis gives "Baryon density" (CMB originates 300000 years after B.B.)

2) Optical spectroscopy on ultra-metal-poor Halo stars gives elemental incl. Lithium-abundance (originates 3-8 minutes after B.B)

3) Future: Direct detection of primordial neutrinos (seconds after B.B.)

Proposed method:  $t + \nu \rightarrow^{3} He + e^{-}$ 

- Exceedingly difficult;  $E_v = 2 \cdot 10^{-4} \text{ eV}$
- 10 events / year / 100g of Tritium
- Upper limits expected from Katrin
- Proposed project for detection: Ptolemy (Princeton / Argonne / Savannah River / INFN)

Precise Nuclear Physics information is needed to investigate the consistency between these messengers and Cosmology;





### Primordial Nucleosynthesis, the "Primordial Lithium Problem"

Mass-fractions of light elements as function of Hadron density  $\boldsymbol{\eta}$ 



#### Observed values:



R. Cyburt et al.: RMP 88, 15004 (2016)

# Nuclear Processes Affecting Primordial <sup>7</sup>Li

Primordial <sup>7</sup>Li produced in <sup>7</sup>Be  $\rightarrow$  <sup>7</sup>Li EC decay "after it's over" (T<sub>1/2</sub> = 53.2 d) (<sup>7</sup>Li is destroyed quickly at high Temp.; <sup>7</sup>Li(p, $\alpha$ )<sup>4</sup>He ) In order of importance for the <sup>7</sup>Be (<sup>7</sup>Li) outcome;

> 1) Production  ${}^{3}\text{He}(\alpha,\gamma){}^{7}\text{Be}$  (rate known to 10%) 2) Destruction  ${}^{7}\text{Be}(n,p){}^{7}\text{Li}$  (now known to 8%) n-tof collaboration, PRL 121, 042701 (2018) 3) Destruction:  ${}^{7}\text{Be}(d,\alpha){}^{5}\text{Li}(p){}^{4}\text{He}$ Little was known before, after FSU exp. Rijal et al. [148]: known within factor 0.5..3, leads to  ${}^{7}\text{Li}$  reduction by 1-8%.







# Anasen at FSU





# ANASEN: d+<sup>7</sup>Be Cross Section

Rijal et al. PRL 122, 182701 (2019)

- Cross section is dominated by
  (d,α) channel, very little (d,p)
  - Observed resonance at E<sub>cm</sub> =0.36(5) MeV
  - Data analyzed with R-matrix fit, including detector resolution, and without (dashed)
  - Cross section below 0.2 MeV uncertain because of limited resolution, acceptance for (d,p)
  - Two data-points of Angulo et al. consistent with (d,p) channel at low energies



BBN outcome including the new <sup>7</sup>Be+d rate Rijal et al. PRL 122, 182701 (2019), Erratum 123, 239902 (2019)

- Using SBBN,  $H_0 = 67.9$  km/s/Mpc found
- by Planck (Ade et al. 2016)
  - Using updated Reaclib-network
    (Cyburt et al. 2010)
  - Without d+<sup>7</sup>Be reaction, Li<sup>7</sup>/H =  $4.67 \cdot 10^{-10}$
  - With d+7Be reaction Li<sup>7</sup>/H = 4.24..4.61 · 10<sup>-10</sup>
  - The reaction results in <= 8% reduction of BBN Li production
  - The data from our experiment does not solve the primoridal Lithium problem.
  - Large uncertainties remain, stemming from resonance parameters.



### Experiment at SE-SPS + Sabre: <sup>10</sup>B(<sup>3</sup>He, a)<sup>9</sup>B

(Ph.D. Thesis Gordon McCann)

- Measure  ${}^{10}B({}^{3}He,\alpha){}^{9}B$  to populate d+ ${}^{7}Be$  16.8 MeV (5/2+) resonance,
- determine energy with spectrograph, coinc. with decay α / d / p



ARUNA





### **Decay-Channel Identification 1**

• Reconstruct Q-values for  $\alpha$ - and d- decays, SE-SPS & Sabre kinematics:



Who ordered that ? A "Nub" appears in the <sup>7</sup>Be + d channel, at  $E_R$ =0.161 MeV

