
PLX SDK User Manual

Version 7.20

December 2014

PLX SOFTWARE LICENSE AGREEMENT

THIS PLX SOFTWARE IS LICENSED TO YOU
UNDER SPECIFIC TERMS AND CONDITIONS.
CAREFULLY READ THE TERMS AND
CONDITIONS PRIOR TO USING THIS
SOFTWARE. INSTALLING THIS SOFTWARE
PACKAGE OR INITIAL USE OF THIS SOFTWARE
INDICATES YOUR ACCEPTANCE OF THE
TERMS AND CONDITIONS. IF YOU DO NOT
AGREE WITH THEM, YOU SHOULD NOT
INSTALL THE PLX SDK SOFTWARE PACKAGE.

LICENSE Copyright © 2014 PLX Technology, Inc.

This PLX Software License agreement is a legal
agreement between you and PLX Technology, Inc.
for the PLX Software, which is provided on the
enclosed PLX CD-ROM. PLX Technology owns
this PLX Software. The PLX Software is protected
by copyright laws and international copyright
treaties, as well as other intellectual property laws
and treaties, and is licensed, not sold.

PLX Software License Agreement

GENERAL

If you do not agree to the terms and conditions of
this PLX Software License Agreement, do not install
or use the PLX Software. You may terminate your
PLX Software license at any time. PLX Technology
may terminate your PLX Software license if you fail
to comply with the terms and conditions of this
License Agreement. In either event, you must
destroy all your copies of this PLX Software. Any
attempt to sub-license, rent, lease, assign or to
transfer the PLX Software except as expressly
provided by this license, is hereby rendered null
and void.

WARRANTY

PLX Technology, Inc. provides this PLX Software
AS IS, WITHOUT ANY WARRANTY, EXPRESS
OR IMPLIED, INCLUDING WITHOUT LIMITATION,
AND ANY WARRANTY OF MERCHANTIBILITY
OR FITNESS FOR A PARTICULAR PURPOSE.
PLX makes no guarantee or representations
regarding the use of, or the results based on the
use of the software and documentation in terms of
correctness, or otherwise; and that you rely on the
software, documentation, and results solely at your
own risk. In no event shall PLX be liable for any
loss of use, loss of business, loss of profits,
incidental, special or, consequential damages of
any kind. In no event shall PLX’s total liability
exceed the sum paid to PLX for the product
licensed here under.

Table of Contents
PLX SDK User Manual ... 1

Table of Contents ... 1-1

1 General Information .. 1-1

1.1 About this Manual .. 1-1

1.2 PLX SDK Features .. 1-1
1.3 Terminology ... 1-1

2 Getting Started .. 2-1

2.1 Development Tools ... 2-1
2.2 PLX SDK Version Compatibility .. 2-1

2.3 PLX SDK Installation in Microsoft Windows .. 2-1

2.4 PLX SDK Removal .. 2-1

2.5 Installation of PLX Device Drivers in Windows ... 2-2

2.5.1 PLX Plug and Play Device Driver Installation.. 2-2

2.5.1.1 PLX Device Driver Installation ... 2-2
2.5.1.2 Modifying the PLX INF File for Use with Custom Device/Vendor IDs 2-5

2.5.2 PLX PCI/PCIe Service Driver .. 2-5

2.5.2.1 Install Using Service Control Manager (SCM) API .. 2-5

2.5.2.2 Install Using Windows “sc.exe” Utility .. 2-5

2.5.2.3 Install Manually via Registry and Reboot .. 2-6
2.5.2.4 Starting and Stopping the PLX Service Driver ... 2-6

2.5.2.4.1 Use command-line utilities ... 2-6

2.5.2.4.2 Use Device Manager ... 2-7

2.5.3 Modifying PLX Driver Options in the Registry ... 2-9

2.5.3.1 PLX Driver Options Wizard .. 2-10

2.6 Installation of PLX Device Drivers in Linux ... 2-11
2.7 Distribution of PLX Software ... 2-11

2.7.1 License Agreement .. 2-11

3 PLX Host-side Software.. 3-1

3.1 SDK Directory Structure .. 3-1
3.2 PLX SDK Architecture Overview ... 3-3

3.3 PLX API Library ... 3-4

3.4 Device Drivers ... 3-4

3.5 PLX API and Multi-threading ... 3-4

3.5.1 PLX Device Driver Directory Structure .. 3-5
3.5.2 Building Windows Device Drivers .. 3-6

3.6 User-mode Applications .. 3-8

3.6.1 PLX Sample Applications .. 3-8

3.6.2 Creating Windows PCI Host Applications ... 3-8

4 PLX Debug Utilities ... 4-1

4.1 PLX PEX Device Editor (PDE) .. 4-1

4.1.1 Probe Mode ... 4-1

4.1.2 Selecting Signal combinations for probe mode ... 4-3
4.1.3 External and Internal Modes ... 4-3

4.1.4 Capturing, Saving and displaying data .. 4-4

4.1.5 Serdes Eye Width .. 4-4

4.1.5.1 Serdes Eye for PLX Gen2 Devices ... 4-4

4.1.5.2 Serdes Eye for PLX Gen3 Devices ... 4-5
4.2 PLX GenMon ... 4-6

4.2.1 Performace Monitor ... 4-6

4.2.2 Packet Generator .. 4-7

4.3 PLXMon ... 4-9

4.3.1 PLXMon Access Modes .. 4-9

4.3.1.1 PCI Mode ... 4-9
4.3.1.2 EEPROM File Edit Mode ... 4-10

4.3.1.3 Serial Mode .. 4-11

4.3.2 PLXMon Toolbar .. 4-12

4.3.3 Working with PLXMon Dialogs .. 4-13

4.3.3.1 Register Dialogs .. 4-13

4.3.3.2 EEPROM Dialogs .. 4-14
4.3.3.3 Memory Access Dialog .. 4-15

4.3.4 Specifying PLX Chip Type for Unknown Devices.. 4-16

4.3.5 Performance Measure Dialog .. 4-18

4.3.5.1 Notes before Using the Performance Measure ... 4-19

4.3.5.2 Performance Measure Options .. 4-20

4.3.5.3 DMA Performance Test ... 4-20
4.3.5.4 Direct Slave Performance Test .. 4-21

4.3.6 The Command-Line Interface .. 4-22

4.3.7 Working with Virtual Addresses ... 4-22

4.3.8 Command-Line Variables .. 4-23

5 PLX SDK API Reference ... 5-1

5.1 PLX API Functions .. 5-1

PlxPci_ApiVersion .. 5-3

PlxPci_ChipGetPortMask .. 5-4

PlxPci_ChipTypeGet .. 5-6

PlxPci_ChipTypeSet .. 5-8
PlxPci_CommonBufferProperties .. 5-10

PlxPci_CommonBufferMap .. 5-12

PlxPci_CommonBufferUnmap ... 5-14

PlxPci_DeviceClose ... 5-16

PlxPci_DeviceOpen ... 5-17

PlxPci_DeviceFind ... 5-19
PlxPci_DeviceFindEx ... 5-21

PlxPci_DeviceReset ... 5-23

PlxPci_DmaChannelOpen ... 5-24

PlxPci_DmaChannelClose ... 5-25

PlxPci_DmaGetProperties ... 5-27

PlxPci_DmaSetProperties ... 5-29
PlxPci_DmaControl .. 5-31

PlxPci_DmaStatus ... 5-33

PlxPci_DmaTransferBlock ... 5-35

PlxPci_DmaTransferUserBuffer ... 5-38

PlxPci_DriverProperties ... 5-41

PlxPci_DriverScheduleRescan .. 5-43
PlxPci_DriverVersion ... 5-44

PlxPci_EepromPresent .. 5-46

PlxPci_EepromProbe ... 5-48

PlxPci_EepromCrcGet ... 5-49

PlxPci_EepromCrcUpdate ... 5-51
PlxPci_EepromGetAddressWidth .. 5-53

PlxPci_EepromSetAddressWidth .. 5-55

PlxPci_EepromReadByOffset .. 5-57

PlxPci_EepromWriteByOffset .. 5-58

PlxPci_EepromReadByOffset_16 .. 5-59

PlxPci_EepromWriteByOffset_16 .. 5-60
PlxPci_GetPortProperties .. 5-61

PlxPci_I2cGetPorts .. 5-63

PlxPci_I2cVersion .. 5-65

PlxPci_IoPortRead ... 5-67

PlxPci_IoPortWrite ... 5-69

PlxPci_InterruptDisable.. 5-71

PlxPci_InterruptEnable .. 5-72

PlxPci_MailboxRead .. 5-73
PlxPci_MailboxWrite .. 5-74

PlxPci_MH_GetProperties ... 5-75

PlxPci_MH_MigratePorts ... 5-77

PlxPci_NotificationCancel .. 5-79

PlxPci_NotificationRegisterFor .. 5-81

PlxPci_NotificationStatus ... 5-83
PlxPci_NotificationWait .. 5-85

PlxPci_Nt_LutAdd .. 5-87

PlxPci_Nt_LutDisable .. 5-90

PlxPci_Nt_LutProperties .. 5-91

PlxPci_Nt_ReqIdProbe .. 5-92

PlxPci_PciBarSpaceRead ... 5-95
PlxPci_PciBarSpaceWrite .. 5-97

PlxPci_PciBarMap ... 5-99

PlxPci_PciBarProperties .. 5-101

PlxPci_PciBarUnmap ... 5-102

PlxPci_PciRegisterRead .. 5-104

PlxPci_PciRegisterWrite .. 5-106
PlxPci_PciRegisterReadFast ... 5-108

PlxPci_PciRegisterWriteFast ... 5-109

PlxPci_PciRegisterRead_BypassOS ... 5-111

PlxPci_PciRegisterWrite_BypassOS ... 5-113

PlxPci_PerformanceCalcStatistics ... 5-115
PlxPci_PerformanceGetCounters .. 5-117

PlxPci_PerformanceInitializeProperties ... 5-119

PlxPci_PerformanceMonitorControl ... 5-121

PlxPci_PerformanceResetCounters .. 5-123

PlxPci_PhysicalMemoryAllocate .. 5-125

PlxPci_PhysicalMemoryFree ... 5-127
PlxPci_PhysicalMemoryMap ... 5-129

PlxPci_PhysicalMemoryUnmap ... 5-131

PlxPci_PlxRegisterRead .. 5-133

PlxPci_PlxRegisterWrite .. 5-135

PlxPci_PlxMappedRegisterRead ... 5-137

PlxPci_PlxMappedRegisterWrite ... 5-139

PlxPci_VpdRead .. 5-141

PlxPci_VpdWrite .. 5-142
5.2 PLX API Data Structures and Types ... 5-143

5.2.1 Standard Data Types ... 5-143

5.2.1.1 Code Portability Macros ... 5-143

5.2.2 Enumerated Types .. 5-143

PLX_ACCESS_TYPE .. 5-144

PLX_BAR_FLAG ... 5-145
PLX_API_MODE .. 5-146

PLX_CHIP_FAMILY ... 5-147

PLX_CHIP_MODE ... 5-148

PLX_CRC_STATUS .. 5-149

PLX_DMA_COMMAND ... 5-150

PLX_DMA_DESCR_MODE ... 5-151
PLX_DMA_RING_DELAY_TIME ... 5-152

PLX_DMA_DIR .. 5-153

PLX_DMA_MAX_SRC_TSIZE .. 5-154

PLX_EEPROM_PORT... 5-155

PLX_EEPROM_STATUS .. 5-156

PLX_FLAG_PORT ... 5-157
PLX_NT_LUT_FLAG ... 5-158

PLX_PERF_CMD .. 5-159

PLX_PORT_TYPE ... 5-160

PLX_SPECIFIC_PORT_TYPE .. 5-161

PLX_STATE ... 5-162
PLX_STATUS .. 5-163

5.2.3 Data Structures .. 5-164

PLX_DEVICE_KEY .. 5-165

PLX_DEVICE_OBJECT... 5-167

PLX_DMA_PARAMS ... 5-168

PLX_DMA_PROP .. 5-169
PLX_DRIVER_PROP .. 5-173

PLX_INTERRUPT .. 5-174

PLX_MULTI_HOST_PROP ... 5-177

PLX_MODE_PROP ... 5-178

PLX_NOTIFY_OBJECT ... 5-179

PLX_PCI_BAR_PROP... 5-180

PLX_PERF_PROP .. 5-181

PLX_PERF_STATS ... 5-182
PLX_PHYSICAL_MEM .. 5-183

PLX_PORT_PROP .. 5-184

PLX_VERSION .. 5-185

1 General Information
1.1 About this Manual
This manual provides information about the functionality of the PLX SDK. The SDK may be used in conjunction
with any PLX Rapid Development Kit (RDK) or any custom design containing a PLX 8000, 9000, or 6000 series
chip. Users should consult this manual for PLX SDK installation and general information about the design
architecture.