10

### **Decay-Channel Identification 2**

Reconstruct Q-values for p- decays + (Absorber/Punch-through) correction



11



### **Resonance Parameters "Rijal" Peak**

|      |       | $E_x$ (MeV)    | $E_r$ (keV) | $\Gamma$ (keV) | $\Gamma_{\alpha}$ (keV) | $\Gamma_d$ (keV) | $\Gamma_{p0}(\text{keV})$ | $\Gamma_{p2}(\text{keV})$ |
|------|-------|----------------|-------------|----------------|-------------------------|------------------|---------------------------|---------------------------|
| Exp  | o. 1  | 16.805<br>(20) | 317(20)     | 55(9)          | 33(6)                   | 4(1)             | _                         | -                         |
| Exp  | o. 2  | 16.791<br>(32) | 303(32)     | 58(9)          | 38(6)                   | 4(1)             | 2(1)                      | 12(2)                     |
| Rija | alı   | 16.848<br>(50) | 360(50)     | 54.3           | 50                      | 3.3              | _                         | 1                         |
| Sch  | noll² | 16.800<br>(10) | 312(10)     | 80(5)          | _                       | _                | —                         | _                         |

1. Rijal, N. et al. Measurement of d + Be 7 Cross Sections for Big-Bang Nucleosynthesis. Physical Review Letters 122, (2019). 2. Scholl, C. *et al.* High-resolution study of the 9Be(3He,t)9B reaction up to the 9B triton threshold. *Phys. Rev. C* **84**, 014308 (2011)





### The State of the State(s)

- The parameters of the "Rijal" peak have been determined with high precision and confidence.
- The "Nub" offers a conundrum:
- At E<sub>R</sub>=0.161 MeV, it would have a major impact on <sup>7</sup>Be+d reactions.
- It is not resolved in p,α channels.
- It could also be a background signal from <sup>16</sup>O(<sup>3</sup>He,α)<sup>15</sup>O, in coincidence with the <sup>15</sup>O recoil.



• We have scrutinized the data but can not exclude this possibility.

This Proposal, Y1: Repeat the experiment with SE-SPS + Sabre at different kinematics and with better PID (Thesis Adam Ring)



# Triumf Experiment S1849: Excitation Function of d+<sup>7</sup>Be

Excitation function with thin, solid CD<sub>2</sub> target inside ANASEN, config. with 3.2 r coverage, Si only.

@TRIUMF: Installed Oct 2021, Exp. in November 2021

Detected triple coincidence p+ $\alpha$ + $\alpha$ ,

#### BUT:

- Beam delivered a factor 10 below request, for half of the time, at 5 energies.
- Accelerator tuning is crucial: Beam energy shows systematic deviation, not covering the 161 keV resonance
- DAQ problems (diagnosed after run) killed the experiment for good.

#### This Proposal, Y2-3:

Repeat experiment IF the 161 keV resonance is REAL (Thesis Adam Ring)



Sum of ANASEN Energies with Threshold--3 hits







# **Topic 2: Nucleosynthesis in Stellar Explosions**

- Context (Sect 2.2): Nuclear reactions affecting
  - outer layers of TIa SN, CCSN, (α,p) process (XRB, Novae)
- Results on <sup>25</sup>Al(p,γ), <sup>18</sup>Ne(α,p)
- Proposed ANASEN experiments

# Ejecta of Type-Ia Supernovae (P.Hoeflich, FSU)

Type-la Supernovae (SNe) are standard(izable) candles, used to quantify accelerating expansion of universe.

P. Hoeflich et al.: Investigate the role of the progenitor star on the light curve.

Details matter: Helium / Hydrogen-rich accretion, ignition mechanism

Binary system: Accretion of material to a White Dwarf, approaches Chandrasekhar limit, conflagration – detonation transition



NSF:

Or: White Dwarf – White Dwarf merger (Double-Degenerate)





# Ejecta of Type-Ia Supernovae (with P.Hoeflich, FSU)

- Early-light observations show the outer layers of the progenitor star, NS products of accreted material, Early light is much more diverse than the later "standard candle" light.
- Right: Observations show two classes of early SNe Ia lightcurves; ("red" vs. "blue")
- Exciting detailed observations from SN Ia now possible with James-Webb telescope: Right: MIR Ar-III lineshape asymmetric, "shell" of <sup>36</sup>Ar ejected at ~13.5 km/s.



Precise Observations create challenge for theory and Nuclear physics !







### Nuclear Sensitivity Study on Tla SN

- Collaboration between P. Hoeflich (FSU), C. Iliadis (UNC) and I.W.
- Test sensitivity of chemical composition in outer layers of Tia SN on nuclear reaction rates, especially in the outer Helium-layers.
- Reaction rates varied independently within uncertainty, using Starlib [186]
- Reaction Rates matter, equilibrium not reached.
- Large uncertainties in key isotopes, e.g. Ar-36, Ti-44
- Key reactions to be studied in this proposal: <sup>44</sup>Ti(α,p) (see SAC) <sup>39</sup>K(p,α), to be measured with ANASEN (GS, Y3)



# The<sup>18</sup>Ne( $\alpha$ ,p)<sup>21</sup>Na reaction

High-impact reaction in  $(\alpha, p)$  process nucleosynthesis. Parikh et al. [188] and Cyburt et al. [203]