1.2 PLX SDK Features
The SDK contains software for Windows & Linux host environments where the PLX chip is accessed across the
PCI/PCIe bus. This package is provided for debug phase of hardware development and also for development of
custom applications:

• Windows drivers & API with source code

• Linux drivers & API with source code supporting kernel 2.4 & 2.6

• PLX Device Editor (PDE) debug utility for all PCI Express devices

• PLXMon debug utility is to support all PLX 6000 & 9000 series devices.

• Sample applications

1.3 Terminology

• References to Visual C/C++ or Visual C++ refer to Microsoft Visual C/C++ 6.0.

• Win32 references are used throughout this manual to mean any application that is compatible with the
Windows environment.

• References to PCI Express may be denoted as either PCIe or PEX.

• References to Non-Transparency may be denoted as NT.

• References to Application Programming Interface may be denoted as API.

1-1

2 Getting Started
2.1 Development Tools
Various tools were used to build the software included in the PLX SDK. There are many compatible alternative
tools available for the various build environments. Customers are free to use their own preferred sets of
compatible development tools; however, PLX has only verified the tools listed below and, as a result, cannot
support tools not listed here. The development tools used to develop the PLX SDK components include:

Windows Applications and API DLL:
Microsoft Visual C/C++ 6.0, Service Pack 6

Windows Driver Model (WDM) Device Drivers
Microsoft Windows Device Driver Kit (DDK) or Windows Driver Kit (WDK). 2003 Server WDK or higher is
required to build 64-bit versions of PLX drivers.

Linux Applications and API Library:
Standard Linux distribution, such as RedHat or Fedora, using GCC.

Linux Device Driver:
Standard Linux distribution, such as RedHat or Fedora with kernel source/development RPM installed

2.2 PLX SDK Version Compatibility
When using the PLX SDK, it is important that all components are of the same version, as follows:

• In Windows & Linux, the PLX device drivers (e.g. .sys files) and the PLX API library (e.g. PlxApi.dll)
versions must match. In other words, loading a driver built with SDK 5.0 and running an application,
which calls the API library from version 4.40, will result in erratic behavior.

• When building applications, it is important to use the C header files included in the installed PLX SDK
version. Applications built with older SDK versions must be re-built. In some case, there may be a
porting effort when upgrading to a newer SDK due to API changes.

2.3 PLX SDK Installation in Microsoft Windows
Before installing the SDK, any previously installed PLX SDK versions should be removed. Installation of
multiple SDK versions may result in erratic behavior due to file conflicts. Refer to section 2.3.2 for more details.

To install the PLX SDK Software package, simply run the SDK installation package and follow the prompts.

Note: For proper Windows installation, a user with “Administrator” rights must install the SDK in order to install
drivers.

2.4 PLX SDK Removal
Prior to installation of a new version of the PLX SDK, any previously installed versions should be uninstalled.
Many files change between SDK releases and since these files are used for development purposes, they may
be incompatible with a previous release. To remove a PLX SDK package, including device drivers, complete
the following:

1. Close any open applications

2. Open the Windows Control Panel

3. Select Add/Remove Programs icon in the Control Panel window

4. Choose the PLX SDK package from the item list

5. Click the Add/Remove... button

Note: For proper removal, a user with “Administrator” rights must remove the PLX SDK.

2-1

Warning: If any files have been modified in the original PLX SDK install directory, such as C source code files,
the uninstaller may delete them. Please be careful before uninstalling an SDK package. The SDK directory can
first be copied (not moved) to another safe location before removal.

2.5 Installation of PLX Device Drivers in Windows
During SDK installation, the installation package will automatically create the necessary registry entries and
copy any files needed to load PLX device drivers.

2.5.1 PLX Plug and Play Device Driver Installation
The PLX Windows device drivers conform to the Microsoft Windows Driver Model (WDM). These drivers
support Plug ’n’ Play (PnP) and Power Management.

Since Windows is a Plug ’n’ Play (PnP) Operating Systems, the SDK installation package does not automatically
assign device drivers for PLX devices. The Windows PnP Manager is responsible for detecting devices and
prompting the user for the correct driver. To assign a driver for a device, Windows refers to an INF file. The INF
file provides instructions for Windows as to which driver files to install and which registry entries to insert.

To install a driver for a board containing a PLX device in PnP Windows, complete the following steps:

1. After installing the PLX SDK successfully, shut down the computer.

2. Insert the PLX RDK board or your custom board with a PLX device into a free PCI or PCIe slot.

3. Reboot the computer. Windows should first detect the new hardware device with a “New Hardware
Found” message box. Acknowledge this message box.

4. Windows then displays the “Found New Hardware” Wizard, which will search for a suitable driver.

2.5.1.1 PLX Device Driver Installation

• Once the Found New Hardware Wizard starts, the following dialog is displayed: Select No, not this time.

2-2

• The Wizard will now attempt to find the .INF file. By default, PLX includes the PLX INF file in
<Sdk_Install_Dir>\Drivers, but it also places a copy in the Windows INF folder. The wizard should be able
to automatically locate the correct INF file. Select Install the software automatically option.

• Windows will then scan through INF files to find a matching device driver. Since PLX drivers are not digitally

signed, Windows will prompt with the following dialog. Click Continue Anyway.

2-3

• When the following dialog is displayed, the device driver installation is complete. Click the Finish button.

• If the device appears under Other devices, the installation was successful. Applications that use the PLX
API, such as PLXMon or the PDE, may now be used to access the device.

2-4

Note: If the Device/Vendor ID of the board is changed or the board is physically moved to a different PCI slot,
Windows will recognize it as a completely new device and the process must be repeated.

2.5.1.2 Modifying the PLX INF File for Use with Custom Device/Vendor IDs
When a new device is plugged into a system running Windows, the Windows Plug ‘n’ Play Manager will prompt
the user for driver files. Windows determines which files to install through information in an INF file. PLX
already provides an INF file (PlxSdk.inf), which contains setup information for all PLX RDKs and all PLX parts
with a default ID. The INF may be found in <Sdk_Dir>\Driver, but the install package also installs a copy under
<Windows_Dir>\Inf.

The recommended method for installing a device where the ID has been changed is to open the PLX INF file
and add an entry for the device with a custom ID. The procedure for this is documented inside the INF file itself,
which is a simple text file. Open the INF in a text editor, such as Notepad, and follow the instructions to add an
entry for the custom ID and then re-install the device. Windows will then automatically detect the device and
install the necessary driver files.

2.5.2 PLX PCI/PCIe Service Driver
The PLX Service driver (PlxSvc) is installed automatically by the SDK installation package but may also be
installed manually. There are various methods to install and control the PLX Service driver, each documented
in the following sections.

2.5.2.1 Install Using Service Control Manager (SCM) API
An external Windows utility may be written to install/remove and control the PLX Service driver. This utilizes the
Microsoft Service functions, such as CreateService and OpenSCManager. The PLX SDK installation package
and PLX Driver Options Wizard use this method to install and control the PLX Service Driver. Refer to the
Microsoft on-line documentation for additional details.

2.5.2.2 Install Using Windows “sc.exe” Utility
Most versions of Windows include the utility “SC” to access the Service Control database. This may be used to
easily perform operations on services, including add/remove and start/stop. Type “sc” in a Command Prompt
window for complete usage instructions. Refer to Figure 2-1 for an example of basic service control functions.

To install the PLX Service Driver, perform the following:

1. Copy the correct version of PlxSvc.sys to the Windows System32\Drivers folder.

2. Issue the following command in a DOS prompt or batch file:

sc create PlxSvc binPath= System32\Drivers\PlxSvc.sys type= kernel start= auto error= ignore
DisplayName= "PLX PCI/PCIe Service Driver"

2-5

http://msdn.microsoft.com/en-us/library/ms685942(v=VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms682450(v=VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms684323(v=VS.85).aspx
http://www.microsoft.com/resources/documentation/windows/xp/all/proddocs/en-us/sc.mspx?mfr=true

Figure 2-1: Sample 'SC' Commands

2.5.2.3 Install Manually via Registry and Reboot
To perform a manual installation, follow the steps below:

• Add the required driver registry entries
Double-click the PLX Service registry file (<Sdk_Install_Dir>\PlxSvc.reg) to install the required registry
entries. Double-clicking the file will automatically launch RegEdit and add the necessary entries.

• Copy the PLX Service driver to Windows
Copy the correct version (32-bit or 64-bit) of the file PlxSvc.sys to <Win_Dir>\System32\Drivers.
PlxSvc.sys may be found in <Sdk_Install_Dir>\Driver\Source.PlxSvc.

• Copy the PLX API library to Windows
Copy the PLX API DLL (e.g. PlxApi640.dll) to the Windows <Win_Dir>\System32 folder. This file is
located in <Sdk_Install_Dir>\PlxApi.

• Restart the system

2.5.2.4 Starting and Stopping the PLX Service Driver
Since the PLX PCI Service runs as a background task, it may be stopped and started dynamically. The steps
below demonstrate how to control the service. Additionally, the PLX Driver Options Wizard may be used to
start and stop the driver.

2.5.2.4.1 Use command-line utilities

• Use Microsoft ‘net’ utility bundled with Windows:
net start PlxSvc
net stop PlxSvc

2-6

• Use Microsoft “sc” utility bundled with Windows:
sc start PlxSvc
sc stop PlxSvc

2.5.2.4.2 Use Device Manager

• Open the Device Manager (My Computer Properties, Hardware tab) and display the hidden devices as
shown below.

2-7

• Under Non-Plug and Play Drivers, find the PLX PCI/PCIe Service Driver entry and double-click it.

2-8

• The following dialog will appear. The Start and Stop buttons control loading and unloading of the driver,
respectfully.

2.5.3 Modifying PLX Driver Options in the Registry
All Windows drivers have entries in the Registry, which are required by the OS. Additionally, there may be
driver-specific entries, which can be used to customize driver behavior. Some features of PLX drivers are
customizable through registry settings and are documented below. The registry entry is located in the path
specified below. Figure 2-2 demonstrates a typical entry.

HKLM\System\CurrentControlSet\Services\<DriverName>

2-9

Figure 2-2 PLX Device Driver Registry Information

The registry entries are described in detail below. Note: Only advanced users with administrative rights should
modify entries in the registry. Please refer to Microsoft’s documentation on modifying the registry.

Windows required entries:

• ErrorControl
Required by the operating system and should not be modified.

• Start
Required by the operating system and should not be modified.

• Type
Required by the operating system and should not be modified.

PLX-specific entries:

• CommonBufferSize
This value sets the size of the Common buffer, which the driver attempts to allocate for use by all
applications. This buffer is a non-paged contiguous buffer, so it can be used for DMA transfers. The
default value is set to 64KB. Users may increase this value if a larger buffer size is needed.

Note: Changing this entry does NOT guarantee allocation of a larger buffer. The device driver
makes a request to the operating system for a buffer with the size indicated by this registry entry. If
the request fails, however, usually due to unavailable system resources, the driver will decrement the
size and resubmit the request until the buffer allocation succeeds. The API call
PlxPci_CommonBufferProperties() can be used to determine the common buffer information.

2.5.3.1 PLX Driver Options Wizard
The PLX SDK includes the PLX Driver Options Wizard application to manage all PLX driver settings. Using the
wizard avoids the need to manually modify the registry. The wizard may be used in all supported versions of
Windows. Details about each configuration option are displayed at the bottom whenever the item is selected.

After launching the wizard, select the desired driver and modify the options as needed. The updated settings will
take effect when the driver is reloaded, either manually or after a system reboot.

2-10

Figure 2-3 PLX Driver Options Wizard

2.6 Installation of PLX Device Drivers in Linux
The PLX SDK contains support for Linux environments. Documentation for the Linux support is not included this
manual; however, much of the Windows host-side architecture applies to the Linux Host-side support as-well.
Please refer to the PLX Linux Release Notes in the <Sdk_Install_Dir>\Documentation folder for using the PLX
SDK in Linux. The PLX Linux TAR package is located in <Sdk_Install_Dir>\Linux_Host.