#### **Difficult Experiment:**

- Short-lived <sup>18</sup>Ne nucleus, limited intensity
- He-gas targets
- Relevant cross sections very low, 5 mbarn – 1µbarn

#### Previous studies:

- 1999,2002 Groombridge *et al.*: <sup>18</sup>Ne(α,p)<sup>21</sup>Na
- 2012 Salter *et al.*:
  <sup>21</sup>Na(p,α)<sup>18</sup>Ne



<sup>21</sup>Na: excited-state population matters even at lowest reaction energies



P. Mohr, A. Matic, Phys.Rev.C 87, 035801 (2013)



# **ANASEN: A High-Rate Active-Target Detector**

- ANASEN was developed through a collaborative MRI between LSU and FSU 2011-2014 E.Koshchiy *et al.*, NIM, A 870 (2017) 1–11
- It has a high-rate beam capability, with 10<sup>5</sup>+ pps
- Ph.D. project Maria Anastasiou; Added high-rate ion chamber with differential readout = "Pseudo-Frisch Grid" for HI coincidence detection

•++



### The <sup>18</sup>Ne Beam



- <sup>18</sup>Ne beam, in-flight production
  <sup>16</sup>O(<sup>3</sup>He,n)<sup>18</sup>Ne
- Use RF-resonator to "cool" <sup>18</sup>Ne products
- <sup>18</sup>Ne at 80 MeV, 2·10<sup>3</sup>pps, 15% purity
- MCP vs RF offline-selection to 98% purity
- ANASEN active-gas target



## The <sup>18</sup>Ne Beam



- <sup>18</sup>Ne beam, in-flight production
  <sup>16</sup>O(<sup>3</sup>He,n)<sup>18</sup>Ne
- Use RF-resonator to "cool" <sup>18</sup>Ne products
- <sup>18</sup>Ne at 80 MeV, 2·10<sup>3</sup>pps, 15% purity
- MCP vs RF offline-selection to 98% purity
- ANASEN active-gas target





## Results: <sup>18</sup>Ne(α,p)<sup>21</sup>Na with ANASEN

Anastasiou et al.: PRC 105,055806 (2021)

#### g.s. and 0.33 MeV:

The  $(\alpha, p_0)$  cross section for <sup>21</sup>Na g.s. population is consistent with data from  $(p, \alpha)$  by Salter *et al.* 

- total cross-section:
  - Groombridge et al. systematically too high by a factor 10
  - Cross section at low energies close to Hauser-Feshbach calc.
  - R-Matrix analysis (Mohr et al.) systematically too low
- Our experiment reaches sensitivity σ~4 mbarn, touches Gamow-window for X-ray bursts





## What's needed to "nail" ( $\alpha$ ,p) reactions ?

- The obvious: more beam at lower energy. (TRIUMF-approved experiment)
- Figure shows HF cross section folded with 1.45 MeV / 0.3 MeV FWHM gaussian
- · Data was corrected for this effect, but
- Better resolution is needed to push towards lower cross sections. The <sup>18</sup>Ne experiment was limited by resolution as much as by statistics
- Achieving 0.3 MeV resolution is "good enough", not limiting anymore.
- Can be reached by ANASEN with better tracking resolution !



# **Ongoing / Proposed ANASEN upgrades**

New digital Data Acquisition system using CAEN digitizers (FSU/LSU)
 New silicon-tracker detectors replacing PC (LSU funds)
 Redesigned PC – tracking detector (FSU) (Thesis V. Sitaraman Y0)







Original ANASEN: charge division on resistive anode, Position over Dynamic range: L Redesigned: conductive anodes, mirror-charge pick up on cathodes, capacitive division, Dynamic Range: L/6

# Proposed Research on $(\alpha, p)$ Reactions with ANASEN

Anasen has now reached the sensitivity to measure ( $\alpha$ ,p) reactions to E<sub>CM</sub>~ 2.5 MeV. With the recent upgrades, we expect the experimental sensitivity only limited by statistics.

Here, we propose one experiment at TRIUMF and several at FSU.

- 1) <sup>17</sup>F(α,p)<sup>20</sup>Ne at FSU (GS Vignesh Sitaraman, Y1)
- <sup>13</sup>N(α,p)<sup>16</sup>O at FSU (PD Ruchi Mahajan LSU, Y1) Both of these experiments inform the <sup>44</sup>Ti and/or the <sup>56</sup>Ni yield in CCSN. Both aim to improve on data taken at Argonne National Lab with MUSIC and weak beams, 3000 / 1000 pps. We expect 50000 / 20000 pps from RESOLUT.
- Approved <sup>18</sup>Ne(α,p) experiment at TRIUMF (S1773) (PI J. Blackmon +GS, Y2) Expect to improve sensitivity wrt the FSU measurement by a factor of ~20 and reach into the Gamow window at 0.8 GK.