2.7 Distribution of PLX Software

2.7.1 License Agreement
For OEM customers, who have written applications with PLX software and intend to ship it with their product,
please refer to the PLX Software Distribution License Agreement in the PLX SDK Release Notes. The License
Agreement is not reprinted in this manual. The agreement specifies which SDK components may be
redistributed to end users.

2-11

3 PLX Host-side Software
This section describes the PCI Host software components provided in the PCI SDK, which applies to Windows
and Linux.

3.1 SDK Directory Structure
Figure 3-2 shows the PLX SDK directory and top level sub-folders.

3-1

Figure 3-1. PLX SDK Directory Organization

• Bin
Contains binary executables

• Documentation
Contains the User’s Manual, readme files and other SDK documentation

3-2

• EEPROM Images
Contains sample binary EEPROM files for all PLX devices and RDKs

• Include
Contains all the common include files used by the drivers and applications in the SDK

• Linux_Host
Contains the PLX Linux support package

• Driver
PLX Windows drivers source code

• PlxApi
Contains the PLX API source code

• Samples
Contains sample applications that demonstrate use of the PLX API

3.2 PLX SDK Architecture Overview
The PLX SDK has three main components, the Kernel drivers, User API and User Applications. Figure 3-2
demonstrates the various components and how they fit together. The SDK is provided to handle most of the
low-level functionality so users can concentrate on building their applications.

Figure 3-2 PLX SDK Software Architecture

3-3

3.3 PLX API Library
The PLX API library is provided to communicate with the PLX device drivers. When an API function is called by
an application, the API library handles the call and translates it to an I/O control message and sends it to the
driver. Once the driver completes the request, control returns to the API and then back to the calling application.

The PLX API consists of a library of functions, from which multiple PLX chip-based PCI boards can be accessed
and used. The API covers all features of all PLX chips, such as DMA access, direct data transfers, and interrupt
handling.

The PLX API libraries in the Windows environment file are implemented as Dynamically Linked Libraries (DLL).
Applications linked with these libraries will attempt to load the DLL when started; therefore, the DLLs must be
found somewhere in the system path. DLLs are typically placed in the Windows system directory.

The PLX API library in the Linux environment file is implemented as a statically linked library, rather than
dynamically loaded. Applications will link with the API library during the build process and will, therefore, contain
API library code in the executable.

3.4 Device Drivers
The PLX SDK contains two types of Windows device drivers. The first type is a Windows service driver. The
service driver is used to access any PCI device in the system and also supports EEPROM access to PLX
devices running in Transparent Mode. The other category of device driver is a standard Plug ‘n’ Play device
driver. This driver is typically used for PLX devices running in Non-Transparent mode and also for all PLX 9000
devices.

A device driver is necessary for the PLX SDK software to access PLX PCI devices. Applications, such as
PLXMon, cannot access PCI devices without a device driver installed. The SDK includes drivers for all
supported PLX PCI chips.

The PLX device drivers contain the API implementation for the PLX chip they support and the basic functionality
required by all device drivers for the OS environment. The device driver accesses the PLX chip across the PCI
bus by using OS system calls. The driver is also responsible for handling PCI interrupts from the PLX chip.

Each PLX chip type has an associated driver. Device drivers are not associated with a specific board, but are
generic in design to be used for any board containing the specified PLX chip. A single driver is responsible for
all devices in the system containing the PLX chip the driver was written for. Each device driver communicates
with the PLX API on a one-to-one basis; there is no driver-to-driver communication.

3.5 PLX API and Multi-threading
Programming in a multi-tasking environment requires understanding of many issues that do not exist in a single-
threaded environment. These issues can be especially complex when they involve hardware device drivers. For
those customers who intend to use PLX software in a multi-tasking environment and use it with multiple
simultaneous applications, some additional work and caution may be required.
The PLX API libraries and drivers do not enforce synchronization between concurrent accesses to PLX chips. In
other words, the PLX drivers do not lock all resources of the PLX chip while they are in use. Only the DMA
channels are treated as a shared resource and may only be opened by one thread at a time. Each channel is
independent so each can be opened by different processes.
The reasons PLX drivers do not enforce synchronization on the whole:

• Each "feature" of the chip would have to be treated as a shared resource. This includes each BAR
space, each DMA channel, & the shared common buffer.

• The PLX API allows applications to map registers and BAR spaces directly into an application’s virtual
space for performance reasons. Once that happens, any accesses to the registers or space completely
bypass the PLX driver so synchronization cannot be enforced. In other words, there's nothing stopping
another process from manually writing to the DMA registers even if another process "owns" the channel.

• Synchronizing accesses to BAR spaces is not feasible. BAR space memory read/write is generally slow
in relative terms. Reads are typically only 2-4MB/s. If one application wishes to read 8MB from a
particular local bus location, the BAR resource must be locked for 2 seconds, which is very poor

3-4

programming practice. Locking is required because the remap register, for example, must be set to
access the desired local bus region. If another thread wishes to access another local bus region, it may
need to adjust the remap window, which will corrupt the 1st thread.

It is left to application designers to deal with overall synchronization if it's needed. Typically this can be done by
assigning mutually exclusive resources or using Inter-Process Communications (IPCs) provided by the OS to
coordinate accesses to the PLX chip. Although there are numerous techniques to deal with this issue, it is left to
the judgment of end-users to determine their specific requirements.

3.5.1 PLX Device Driver Directory Structure
The PLX drivers are designed to take advantage of common code; therefore many files are shared between all
PLX drivers. The following figure depicts the Windows device driver directory structure as found in the PLX
SDK installation.

Figure 3-3 PLX Driver Directory Structure

The driver directories are described below:

• Driver\Source.Plx6000_NT
Contains source code for the PLX 6000 Non-transparent mode driver.

• Driver\Source.Plx8000_NT
Contains source code for the PLX 8000 Non-transparent mode driver.

• Driver\Source.Plx8000_DMA
Contains source code for the PLX 8000-series DMA driver.

• Driver\Source.Plx9000
Contains source code common to all PLX 9000 drivers.

• Driver\Source.Plx9000\Chip\<ChipType>
Contains PLX chip-specific source code used for PLX 9000 drivers.

• Driver\Source.PlxSvc
Contains source code for PLX Service driver.

3-5

3.5.2 Building Windows Device Drivers
To build a driver, the Windows WDK must first be installed. Follow the steps below to build the driver. The
WDK environment determines the version of the driver built; otherwise, the build process is identical for all
environments.

Note: Due to limitations in the build utility provided in the Windows WDK, the PLX-supplied batch file,
BuildDriver.bat, must be used to build a driver. The build utility does not easily support compiling of files in a
common directory; therefore, it is not used directly to build PLX drivers.

• Select and open the desired WDK environment (icons are installed by the WDK).

3-6

• Move to the PLX SDK driver directory. Use the BuildDriver script to build the drivers. BuildDriver.bat will
automatically perform the necessary steps to build the desired device driver. Some sample build
screenshots are provided below. Once the driver is built, the new driver file may be used in Windows.
Refer to the Windows WDK for additional information on building and debugging drivers.

3-7

3.6 User-mode Applications
User-mode applications use the PLX API library to control any device with a PLX chip. For most situations, a
user-mode application using the PLX API is sufficient to perform the desired functionality. PLX drivers are
generic in design to minimize the need for driver customization. Typically, drivers are modified to take
advantage of specific OEM hardware on a device, or possibly to add functionality, such as additional processing
in the Interrupt Service Routine.

This section will explain some techniques for building user-mode applications and use of the API. The following
text refers to Microsoft Visual C/C++ 6.0, but customers are free to use any compatible developer tool of
preference.

3.6.1 PLX Sample Applications
Several sample applications, located in <Sdk_Install_Dir>\Samples, are included in the PLX SDK. These
demonstrate how an application can use the PLX API to perform various functions with PLX devices. The
included project files are for Microsoft Visual C/C++ 6.0.

3.6.2 Creating Windows PCI Host Applications
The first step in creating a Windows PCI Host application is to create a Microsoft Project File. A new project file
can be created or one of the sample projects can be opened and modified. Typically, a Win32 Console
application is used to create a project, but any C or C++ project, such as MFC AppWizard, is compatible with
the PLX API. Figure 3-4 demonstrates the new project dialog.

3-8

Figure 3-4 Visual C/C++ New Project Dialog

Once the project has been opened, source code can be written and inserted into the project. Before an
application can be built successfully, however, the steps below must be completed. Figure 3-6 demonstrates a
typical Visual C project that is configured for the PLX API.

3-9

• Add the PLX SDK Include directory
This ensures that the development tools refer to and can find the correct version of the PLX C
header files. In Visual C/C++, for example, the directory is specified in the Options dialog, as shown
in Figure 3-5.

Figure 3-5 Visual C/C++ Include Files Directory

• Include “PlxApi.h”
This file must be included to provide prototypes for PLX functions and any PLX-specific data types.

• Insert “PlxApi.lib” into the Project
This library file contains link information for the PlxApiXXX.dll file, where <XXX> is the SDK version
number, e.g. PlxApi700.dll. When the application is launched, the API DLL will automatically be
loaded by Windows. The library file is provided in the <Sdk_Install_Dir>\PlxApi\Release directory.

3-10

Figure 3-6 Typical Visual C/C++ Project

3-11

4 PLX Debug Utilities
4.1 PLX PEX Device Editor (PDE)
The PLX SDK includes the PEX Device Editor for working with PLX PCI Express devices. The following
subsections give a high level view of the main Debug and Performance Monitoring features built into the PDE
GUI utility.

From a high level the PDE GUI application supports the following features:

 Memory Mapped register access

 Config register access

 Search for registers based on address or description

 Eeprom editing and Programming directly from file

 Find differences between Eeprom and a bin file or 2 Eeprom bin files

 Lane Status Panel with Active lanes, Port types and lane widths

 I2C support to allow access to PLX device features from a different system through a USB to I2C bridge

 Register Table info from Data books accessible from PEX Device Editor GUI

 Save screen data to file, and vice-versa

 Basic Config space access to non-PLX PCI devices

 Online help from the PEX Device Editor GUI.

 PCI Device Capabilities support for Non-PLX devices

 Automated PCI Error Monitoring and Reporting

 Tree View of all PCI devices in the system

 Debug and Performance Monitoring for gen-2 & gen-3 devices:

 Serdes Eye Width

 Performance Monitor

 Packet Generator

 Probe Mode

The above features allow users to

• Configure the PLX devices to their specific needs.

• Demonstrate all major features with the help of user friendly GUI screens

• Helps in debugging & performance analysis on a live system

The following subsections will focus on the Debug and Performance monitoring features in detail. For addtional
details on how to use the GUI features, please refer to the Help option in the PDE.

4.1.1 Probe Mode
The Probe Mode feature can do the following:

• Allows users to select all signal combinations that are allowed by Debug Mode, through a user friendly
interface

• Supports both External and Internal Modes.

• Supports complex triggering options based on state transitions.

• Captured data can be saved to a file.

• Captured data from file can be displayed in GUI for analysis.

4-2

4.1.2 Selecting Signal combinations for probe mode
There are 2 levels of signal selections that can be done with the probe mode.

Level one is at the Module level. There are 2 types of modules. The ones that are present in every Port/Station
combination (TIC, TEC, PHY, DLL etc) and the other type is the Core modules (Chime, I2C, EEPROM etc)
which are common for the whole chip. Every module can bring out 16 different combinations of Signals to the
two outputs Output-A and Output-B. You can select one particular signal combination from each module.

Once you select the appropriate signal combination from all the different modules it will turn out to be a lot more
than 36 which is the maximum number of signal that can be brought out at any given time.

In order to narrow the selections down to 18+18 there is the Level two selection screen where you can select
only 2 combinations out of all the selections that were done in level one.

4.1.3 External and Internal Modes
Probe mode allows the user to bring out all the selected signals to the probe pins for analysis with the help of a
logic analyzer. This is the External Probe Mode.

If the user wants to capture data for a longer period then the internal mode can be used. In the internal mode all
the data from the selected signal will be captured in the Debug RAM. The Debug RAM is 5376 bits deep and
with 36 bits we should be able to capture to a depth of 150.

4-3

The internal mode also allows users to set up various trigger options. These options will be done in more detail
once we test the hardware and see what parts of it are working.

4.1.4 Capturing, Saving and displaying data
The data that is captured in the Debug RAM can be displayed in the GUI in a tabular form. This can be
improved later by displaying it in the shape of a waveform. The captured data can also be saved in a text file.
This file could have been sent to us from a customer who captured the data and saved it using the save feature.

Capture will be done at every clock or based on other trigger options selected.

4.1.5 Serdes Eye Width
The purpose of this feature is to allow users to tweak certain parameters of the PLX chip and get the best
Serdes Eye width. This can be done at a lane level of every station.

4.1.5.1 Serdes Eye for PLX Gen2 Devices

The appropriate Serdes can be put in Digital Loop back mode and a user programmable test pattern can be
generated which will be sent out and received back. The received pattern will be compared with the expected
pattern and an error counter is updated.

This error count is an indirect indicator of the signal level. The software will infer the voltage based on the error
level. The user can also shift the Serdes clock phase in steps. At each step the signal quality can be checked
until the error is at the maximum value. This indicates that we have reached the end of the eye. Then the same
process is repeated by shifting the clock phase in the opposite direction to get to the other end of the eye. This
gives us the total width of the eye.

4-4

Software will do the following steps:

• Put the Serdes in loop back mode
• Program the User Test Pattern and enable it.
• Shift the Serdes Clock Phase towards one direction in steps and check the error count after a few

seconds. If errors are zero, keep repeating until you hit the first non-zero error count. Then go back a
step and wait for a couple of minutes and check the error count. If you still get errors, go back further
and continue until there are no errors. This way we get a plot of the error vs Unit Interval.

• Repeat previous step again by shifting the clock phase in the other direction.
• Plot a graph of the inferred voltage vs. Clock Phase in Unit Intervals. Inferred voltage is got from the

error count.

4.1.5.2 Serdes Eye for PLX Gen3 Devices

For gen3 devices the serdes eye is much cleaner with both the width and height information being made
available to the user. The algorithm used is quite different due to additional features found in the newer Serdes
IP. The following algorithm is used to get the Serdes eye:

• enable eye scan feature

• enable comparator setting override

• enable eye scan error counter and wait time

• longer wait time means more accurate measurement

• wait for signal detect to go high

• wait 500ns~1us for CDR to lock

• loop (scan through the sampling points)

4-5

begin
X and Y axis of scan point

Set Lane eye delay value

set lane comparator offset override

load Y setting into comparator

wait 10ns

set AHB lane receiver equalization DFE comparator select override

set receiver equalization override latch

wait 10ns

set receiver equalization override latch

//start counting

set eye_scan_run = 1'b1

//depending on the eye scan wait time

wait 200ns

//read error

//reset counter

set eye_scan_run = 1'b0

save eye scan setting and error count

end
Sample code on how to generate the Serdes eye is provided in the SDK <Samples\SerdesEyeTest> folder.

4.2 PLX GenMon
The PLX GenMon application supports two features of some PLX chips. These are the Packet Generator and
the Performance Monitor, which are available only on one some PLX devices. The GenMon application will
provide access to only those installed PLX chips that support the feature.

4.2.1 Performace Monitor
The goal of this feature is to provide statistical information taken from performance counters found in some PLX
switches. The following counters are available for every port:

• TIC Ingress TLP Posted Header
• TIC Ingress TLP Posted DW & TIC Ingress TLP Non-Posted DW
• TIC Ingress TLP Completion Header &TIC Ingress Completion DW
• TEC Ingress TLP Posted Header
• TEC Egress TLP Posted DW & TEC Egress TLP Non-Posted DW
• TEC Egress TLP Completion Header & TEC Egress Completion DW
• DLLP Ingress & DLLP Egress

Based on theses, various performance parameters can be calculated. The PLX Performance Monitor provides
the following for each active port:

• Link Utilization Percentage
• Average Payload size
• Payload Byte Rate

4-6

PLX provides an API to setup and use the Performance Monitor. Sample code for utilizing this API is provided
in the PLX SDK Samples folder. Details of the PLX Performance Monitor API are provided in PLX SDK API
Reference section.

Figure 4-1 PLX Performance Monitor

4.2.2 Packet Generator
The Packet generator feature of PLX switches may be used to generate PCI compliant TLP packets. The
various TLP parameters may be setup through the simple GUI.

4-7

Figure 4-2 PLX Packet Generator

Figure 4-3 TLP Setup Options

4-8

4.3 PLXMon
The PLXMon debug utility is a powerful tool, which provides easy-to-use GUI screens for read/write of PLX chip
registers, access to local bus devices, download of local software to RAM, programming of FLASH devices, and
EEPROM access.

4.3.1 PLXMon Access Modes
PLXMon accesses the PLX chip in one of two ways: through the PCI bus or, if BEM compatible code is running
on the local-side, through a serial cable connection. Figure 4-4 shows the PLX communication modes.

Serial
Communication

PCI Bus
Communication

PLX Driver

PLX Host API

PLX PCI
Chip

CPU

PLXMon

PCI Bus

Figure 4-4 PLXMon Communications Modes

4.3.1.1 PCI Mode
In PCI mode, all accesses to the PLX chip are performed directly through the PCI bus, via the SDK API and PLX
device driver. If a PLX driver is not installed/loaded, PCI mode will be unavailable. In PCI mode, the upper
pane in PLXMon is disabled. The lower pane is an interpreter that accepts commands to access registers and
memory.

4-9

Figure 4-5 PLXMon in PCI Mode

4.3.1.2 EEPROM File Edit Mode
If a PLX device is not detected in the system, PLXMon displays a dialog (Figure 4-6), which provides two
options: Enter EEPROM File Edit mode or attempt a connection to enter Serial mode.

The EEPROM edit mode is provided for those who need to create or modify EEPROM files, which will be used
with an I/O programmer. In this mode, since no PLX devices are physically present in the system, PLXMon
cannot program the EEPROM device directly.

4-10

Figure 4-6: EEPROM Edit Mode

4.3.1.3 Serial Mode
In Serial Mode, PLXMon establishes a serial connection with a device. In this mode, the software executing on
the local CPU (PLX BEM) accepts and carries out commands from PLXMon to perform necessary tasks. While
connected, the upper pane of PLXMon provides a terminal interfaces, similar to other serial terminal applications,
such as HyperTerminal. The lower pane is an interpreter that accepts commands to access registers and
memory. It is important to note that in Serial mode, the local CPU handles commands entered in the lower pane,
so memory and registers are accessed from the local CPU’s point of view. In Serial mode, the command ‘dl
100000’ will read from the local address location 1MB. Conversely, in PCI mode, only virtual addresses are
allowed, so the same command will most likely result in an invalid address.

4-11

Figure 4-7: PLXMon in Serial Mode

4.3.2 PLXMon Toolbar

Figure 4-8: PLXMon Toolbar

The PLXMon toolbar (Figure 4-8) provides multiple options, which are described below:

• Select a Device
View all PLX devices found and select one to work with. Only devices, for which a PLX driver is
loaded, will be available.

4-12

• Download to device
Opens the download dialog, which allows downloading of RAM images and programming of the
FLASH ROM.

• View all PCI devices
Open a dialog, which displays all PCI devices in the system. Selecting one displays all PCI registers
of the device

• Reset device
In PCI mode, resets a device by using the Software Reset feature of PLX chips. In Serial Mode,
issues a reset command to the local CPU.

• Memory Access
Opens the memory access dialog.

• Performance Measure Dialog
In PCI mode for PLX 9000-series devices, provides a software measure for DMA and Direct Slave
transfers. Refer to the Performance Measure Dialog, section 4.3.5.

• Connect to device
Attempt a serial connection to the device. If the local software implements the BEM protocol,
PLXMon will establish a connection.

• View Register Groups
Open dialogs for the various register groups and EEPROM. The PLX chip type determines available
groups.

4.3.3 Working with PLXMon Dialogs

4.3.3.1 Register Dialogs
The register dialogs in PLXMon are very simple to use. Users simply enter values, in Hexadecimal format, and
PLXMon will update the value in the chip. For some registers with numerous bit-fields, PLXMon provides

additional detail screens, which can be selected with the details button - . Figure 4-9 demonstrates a typical
register dialog.

Tips on working with register dialogs:

• All values are in Hexadecimal format
• The register dialogs are available in both Serial and PCI modes. In Serial mode, PLXMon sends

commands to the local CPU to perform register accesses. In PCI mode, PLXMon calls the PLX Host
API to access registers.

• The register offsets displayed are dependent upon the mode of operation. In Serial mode, the offsets
are from the local CPU’s point of view. Refer to the PLX chip data book for more information regarding
offsets.

• In the register dialogs, PLXMon will update a register value as soon as focus shifts from the field (i.e.
the TAB key or clicking on a different field with the mouse).

4-13

Figure 4-9: Typical PLXMon Register Dialog

4.3.3.2 EEPROM Dialogs
The EEPROM dialogs in PLXMon behave very similar to the register dialog, with a few exceptions. Additionally,
the EEPROM dialogs provide options to save/load values to/from files. Figure 4-10 demonstrates a typical
EEPROM dialog.

EEPROM Dialog Differences from Register Dialogs:

• Displayed offsets are from the EEPROM base (default), but offsets of the target register in the chip can
be selected, as well.

• Values are not written to the EEPROM device until the Write button is selected.
• Values can be loaded from or saved to a file. When working with EEPROM files, PLXMon will only load

or save enough values to fill the PLX chip’s portion of the EEPROM. Additional values are discarded.

4-14

Figure 4-10: Typical EEPROM Dialog

4.3.3.3 Memory Access Dialog
Selecting the memory access button will open the dialog shown in Figure 4-11. The memory dialog allows
reading of blocks of memory from the local bus or from the DMA buffer, as well as the ability to fill memory, as
shown in Figure 4-12. For more control over memory accesses, use the db, dw, dl, eb, ew and el commands.
Note that in PCI mode, virtual addresses are used. Refer to Section 0 for more information.

4-15

Figure 4-11: Memory Access Dialog

Figure 4-12: Memory Fill Dialog

4.3.4 Specifying PLX Chip Type for Unknown Devices
If the Device/Vendor ID of a PCI 6000 series bridge is modified from its default, PLX software may fail to
properly identify the device as a PLX chip. In this case, PLXMon will not be able to properly display all of the PCI
registers and the EEPROM contents. PLX drivers rely on known Device/Vendor ID combinations to detect PLX
PCI 6000 and 8111 devices. As a result, the IDs are hard-coded into the driver source code. A customer that
changes an ID will, therefore, need to modify the driver source and rebuild it. PLX software, however, provides
an option to manually override the chip type in the event that it is not detected properly. This can be performed
in PLXMon in the “Select a PCI Device” dialog.

4-16

Simply select a device and then select the option to manually set the chip type. Figure 7-13 shows how to
manually select a chip type.

Figure 4-13 Manually Setting the PLX Chip Type

After the selection has been made, PLXMon will treat the device as the user-selected type, as can be seen in
Figure 7-14. Before setting the PLX chip type, it is important to note the following:

• No error checking is performed when setting the PLX chip type. If a PLX chip is selected that does not
match the installed hardware, the PLXMon and/or the system may behave erratically.

• Once the chip type is selected, the PLX driver will attempt to automatically detect the PLX revision. If
this is not detected, the revision will default to the value in the PCI revision ID register.

• Modification of the PLX chip type is not permanent. It will remain in effect as long as the PLX driver is
loaded and not re-started. For a permanent setting, it is recommended that the PLX PCI Service driver
is modified and rebuilt to properly detect the custom ID.

• This option may only be used with PLX PCI 6000 series and 8111 devices.

4-17

Figure 4-14 Completed PLX Chip Type Override

4.3.5 Performance Measure Dialog
PLXMon includes a performance measure dialog, which provides a software measure of data transfer
performance. The dialog supports DMA and Direct Slave transfers, with multiple options for each. This section
describes the details of how to use the dialog. Figure 4-15 shows a snapshot of the dialog.

4-18

Figure 4-15 Performance Measure Dialog

4.3.5.1 Notes before Using the Performance Measure
Before using the performance dialog, it is important to be aware of the following imitations and notes:

• The Performance Measure is a simple software measurement of performance. The transfer rate is
calculated by dividing the total number of bytes transferred by the total elapsed time. As a result,
software overhead is a factor in the measure, although the Performance Measure is very efficient and
includes very little overhead.