# Proposed Research on $(\alpha, p)$ Reactions with ANASEN

Anasen has now reached the sensitivity to measure ( $\alpha$ ,p) reactions to E<sub>CM</sub>~ 2.5 MeV. With the recent upgrades, we expect the experimental sensitivity only limited by statistics. Here, we propose one experiment at TRIUMF and several at FSU.

#### 4) ${}^{39}K(p, \alpha){}^{36}Ar$ at FSU. (GS, Y2)

This stable-beam experiment was identified as having a major impact on the production of  ${}^{36}$ Ar in the outer Helium-layers of SN TIa. The reaction has never been measured to the precision required, although studies of resonance parameters from  ${}^{39}$ K(p, $\gamma$ ) have been performed [207]. ANASEN is capable of measuring beams at 10<sup>5</sup> pps. (See also:  ${}^{44}$ Ti( $\alpha$ ,p) by SAC))

#### 5) ${}^{26}Si(\alpha,p){}^{29}P(GS, Y3)$

This reaction has been identified as a high-impact reaction impacting the time scale of the  $(\alpha,p)$  process in X-ray bursts by Parikh et al. [188] and Cyburt et al. [203] and has never been measured before. The <sup>26</sup>Si beam will be produced through the <sup>24</sup>Mg(<sup>3</sup>He,n) reaction at 30 mbarn [204], which leads us to expect a beam quality comparable to the one in the <sup>18</sup>Ne( $\alpha,p$ ) experiment.





# Topic 3: Superradiance – Open systems

- Unbound states mix through decay channel
- Decay-width concentrates in few states,
  "Superradiance"
- General property in the quantum mechanics of open systems;
- Q: What happens to wave-function of bound states ?
- Central ingredient in structure and stability of exotic nuclei !?
- Natural ingredient of continuum shell model
- Part of FSU program to study the impact of the continuum on shell evolution.



# Superradiant states in <sup>13</sup>C, <sup>13</sup>N



•The non-continuum shell model predicts very similar configurations for  $3/2^{+}_{1,2}$ . •Super-radiance (CSM): n- (p-) decay strength: concentrated in  $3/2^{+}_{2}$ , removed from  $3/2^{+}_{1}$ 





## Angular Correlation Measurements in <sup>12</sup>C(<sup>3</sup>He,d)<sup>13</sup>N (p)

- SE-SPS at 3, 20 deg., protons detected in coincidence.
- Reaction-plane coordinates: Beam at "0 deg". Absolutely normalized !
- Reaction theory developed, based on FRESCO + decay coupling.



- Left: Data for 3/2<sup>-</sup> / 5/2<sup>+</sup> "true" doublet at E<sub>ex</sub>= 3.52 MeV: Strong forward-backward asymmetry from 3/2<sup>-</sup> / 5/2<sup>+</sup> interference.
- Right: Data for "superradiant" 3/2<sup>+</sup><sub>2</sub> at E<sub>ex</sub>= 7.9 MeV: Strong forward-backward asymmetry from /-mixing in broad-state decay.
   1.5 MeV FWHM means T~3·10<sup>-21</sup> s, on the "direct reaction" time scale
- Fit with  $(0^+ x d_{3/2}) \& (0^+ x p_{3/2}) \&$  breakup, very sensitive to the parameters.





### Proposed Research: Superradiant States in <sup>13</sup>C



- Proposal: Y2, GS C. Esparza: Measure neutron-decay correlations for 3/2<sup>+</sup><sub>1,2</sub> states in <sup>13</sup>C with (d,p) (left) and α-transfer reaction (right).
- The superradiant 3/2<sup>+</sup><sub>2</sub> dominates (d,p), but vanishes in (<sup>6</sup>Li,d), orthogonalization due to decay space ?
- Angular Correlations to be analyzed with formalism of K. Hanselman will provide stringent test for continuum shell model and clustering (A. Volya)







# Summary

- The sensitivity of ANASEN for is now unsurpassed and will likely lead to high-profile projects measuring thermonuclear reaction rates at FSU and elsewhere.
- Interpretation / application in collaboration with FSU astrophysics group and UNC.
- The SE-SPS + Sabre at FSU re-instates the facility for coincident transfer-reaction & decay spectroscopy of resonances
  - (Not shown here) For Nuclear Astro (C. Deibel): <sup>27</sup>Al(<sup>3</sup>He,t)<sup>27</sup>Si(p)<sup>26</sup>Al<sub>a.m</sub>
  - For super-radiance program: Study of <sup>13</sup>C vs. <sup>13</sup>N (n vs. p decay of resonances) Interpreted in collaboration with FSU nuclear theory