4-19

• The transfer rates provided by the Performance Measure should be treated as relative numbers rather
than absolute values. The intention is to start with some base configuration, tweak some options and/or
chip settings, then re-run the test to determine if performance has improved and repeat to achieve the
optimal configuration.

• The Performance Measure does not validate the addresses used to transfer data to/from. This includes
the PCI and local addresses for DMA and the local address for Direct Slave. It is left to the user to
ensure that sufficient memory is provided for the transfer.

• The Performance Measure does not perform any data error checking. It is assumed that hardware is
working properly.

• When selecting to use the PLX API to transfer data, it is important to note that there is a significant
overhead with doing so. The API sends and receives messages from the PLX driver, which performs the
actual transfer. If data transfer sizes are relatively small, the API overhead will be a significant impact to
performance. As data transfer sizes get larger, the API overhead becomes less significant.

• The Performance Measure cannot guarantee burst transactions. Software has no means to force burst
transactions. All software can do is enable burst in the hardware and, if conditions are right, the
hardware will initiate burst transactions.

• Other than the options specified, the Performance Measure will leave chip settings intact. It is assumed
that the chip is properly configured to access the intended devices. For example, if PCI BAR 2 on a
9054 will be used to access an 8-bit device, it is assumed that the Space 0 Bus Region Descriptor is
configured properly and that the Space 0 Remap register is set to properly access the desired device.

4.3.5.2 Performance Measure Options
The performance measure provides numerous options to perform different type of transfers in different
configurations. The individual options are explained below..

4.3.5.3 DMA Performance Test
When the DMA test is selected, the Performance Measure will perform DMA transfers to or from the specified
addresses. The test continuously repeats the same DMA transfer until it is halted

The items below provide details about the individual DMA options. When the Performance Measure is initially
opened and DMA is available, it will provide the DMA Common Buffer properties, which are provided by the PLX
driver. This is the same information obtained with PlxPciCommonBufferProperties.

Note: DMA is available only to PLX devices that include a DMA engine, including the 9080, 9054, 9056, 9656, &
8311.

• Local Address This determines the starting 32-bit local address where data is transferred to/from. This
value is placed directly into the Local address register of the DMA engine.

• PCI Address This determines the starting 32-bit PCI physical address where data is transferred to/from.
This address, for example, may be the PLX DMA Common Buffer PCI address or an address taken
from the PCI BAR of another PCI device, such as an Ethernet controller. This value is placed directly
into the PCI address register of the DMA engine.

• Channel This determines which DMA channel the Performance Measure will use.
• Use This determines whether DMA completion is detected by waiting for the interrupt or polling the DMA

done bit. In general, polling results in better transfer rates due to less overhead, but the CPU is highly
utilized, so the end user system performance suffers.

• Transfer This determines which direction the DMA engine will transfer data.
• Byte Count This is the number of bytes transferred during each test iteration.
• Bursting This option determines whether DMA busting is enabled in the hardware. Note that the

devices that the DMA engine transfers to/from must support the selected type of burst transaction.

4-20

4.3.5.4 Direct Slave Performance Test
When the Direct Slave test is selected, the Performance Measure will use the Host CPU to transfer data to/from
a PLX device through one of the PCI BAR spaces. The test will repeat continuously until it is halted. Figure 4-16
depicts a completed Direct Slave test and the reported results.

Figure 4-16 Sample Direct Slave Performance Test

The items below provide details about the individual Direct Slave options.

• PCI BAR to Use This determines which PCI BAR space to use for the transfer. The PCI BAR must be a
valid PCI memory space that is enabled on the PLX device. I/O type spaces are not supported. It is
assumed that the PCI space is properly configured to access the desired local device. This includes the
remap and bus region descriptors.

• Offset into PCI BAR This value determines the starting offset into the PCI BAR where the Performance
Measure will transfer data.

• Method This option determines whether the PLX API is used to transfer data or a direct access is
performed. The PLX API method will use the functions PlxBusIopRead and PlxBusIopWrite, whereas,
the direct method will obtain a virtual address for the PCI BAR with PlxPciBarMap, then use that
address to directly access the PCI space. The direct method effectively bypasses the PLX API.

• Access Size This option determines how data is accessed, whether it is 8-bit, 16-bit, or 32-bit. This
option should not be confused with the “Bus Width” of the Bus Region Descriptor for a space. The Bus
Width is used to specify the port-size of the connected local device, for example, a 16-bit flash device.
The Access Size determines the type of cycle issued by the Host CPU.

• Transfer This determines whether the Host CPU reads from or writes to the PCI BAR.
• Byte Count The number of bytes transferred during each test iteration.

4-21

• Bursting This option determines whether Direct Slave busting is enabled in the Bus Region descriptor
for the PCI space. This option does not guarantee that burst transactions will occur, since software is
not able to force bursting. In a standard PC, for example, the Host Bridge does not allow burst reads
from PCI devices to the Host CPU, resulting in typically poor burst read performance. Note that the
devices that data will be transferred to/from must support the selected type of burst transaction.

4.3.6 The Command-Line Interface
In the lower pane of PLXMon, a command-line interface is provided, as show in Figure 4-17. The list of
available command is show in Table 4-1.

Figure 4-17: Command-line Interface

Command Description

db, dw, dl Read memory using Byte (8-bit), Word (16-bit), Longword (32-bit)

eb, ew, el Write to memory using Byte (8-bit), Word (16-bit), Longword (32-bit)

ib, iw, il Read from I/O port using Byte (8-bit), Word (16-bit), Longword (32-bit)

ob, ow, ol Write to I/O port using Byte (8-bit), Word (16-bit), Longword (32-bit)

pci Read/Write to a PCI register of the PLX chip

reg Read/Write to a local register of the PLX chip

vars Display PLXMon variables. See Section 4.3.8

ver Display version information

clear Clear the command-line pane

quit Exits PLXMon

Table 4-1: PLXMon Command-line Commands

4.3.7 Working with Virtual Addresses
In PCI mode, PLXMon executes as an application and, therefore, must use virtual addresses to access memory.
A PCI BAR address, for example, cannot be referenced directly. As a result, PLXMon relies on PLX drivers to
provide a virtual mapping for all memory spaces that may be accessed. This includes any valid PCI BAR
memory spaces and the DMA buffer allocated by the driver.

Note: Virtual addresses are not used for I/O ports, only for memory regions. Although the driver performs the
actual I/O access, the referenced port address is the actual address found in the PCI BAR register. I/O regions
are not mapped into virtual space.

4-22

4.3.8 Command-Line Variables
PLXMon creates some variables to aid users with dealing with virtual addresses. Figure 4-18 demonstrates the
vars command in PLXMon, which lists the default variables and the memory region they represent. Variables
can be used with the d(b,w,l) or e(b,w,l) commands.

Note: Accessing memory with these variables results in a direct memory access from PLXMon. The PLX driver
just provides the initial virtual mapping, but is completely bypassed during memory accesses.

Figure 4-18: PLXMon Variables

4-23

5 PLX SDK API Reference
This section provides the details of all PLX API functions.

5.1 PLX API Functions

API Function Name Description

PlxPci_ApiVersion Get the PLX API library version information
PlxPci_ChipTypeGet Get the PLX chip type and revision
PlxPci_ChipTypeSet Set the PLX chip type
PlxPci_CommonBufferProperties Returns the properties of the PLX driver reserved buffer
PlxPci_CommonBufferMap Maps the common buffer to user space
PlxPci_CommonBufferUnmap Unmaps the common buffer from user space
PlxPci_DeviceClose Release a device
PlxPci_DeviceFind Search for a device
PlxPci_DeviceFindEx Search for a device with advanced options (e.g. I2C)
PlxPci_DeviceReset Reset a PLX device
PlxPci_DeviceOpen Select a device
PlxPci_DmaChannelOpen Opens & initializes a DMA channel
PlxPci_DmaChannelClose Release a DMA channel
PlxPci_DmaGetProperties Gets the current properties of a DMA channel
PlxPci_DmaSetProperties Sets the properties of a DMA channel
PlxPci_DmaControl Control a DMA channel
PlxPci_DmaStatus Get current status of a DMA channel
PlxPci_DmaTransferBlock Transfers a data buffer using block DMA
PlxPci_DmaTransferUserBuffer Transfers a user-mode buffer using a DMA channel
PlxPci_DriverProperties Get PLX driver properties
PlxPci_DriverScheduleRescan Informs PLX Service driver to rebuild its internal device list
PlxPci_DriverVersion Get the PLX driver version information
PlxPci_EepromPresent Determine if an EEPROM is present on a PCI device
PlxPci_EepromProbe Probes for the physical presence of an EEPROM
PlxPci_EepromCrcGet Get the CRC value of the EEPROM
PlxPci_EepromCrcUpdate Update the CRC value of the EEPROM
PlxPci_EepromGetAddressWidth Get the current EEPROM byte addressing width
PlxPci_EepromSetAddressWidth Manually sets the EEPROM byte addressing width
PlxPci_EepromReadByOffset Read a 32-bit value from the EEPROM at a specified offset
PlxPci_EepromWriteByOffset Write a 32-bit value to the EEPROM at a specified offset
PlxPci_EepromReadByOffset_16 Read a 16-bit value from the EEPROM at a specified offset
PlxPci_EepromWriteByOffset_16 Write a 16-bit value to the EEPROM at a specified offset
PlxPci_GetPortProperties Get the port properties of the selected device
PlxPci_I2cGetPorts Gets the installed I2C USB devices and their availability
PlxPci_I2cVersion Gets I2C version information
PlxPci_IoPortRead Reads one or more values from an I/O port
PlxPci_IoPortWrite Writes one or more values to an I/O port
PlxPci_InterruptDisable Disables specific interrupts of the PLX chip
PlxPci_InterruptEnable Enables specific interrupts of the PLX chip
PlxPci_NotificationCancel Cancels and interrupt notification object
PlxPci_NotificationRegisterFor Registers for interrupt notification

5-1

API Function Name Description

PlxPci_NotificationStatus Returns the status of the interrupt notification object
PlxPci_NotificationWait Wait for an interrupt notification event
PlxPci_Nt_LutAdd Add an entry to the NT Requester ID LUT
PlxPci_Nt_LutDisable Disable an entry in the NT Requester ID LUT
PlxPci_Nt_LutProperties Return the properties of an entry in the NT Requester ID LUT
PlxPci_Nt_ReqIdProbe Determines the Host PCIe ReqID when accessing the NT port
PlxPci_PciBarSpaceRead Reads a block of data from the specified PCI BAR space
PlxPci_PciBarSpaceWrite Writes a block of data to the specified PCI BAR space
PlxPci_PciBarMap Maps a PCI BAR space to user virtual space
PlxPci_PciBarProperties Returns the properties of a PCI BAR space
PlxPci_PciBarUnmap Unmaps a PCI BAR space from user virtual space
PlxPci_PciRegisterRead Read a PCI configuration register of a PCI device
PlxPci_PciRegisterWrite Write to a PCI configuration register of a PCI device
PlxPci_PciRegisterReadFast Reads a PCI register from the selected device
PlxPci_PciRegisterWriteFast Writes to a PCI register on the selected device
PlxPci_PciRegisterRead_BypassOS Reads a PCI register by bypassing the OS services
PlxPci_PciRegisterWrite_BypassOS Writes to a PCI register by bypassing the OS services
PlxPci_PerformanceCalcStatistics Calculates port performance statistics
PlxPci_PerformanceGetCounters Reads the performance counters from a device
PlxPci_PerformanceInitializeProperties Intialize the PLX performance object
PlxPci_PerformanceMonitorControl Controls the PLX chip’s perfomance monitor
PlxPci_PerformanceResetCounters Resets the PLX chips’s performance counters
PlxPci_PhysicalMemoryAllocate Allocate Physical memory for the selected device
PlxPci_PhysicalMemoryFree Free the allocated Physical memory for the selected device
PlxPci_PhysicalMemoryMap Map the Physical memory to a Virtual address
PlxPci_PhysicalMemoryUnmap Unmap Physical memory to the Virtual Address
PlxPci_PlxRegisterRead Reads a PLX-specific register from the selected device
PlxPci_PlxRegisterWrite Writes to a PLX-specific register on the selected device
PlxPci_PlxMappedRegisterRead Reads a Memory mapped register from the selected device
PlxPci_PlxMappedRegisterWrite Writes to a Memory mapped register on the selected device
PlxPci_VpdRead Uses the VPD feature to read VPD data
PlxPci_VpdWrite Uses the VPD feature to write VPD data

5-2

PlxPci_ApiVersion

Syntax:
PLX_STATUS
PlxPci_ApiVersion(
 U8 *pVersionMajor,
 U8 *pVersionMinor,
 U8 *pVersionRevision
);

PLX Chip Support:
N/A

Description:
Returns the SDK API version information

Parameters:
pVersionMajor

A pointer to an 8-bit buffer to contain the Major version number

pVersionMinor
A pointer to an 8-bit buffer to contain the Minor version number

pVersionRevision
A pointer to an 8-bit buffer to contain the Revision version number

Return Codes:

Code Description

PLX_STATUS_OK The function returned successfully
PLX_STATUS_NULL_PARAM One or more parameters is NULL

Usage:
 U8 VerMajor;
 U8 VerMinor;
 U8 VerRev;

 PlxPci_ApiVersion(
 &VerMajor,
 &VerMinor,
 &VerRev
);

 Cons_printf(
 “PLX SDK API v%d.%d%d\n”,
 VerMajor,
 VerMinor,
 VerRev
);

5-3

PlxPci_ChipGetPortMask

Syntax:
PLX_STATUS
PlxPci_ChipGetPortMask(
 U16 PlxChip,
 U8 PlxRevision,
 U64 *pPortMask
);

PLX Chip Support:
All PLX 8000 devices

Description:
Returns a bit-wise port mask for the supplied PLX chip. The mask provides possible port numbers & types that
the chip supports, including NT, DMA, etc.

Parameters:
PlxChip

The PLX chip type to return a mask for

PlxRevision
The PLX chip revision to return a mask for

pPortMask
A pointer to 64-bit storage that will contain the port mask. Refer to PLX_FLAG_PORT for special ports.

Return Codes:

Code Description

PLX_STATUS_OK The function returned successfully
PLX_STATUS_NULL_PARAM One or more parameters is NULL
PLX_STATUS_UNSUPPORTED The supplied chip type isn’t supported

Notes:
The mask returned includes possible ports supported by the chip as a 1:1 relationship (i.e. Bit 0=Port 0, Bit 1=
Port 1, etc.).

Special ports are denoted by PLX-specified bit locations. Use the PLX-supplied definitions found in
PLX_FLAG_PORT to check for these ports.

5-4

Usage:
 U64 PortMask;

 // Get supported ports
 PlxPci_ChipGetPortMask(
 0x8619, // 8619 BA
 0xBA,
 &PortMask
);

 for (i=0; i<64; i++)
 {
 if (PortMask & (1 << PLX_FLAG_PORT_NT_LINK_0))
 // NT Link port
 else if (PortMask & (1 << PLX_FLAG_PORT_NT_VIRTUAL_0))
 // NT Virtual port
 else if (PortMask & (1 << PLX_FLAG_PORT_NT_DS_P2P))
 // NT Downstream P2P (NT Parent DS port)
 else if (PortMask & (1 << PLX_FLAG_PORT_DMA_0))
 // DMA Function
 else if ((i <= PLX_FLAG_PORT_MAX) && (PortMask & (1 << i))
 // Port ‘i’ is standard transparent port
 else
 // Unknown/unsupported port
 }

5-5

PlxPci_ChipTypeGet

Syntax:
PLX_STATUS
PlxPci_ChipTypeGet(
 PLX_DEVICE_OBJECT *pDevice,
 U16 *pChipType,
 U8 *pRevision
);

PLX Chip Support:
All PLX devices

Description:
Returns the PLX chip type and revision if possible.

Parameters:
pDevice

Pointer to an open device

pChipType
Pointer to a 16-bit buffer to contain the PLX chip type

pRevision
Pointer to an 8-bit value to contain the revision

Return Codes:

Code Description

PLX_STATUS_OK The function returned successfully
PLX_STATUS_NULL_PARAM One or more parameters is NULL
PLX_STATUS_INVALID_OBJECT The device object is not a valid PLX device

Notes:
The chip type is returned as a hex number matching the chip number. For example, 0x6466 = 6466. For some
PLX chips, different revisions are indistinguishable from each other. In the case, the revision will be the latest
version.

If the PCI device is not a PLX chip or is not identified properly by the driver, a value of 0 will be returned for the
chip type and revision.

5-6

Usage:
 U8 Revision;
 U16 ChipType;
 PLX_STATUS rc;

 rc =
 PlxPci_ChipTypeGet(
 pDevice,
 &ChipType,
 &Revision
);

 if (rc != PLX_STATUS_OK)
 {
 // Error
 }
 else
 {
 Cons_printf(
 " Chip type: %04X\n"
 " Revision : %02X\n",
 ChipType, Revision
);
 }

5-7

PlxPci_ChipTypeSet

Syntax:
PLX_STATUS
PlxPci_ChipTypeSet(
 PLX_DEVICE_OBJECT *pDevice,
 U16 ChipType,
 U8 Revision
);

PLX Chip Support:
All PLX devices

Description:
Sets the PLX chip type and revision to force a specific identification.

Parameters:
pDevice

Pointer to an open device

ChipType
The desired PLX chip type, in Hex, or 0 for <Unknown>. Available chip types are 8532, 8524, 8114, etc.

Revision
The desired revision ID. If the value is 0xFF, the default chip revision will be used, which is usually taken
directly from the PCI Revision ID register.

Return Codes:

Code Description

PLX_STATUS_OK The function returned successfully
PLX_STATUS_INVALID_OBJECT The device object is not a valid PLX device

PLX_STATUS_UNSUPPORTED The function is not supported by the installed driver (i.e. the device is in Non-Transparent
mode)

PLX_STATUS_INVALID_DATA The ChipType parameter was invalid or not a supported type

Notes:
The chip type should be a hex number matching the chip number. For example, 0x6466 = 6466. A value of 0
may be passed to clear the chip type.

When modifying the Device/Vendor ID of a PLX PCI-to-PCI bridge, it is recommended that the PLX driver be
modified to properly identify the device. PlxPci_ChipTypeSet is recommended for temporary use only for debug
purposes.

Warning: This option is typically used only when a PLX PCI-to-PCI bridge Device/Vendor ID is modified and the
PLX PCI Service driver is not able to properly identify the device. Setting the chip type will force the PLX driver,
after it is already loaded, to treat the device as a specific PLX chip and enable chip-specific features, such as
EEPROM access. Setting the chip type to an incorrect or invalid setting may result in erratic behavior system
crashes.

5-8

Usage:
 PLX_STATUS rc;

 // Force the chip tpye & revision
 rc =
 PlxPci_ChipTypeSet(
 pDevice,
 0x6520, // 6520 device
 0xCA // Revision CA
);

 if (rc != PLX_STATUS_OK)
 {
 // Error
 }

 // Force the chip tpye, but use default revision
 rc =
 PlxPci_ChipTypeSet(
 pDevice,
 0x6152, // 6152 device
 (U8)-1 // Use default revision
);

 if (rc != PLX_STATUS_OK)
 {
 // Error
 }

 // Clear the cuurent type to configure device as “Non-PLX”
 rc =
 PlxPci_ChipTypeSet(
 pDevice,
 0, // Clear chip type
 0 // Clear revision
);

 if (rc != PLX_STATUS_OK)
 {
 // Error
 }

5-9

PlxPci_CommonBufferProperties

Syntax:
PLX_STATUS
PlxPci_CommonBufferProperties(
 PLX_DEVICE_OBJECT *pDevice,
 PLX_PHYSICAL_MEM *pMemoryInfo
);

PLX Chip Support:
All PLX devices

Description:
Returns the common buffer properties.

Parameters:
pDevice

Pointer to an open device

pMemoryInfo
A pointer to a PLX_PHYSICAL_MEM structure which will contain information about the common buffer

Return Codes:

Code Description

PLX_STATUS_OK The function returned successfully and at least one event ocurred
PLX_STATUS_NULL_PARAM One or more parameters is NULL
PLX_STATUS_INVALID_OBJECT The device object is not valid

Notes:
This function will only return properties of the common buffer. It will not provide a virtual address for the buffer.
Use PlxPci_CommonBufferMap to get a virtual address.

PLX drivers allocate a common buffer for use by applications. The buffer size requested is determined by a
PLX registry entry (refer to the PLX driver registry options in this manual). The driver will attempt to allocate the
buffer, but the operating system determines the success of the attempt based upon available system resources.
PLX drivers will re-issue the request for a smaller-sized buffer until the call succeeds.

The common buffer is guaranteed to be physically contiguous and page-locked in memory so that it may be used for
operations such as DMA. PLX drivers do not use the common buffer for any functionality. Its use is reserved for
applications.

Coordination and management of access to the buffer between multiple processes or threads is left to applications.
Care must be taken to avoid shared memory issues.

5-10

Usage:
 PLX_STATUS rc;
 PLX_PHYSICAL_MEM BufferInfo;

 // Get the common buffer information
 rc =
 PlxPci_CommonBufferProperties(
 pDevice,
 &BufferInfo
);

 if (rc != ApiSucess)
 {
 // Error – Unable to get common buffer properties
 }

 Cons_printf(
 “Common buffer information:\n”
 “ Bus Physical Addr: %08lx\n”
 “ CPU Physical Addr: %08lx\n”
 “ Size : %d bytes\n”,
 BufferInfo.PhysicalAddr,
 BufferInfo.CpuPhysical,
 BufferInfo.Size
);

5-11

PlxPci_CommonBufferMap

Syntax:
PLX_STATUS
PlxPci_CommonBufferMap(
 PLX_DEVICE_OBJECT *pDevice,
 VOID **pVa
);

PLX Chip Support:
All PLX devices

Description:
Maps the common buffer into user virtual space and return the base virtual address.

Parameters:
pDevice

Pointer to an open device

pVa
A pointer to a buffer to hold the virtual address

Return Codes:

Code Description

PLX_STATUS_OK The function returned successfully and at least one event ocurred
PLX_STATUS_NULL_PARAM One or more parameters is NULL
PLX_STATUS_INVALID_OBJECT The device object is not valid
PLX_STATUS_INVALID_ADDR Buffer address is invalid
PLX_STATUS_INSUFFICIENT_RES Insufficient resources for perform a mapping of the buffer
PLX_STATUS_FAILED Buffer was not allocated properly

Notes:
Mapping of the common buffer into user virtual space may fail due to insufficient Page-Table Enties (PTEs).
The larger the buffer size, the greater the number of PTEs required to map it into user space.

The buffer should be unmapped before calling PlxPci_DeviceClose to close the device. The virtual address will
cease to be valid after closing the device or after unmapping the buffer. Refer to PlxPci_CommonBufferUnmap.

5-12

Usage:
 U8 value;
 VOID *pBuffer;
 PLX_STATUS rc;
 PLX_PHYSICAL_MEM BufferInfo;

 // Get the common buffer information
 rc =
 PlxPci_CommonBufferProperties(
 pDevice,
 &BufferInfo
);

 if (rc != ApiSucess)
 {
 // Error – Unable to get common buffer properties
 }

 // Map the buffer into user space
 rc =
 PlxPci_CommonBufferMap(
 pDevice,
 &pBuffer
);

 if (rc != ApiSucess)
 {
 // Error – Unable to map common buffer to user virtual space
 }

 // Write 32-bit value to buffer
 (U32)((U8*)pBuffer + 0x100) = 0x12345;

 // Read 8-bit value from buffer
 value = *(U8*)((U8*)pBuffer + 0x54);

5-13

PlxPci_CommonBufferUnmap

Syntax:
PLX_STATUS
PlxPci_CommonBufferUnmap(
 PLX_DEVICE_OBJECT *pDevice,
 VOID **pVa
);

PLX Chip Support:
All PLX devices

Description:
Unmaps the common buffer from user virtual space.

Parameters:
pDevice

Pointer to an open device

pVa
The virtual address of the common buffer originally obtained from PlxPci_CommonBufferMap

Return Codes:

Code Description

PLX_STATUS_OK The function returned successfully and at least one event ocurred
PLX_STATUS_NULL_PARAM One or more parameters is NULL
PLX_STATUS_INVALID_OBJECT The device object is not valid
PLX_STATUS_INVALID_ADDR Virtual address is invalid or buffer was not allocated properly
PLX_STATUS_FAILED The buffer to unmap is not valid

Notes:
It is important to unmap the common buffer when it is no longer needed to release mapping resources back to
the system. The buffer should be un-mapped before calling PlxPci_DeviceClose to close the device. The
virtual address will cease to be valid after closing the device or after un-mapping the buffer.

5-14

Usage:
 VOID *pBuffer;
 PLX_STATUS rc;
 PLX_PHYSICAL_MEM BufferInfo;

 // Get the common buffer information
 rc =
 PlxPci_CommonBufferProperties(
 pDevice,
 &BufferInfo
);

 if (rc != ApiSucess)
 {
 // Error – Unable to get common buffer properties
 }

 // Map the buffer into user space
 rc =
 PlxPci_CommonBufferMap(
 pDevice,
 &pBuffer
);

 if (rc != ApiSucess)
 {
 // Error – Unable to map common buffer to user virtual space
 }

 //
 // Use the common buffer as needed
 //

 // Unmap the buffer from user space
 rc =
 PlxPci_CommonBufferUnmap(
 pDevice,
 &pBuffer
);

 if (rc != ApiSucess)
 {
 // Error – Unable to unmap common buffer from user virtual space
 }

5-15

PlxPci_DeviceClose

Syntax:
PLX_STATUS
PlxPci_DeviceClose(
 PLX_DEVICE_OBJECT *pDevice
);

PLX Chip Support:
All devices

Description:
Releases a PLX device object previously opened with PlxPci_DeviceOpen().

Parameters:
pDevice

Pointer to an open device

Return Codes:

Code Description

PLX_STATUS_OK The function returned successfully
PLX_STATUS_NULL_PARAM One or more parameters is NULL
PLX_STATUS_INVALID_OBJECT The device object is not a valid PLX device or has not been opened

Usage:
 PLX_STATUS rc;

 // Release the open PLX device
 rc =
 PlxPci_DeviceClose(
 pDevice
);

 if (rc != PLX_STATUS_OK)
 {
 // ERROR – Unable to release PLX device
 }

5-16

PlxPci_DeviceOpen

Syntax:
PLX_STATUS
PlxPci_DeviceOpen(
 PLX_DEVICE_KEY *pKey,
 PLX_DEVICE_OBJECT *pDevice
);

PLX Chip Support:
All devices

Description:
Selects a specific PCI device for later use with PLX API calls. The device is selected based on the criteria in
PLX_DEVICE_KEY.

Parameters:
pKey

Pointer to a PLX_DEVICE_KEY structure which contains one or more search criteria.

pDevice
Pointer to a PLX_DEVICE_OBJECT structure which will describe the selected PCI device.

Return Codes:

Code Description

PLX_STATUS_OK The function returned successfully
PLX_STATUS_NULL_PARAM One or more parameters is NULL
PLX_STATUS_NO_DRIVER A valid PLX driver is not loaded in the system
PLX_STATUS_INVALID_OBJECT The device object is invalid or the key does not match an installed device
PLX_STATUS_VER_MISMATCH The PLX driver version does not match the API library version
ApiObjectAlreadyAllocated The device object is already open or in use

Notes:
Use PlxPci_DeviceFind to query the driver for installed PCI devices and fill in the PLX_DEVICE_KEY
information.

If the function returns PLX_STATUS_OK, any missing key information will be filled in.

5-17

Usage:
 PLX_STATUS rc;
 PLX_DEVICE_KEY DeviceKey;
 PLX_DEVICE_OBJECT Device;

 // Clear key structure to select first device
 memset(&DeviceKey, PCI_FIELD_IGNORE, sizeof(PLX_DEVICE_KEY));

 // Open device
 rc =
 PlxPci_DeviceOpen(
 &DeviceKey,
 &Device
);

 if (rc != PLX_STATUS_OK)
 {
 // Error
 }
 else
 {
 Cons_printf(
 "Selected: %04x %04x [b:%02x s:%02x f:%02x]\n",
 DeviceKey.DeviceId, DeviceKey.VendorId,
 DeviceKey.bus, DeviceKey.slot, DeviceKey.function
);
 }

5-18

PlxPci_DeviceFind

Syntax:
PLX_STATUS
PlxPci_DeviceFind(
 PLX_DEVICE_KEY *pKey,
 U16 DeviceNumber
);

PLX Chip Support:
All devices

Description:
Locates a specific PCIe device and fills in the corresponding device key information.

Parameters:
pKey

Pointer to a PLX_DEVICE_KEY structure containing the search criteria

DeviceNumber
The 0-based index of the device number to select. Refer to Notes section below for details.

Return Codes:

Code Description

PLX_STATUS_OK The function returned successfully
PLX_STATUS_NULL_PARAM One or more parameters is NULL
PLX_STATUS_NO_DRIVER A valid PLX driver is not loaded in the system
PLX_STATUS_INVALID_OBJECT The key does not match an installed device

Notes:
The fields in the PLX_DEVICE_KEY structure will be used to locate a device. If a field is set to
PCI_FIELD_IGNORE, then it is ignored in the comparison. If a device matches the criteria, all ignored fields in
the key will be filled in with their respective value.

Not all fields of the PLX_DEVICE_KEY will be used for filtering. Only standard PCI identifier fields (Device ID,
Vendor ID, Subsystem ID, PCI revision) & PCI physical location (domain, bus, slot, function) are referred to.
Other fields in the key are set internally by the PLX API or respective device driver & not used for device
selection.

The DeviceNumber parameter is an index that specifies which device to select, where ‘0’ is the first device. If
multiple devices match the criteria, the DeviceNumber specifies which device to select.

5-19

Usage:
 PLX_STATUS rc;
 PLX_DEVICE_KEY DeviceKey;

 // Clear key structure to find first device
 memset(&DeviceKey, PCI_FIELD_IGNORE, sizeof(PLX_DEVICE_KEY));

 rc =
 PlxPci_DeviceFind(
 &DeviceKey,
 0 // Select 1st device matching criteria
);

 if (rc != PLX_STATUS_OK)
 {
 // ERROR – Unable to locate matching device
 }

 // Search for the third device matching a specific Vendor ID
 memset(&DeviceKey, PCI_FIELD_IGNORE, sizeof(PLX_DEVICE_KEY));

 // Specify Vendor ID
 DeviceKey.VendorId = 0x10b5; // PLX Vendor ID

 rc =
 PlxPci_DeviceFind(
 &DeviceKey,
 2 // Select 3rd device matching criteria
);

 if (rc != PLX_STATUS_OK)
 {
 // ERROR – Unable to locate matching device
 }

5-20

PlxPci_DeviceFindEx

Syntax:
PLX_STATUS
PlxPci_DeviceFindEx(
 PLX_DEVICE_KEY *pKey,
 U16 DeviceNumber,
 PLX_API_MODE ApiMode,
 PLX_MODE_PROP *pModeProp,
 U8 DeviceNumber
);

PLX Chip Support:
All devices

Description:
This function is similar to PlxPci_DeviceFind() but also supports finding a device using methods other than
PCI/PCI Express, such as I2C.

Parameters:
pKey

Pointer to a PLX_DEVICE_KEY structure containing the search criteria

DeviceNumber
The 0-based index of the device number to select. Refer to Notes section below for details.

ApiMode
Specifies the PLX_API_MODE to use to search for a device. If ApiMode is PLX_API_MODE_PCI, this
function behaves identical to PlxPci_DeviceFind().

pModeProp
Contains the properties used for detecting a device. The items used in the structure depend upon the
value of the ApiMode parameter. For example, if ApiMode is PLX_API_MODE_I2C_AARDVARK, then
only the I2c union parameters in the structure are used.

Return Codes:

Code Description

PLX_STATUS_OK The function returned successfully
PLX_STATUS_NULL_PARAM One or more parameters is NULL

PLX_STATUS_NO_DRIVER For PCI mode, a valid PLX driver is not loaded in the system
For I2C mode, the Aardvark USB device does not exist or driver is not installed

PLX_STATUS_INVALID_OBJECT The key does not match an installed device
PLX_STATUS_UNSUPPORTED Attempt to select TCP connection which is not yet supported

Notes:
The fields in the PLX_DEVICE_KEY structure will be used to locate a device. If a field is set to
PCI_FIELD_IGNORE, then it is ignored in the comparison. If a device matches the criteria, all ignored fields in
the key will be filled in with their respective value.

Not all fields of the PLX_DEVICE_KEY will be used for filtering. Only standard PCI identifier fields (Device ID,
Vendor ID, Subsystem ID, PCI revision) & PCI physical location (domain, bus, slot, function) are referred to.

5-21

Other fields in the key are set internally by the PLX API or respective device driver & not used for device
selection.

The DeviceNumber parameter is an index that specifies which device to select, where ‘0’ is the first device. If
multiple devices match the criteria, the DeviceNumber specifies which device to select.

For I2C, if the I2c.SlaveAddr field is -1 (FFFFh), the API will auto-probe all possible PLX I2C addresses to detect
a chip (e.g. 58->5Fh, 68->6Fh, etc).

At this time, the only I2C device supported is the TotalPhase Aardvark USB I2C /SPI tool. Other I2C devices may
be supported in future versions of the SDK. The Aardvark USB driver must be loaded for the PLX API to work
over I2C.

Connections over TCP/IP are not yet supported in the PLX API. This may be supported in a future version of
the SDK.

Usage:
 PLX_STATUS rc;
 PLX_MODE_PROP ModeProp;
 PLX_DEVICE_KEY DeviceKey;

 // Clear key structure to find first device
 memset(&DeviceKey, PCI_FIELD_IGNORE, sizeof(PLX_DEVICE_KEY));

 // Set I2C properties
 ModeProp.I2c.I2cPort = 0; // Use the first I2C USB device
 ModeProp.I2c.SlaveAddr = -1; // Auto-probe for PLX chip
 ModeProp.I2c.ClockRate = 100; // Set I2C clock rate in KHz

 // Find first I2C PLX device/port
 rc =
 PlxPci_DeviceFindEx(
 &DeviceKey,
 0 // Select 1st device matching criteria
 PLX_API_MODE_I2C_AARDVARK, // Connect over I2C
 &ModeProp
);

 if (rc != PLX_STATUS_OK)
 {
 // ERROR – Unable to locate matching device
 }

5-22

PlxPci_DeviceReset

Syntax:
PLX_STATUS
PlxPci_DeviceReset(
 PLX_DEVICE_OBJECT *pDevice
);

PLX Chip Support:
All PLX 9000 & 8311 devices

Description:
Resets the selected PLX device

Parameters:
pDevice

Pointer to an open PCI device

Return Codes:

Code Description

PLX_STATUS_OK The function returned successfully
PLX_STATUS_UNSUPPORTED Reset of the selected device is not supported

Usage:
 PLX_DEVICE_OBJECT Device;

 // Issue reset to PLX device
 PlxPci_DeviceReset(
 pDevice
);

5-23

PlxPci_DmaChannelOpen

Syntax:
PLX_STATUS
PlxPci_DmaChannelOpen(
 PLX_DEVICE_OBJECT *pDevice,
 U8 channel,
 PLX_DMA_PROP *pDmaProp
);

PLX Chip Support:
9054, 9056, 9080, 9656, 8311, & 8000 DMA

Description:
Opens and initializes a DMA channel to prepare for later transfers. Starting with SDK 6.10, it is recommended
to set the pDmaProp parameter to NULL and use other PLX APIs to retrieve and update DMA properties. Refer
to PlxPci_DmaGetProperties & PlxPci_DmaSetProperties.

Parameters:
pDevice

Pointer to an open device

channel
The number of the DMA channel to open

pDmaProp
Pointer to a structure containing the properties to use for initializing the DMA channel. If this NULL, the
DMA properties will not be modified.

Return Codes:

Code Description
PLX_STATUS_OK The function returned successfully
PLX_STATUS_NULL_PARAM One or more parameters is NULL
PLX_STATUS_INVALID_OBJECT The device object is not valid
PLX_STATUS_LOW_POWER The PLX device is in a power state that is lower than required for this function
PLX_STATUS_INVALID_ADDR The DMA channel is not supported by the PLX chip
PLX_STATUS_INVALID_ACCESS The DMA channel is in use by another process

Usage:
 // Open the DMA channel
 PlxPci_DmaChannelOpen(
 pDevice,
 0, // Channel 0
 NULL // Do not modify current DMA properties
);

5-24

PlxPci_DmaChannelClose

Syntax:
PLX_STATUS
PlxPci_DmaChannelClose(
 PLX_DEVICE_OBJECT *pDevice,
 U8 channel
);

PLX Chip Support:
9054, 9056, 9080, 9656, 8311, & 8000 DMA

Description:
Closes a previously opened DMA channel

Parameters:
pDevice

Pointer to an open PCI device

channel
The DMA channel number to close

Return Codes:

Code Description
PLX_STATUS_OK The function returned successfully
PLX_STATUS_NULL_PARAM One or more parameters is NULL
PLX_STATUS_INVALID_OBJECT The device object is not valid
PLX_STATUS_LOW_POWER The PLX device is in a power state that is lower than required for this function
PLX_STATUS_INVALID_ADDR The DMA channel is not supported by the PLX chip
PLX_STATUS_INVALID_ACCESS The DMA channel was not previously opened by the caller
PLX_STATUS_IN_PROGRESS A DMA transfer is in progress
PLX_STATUS_PAUSED The DMA channel is paused
PLX_STATUS_IN_USE The DMA channel is open but owned by another calling thread or process

Notes:
The DMA channel cannot be closed by this function if a DMA transfer is currently in-progress. The DMA status
is read directly from the DMA status register of the PLX chip. Note that a “crashed” DMA engine reports DMA in-
progress. A software reset of the PLX chip may be required in this case. DMA “crashes” are typically a result of
invalid addresses provided to the DMA channel. For PLX 9000 series devices, refer to PlxPci_DeviceReset.

5-25

Usage:
 PLX_STATUS rc;

 rc =
 PlxPci_DmaBlockChannelClose(
 pDevice,
 1 // Channel 1
);

 if (rc != PLX_STATUS_OK)
 {
 // Reset the device if a DMA is in-progress
 if (rc == PLX_STATUS_IN_PROGRESS)
 {
 PlxPci_DeviceReset(
 pDevice
);

 // Attempt to close again
 PlxPci_DmaChannelClose(
 pDevice,
 1
);
 }
 }

5-26

PlxPci_DmaGetProperties

Syntax:
PLX_STATUS
PlxPci_DmaGetProperties(
 PLX_DEVICE_OBJECT *pDevice,
 U8 channel,
 PLX_DMA_PROP *pDmaProp
);

PLX Chip Support:
9054, 9056, 9080, 9656, 8311, & 8000 DMA

Description:
Returns the current DMA properties for a DMA channel

Parameters:
pDevice

Pointer to an open device

channel
The DMA channel number to access

pDmaProp
Pointer to a structure that will contain the DMA properties

Return Codes:

Code Description
PLX_STATUS_OK The function returned successfully
PLX_STATUS_NULL_PARAM One or more parameters is NULL
PLX_STATUS_INVALID_OBJECT The device object is not valid
PLX_STATUS_LOW_POWER The PLX device is in a power state that is lower than required for this function
PLX_STATUS_INVALID_ADDR The DMA channel is not supported by the PLX chip
PLX_STATUS_INVALID_ACCESS The DMA channel was not previously opened by the caller

Notes:
A DMA channel must first be opened by the caller with PlxPci_DmaChannelOpen before this function can be
called.

5-27

Usage:
 PLX_DMA_PROP DmaProp;

 // Get current DMA properties
 PlxPci_DmaGetProperties(
 pDevice,
 0, // DMA channel 0
 &DmaProp
);

 // Modify desired properties based on chip type
 if ((PlxChip & 0xFF00) == 0x8600) || (PlxChip & 0xFF00) == 0x8700))
 {
 // Use relaxed ordering for data read requests
 DmaProp.RelOrderDataReadReq = 1;

 // Support 128B read request TLPs
 DmaProp.MaxSrcXferSize = PLX_DMA_MAX_SRC_TSIZE_128B;
 }
 else
 {
 // Enable READY# input and burst of 4 DWORDS
 DmaProp.ReadyInput = 1;
 DmaProp.Burst = 1;
 DmaProp.BurstInfinite = 0;
 }

 // Update DMA with new properties
 PlxPci_DmaSetProperties(
 pDevice,
 0, // DMA channel 0
 &DmaProp
);

5-28

PlxPci_DmaSetProperties

Syntax:
PLX_STATUS
PlxPci_DmaSetProperties(
 PLX_DEVICE_OBJECT *pDevice,
 U8 channel,
 PLX_DMA_PROP *pDmaProp
);

PLX Chip Support:
9054, 9056, 9080, 9656, 8311, & 8000 DMA

Description:
Updates the DMA properties for a DMA channel

Parameters:
pDevice

Pointer to an open device

channel
The DMA channel number to access

pDmaProp
Pointer to a structure containing the DMA properties

Return Codes:

Code Description
PLX_STATUS_OK The function returned successfully
PLX_STATUS_NULL_PARAM One or more parameters is NULL
PLX_STATUS_INVALID_OBJECT The device object is not valid
PLX_STATUS_LOW_POWER The PLX device is in a power state that is lower than required for this function
PLX_STATUS_INVALID_ADDR The DMA channel is not supported by the PLX chip
PLX_STATUS_INVALID_ACCESS The DMA channel was not previously opened by the caller
PLX_STATUS_IN_USE The DMA channel is open but owned by another calling thread or process

Notes:
A DMA channel must first be opened by the caller with PlxPci_DmaChannelOpen before this function can be
called.

5-29

Usage:
 PLX_DMA_PROP DmaProp;

 // Fill in current DMA properties
 PlxPci_DmaGetProperties(
 pDevice,
 0, // DMA channel 0
 &DmaProp
);

 // Modify desired properties based on chip type
 if ((PlxChip & 0xFF00) == 0x8600) || (PlxChip & 0xFF00) == 0x8700))
 {
 // Use relaxed ordering for data read requests
 DmaProp.RelOrderDataReadReq = 1;

 // Support 128B read request TLPs
 DmaProp.MaxSrcXferSize = PLX_DMA_MAX_SRC_TSIZE_128B;
 }
 else
 {
 // Enable READY# input and burst of 4 DWORDS
 DmaProp.ReadyInput = 1;
 DmaProp.Burst = 1;
 DmaProp.BurstInfinite = 0;
 }

 // Update DMA with new properties
 PlxPci_DmaSetProperties(
 pDevice,
 0, // DMA channel 0
 &DmaProp
);

5-30

PlxPci_DmaControl

Syntax:
PLX_STATUS
PlxPci_DmaControl(
 PLX_DEVICE_OBJECT *pDevice,
 U8 channel,
 PLX_DMA_COMMAND command
);

PLX Chip Support:
9054, 9056, 9080, 9656, 8311, & 8000 DMA

Description:
Controls the DMA engine for a given DMA channel.

Parameters:
pDevice

Pointer to an open device

channel
The DMA channel number to control

command
The action to perform on the DMA channel. Refer to PLX_DMA_COMMAND for the list of valid DMA
commands.

Return Codes:

Code Description

PLX_STATUS_OK The function returned successfully
PLX_STATUS_NULL_PARAM One or more parameters is NULL
PLX_STATUS_INVALID_OBJECT The device object is not valid
PLX_STATUS_LOW_POWER The PLX device is in a power state that is lower than required for this function
PLX_STATUS_INVALID_ADDR The DMA channel is not supported by this PLX chip
PLX_STATUS_INVALID_ACCESS The DMA channel was not previously opened by the caller
PLX_STATUS_IN_PROGRESS If attempting to resume a DMA channel that is not in a paused state.
PLX_STATUS_INVALID_DATA An invalid or unsupported DMA command
PLX_STATUS_IN_USE The DMA channel is open but owned by another calling thread or process

Notes:
A DMA channel must first be opened by the caller with PlxPci_DmaChannelOpen before this function can be
called.

5-31

Usage:
 PLX_STATUS rc;
 PLX_DMA_PARAMS DmaParams;

 // Start a DMA transfer
 PlxPci_DmaTransferBlock(
 pDevice,
 0, // Channel 0
 &DmaParams,
 0 // Don’t wait for DMA completion
);

 // Pause the DMA channel
 rc =
 PlxPci_DmaControl(
 pDevice,
 0, // Channel 0
 DmaPause // Pause the current transfer
);

 if (rc != PLX_STATUS_OK)
 {
 // ERROR – Unable to pause DMA transfer
 }

 // Resume the DMA channel
 rc =
 PlxPci_DmaControl(
 pDevice,
 0, // Channel 0
 DmaResume // Resume the transfer
);

 if (rc != PLX_STATUS_OK)
 {
 // ERROR – Unable to resume DMA transfer
 }

5-32

PlxPci_DmaStatus

Syntax:
PLX_STATUS
PlxPci_DmaStatus(
 PLX_DEVICE_OBJECT *pDevice,
 U8 channel
);

PLX Chip Support:
9054, 9056, 9080, 9656, 8311, & 8000 DMA

Description:
Returns the status of the specified DMA channel.

Parameters:
pDevice

Pointer to an open device

channel
The DMA channel number to check status of

Return Codes:

Code Description

PLX_STATUS_INVALID_OBJECT The device object is not valid
PLX_STATUS_INVALID_ADDR The DMA channel is not supported by this PLX chip
PLX_STATUS_COMPLETE The DMA channel is done/ready
PLX_STATUS_PAUSED The DMA channel is paused
PLX_STATUS_IN_PROGRESS A DMA transfer is currently in-progress
PLX_STATUS_IN_USE The DMA channel is open but owned by another calling thread or process

5-33

Usage:
 PLX_STATUS rc;
 PLX_DMA_PARAMS DmaParams;

 // Start a DMA transfer
 PlxPci_DmaTransferBlock(
 pDevice,
 0, // Channel 0
 &DmaParams,
 0 // Don’t wait for DMA completion
);

 // Poll until DMA completes
 do
 {
 rc =
 PlxPci_DmaStatus(
 pDevice,
 0, // Channel 0
);
 }
 while (rc == PLX_STATUS_IN_PROGRESS);

5-34

PlxPci_DmaTransferBlock

Syntax:
PLX_STATUS
PlxPci_DmaTransferBlock(
 PLX_DEVICE_OBJECT *pDevice,
 U8 channel,
 PLX_DMA_PARAMS *pDmaParams,
 U64 Timeout_ms
);

PLX Chip Support:
9054, 9056, 9080*, 9656, 8311, & 8000 DMA

Description:
Starts a Block DMA transfer for a given DMA channel.

Parameters:
pDevice

Pointer to an open device

channel
The open DMA channel number to use for the transfer

pDmaParams
A pointer to a structure containing the DMA transfer parameters

Timeout_ms
Specifies the timeout, in milliseconds, for the function to wait for DMA completion.

If 0, the API returns immediately after starting the DMA transfer and does not wait for its completion.

To have the function wait indefinitely for DMA completion, use the value PLX_TIMEOUT_INFINITE.

Return Codes:

Code Description
PLX_STATUS_OK The function returned successfully
PLX_STATUS_NULL_PARAM One or more parameters is NULL
PLX_STATUS_INVALID_OBJECT The device object is not valid
PLX_STATUS_LOW_POWER The PLX device is in a power state that is lower than required for this function
PLX_STATUS_INVALID_ADDR The DMA channel is not supported by the PLX chip
PLX_STATUS_INVALID_ACCESS The DMA channel was not previously opened by the caller
PLX_STATUS_IN_PROGRESS A DMA transfer is currently in-progress
PLX_STATUS_TIMEOUT No interrupt was received to signal DMA completion
PLX_STATUS_UNSUPPORTED The device does not support DMA or 64-bit DMA is required but not supported (9080)
PLX_STATUS_IN_USE The DMA channel is open but owned by another calling thread or process

Notes:
Block DMA transfers are useful with contiguous host buffers described by a PCI address. The DMA channel
requires a valid PCI physical addresses, not user or virtual address. Virtual addresses are those returned by

5-35

malloc(), for example, or a static buffer in an application. The physical address of the Common buffer provided
by PLX drivers (refer to PlxPci_CommonBufferProperties), for example, is a valid DMA buffer.

By default, the DMA done interrupt is automatically enabled when this function is called. It may be disabled by
setting the bIgnoreBlockInt field of PLX_DMA_PARAMS. In this case, the DMA interrupt is disabled and will not
trigger the PLX driver’s Interrupt Service Routine (ISR). This also means DMA done notification events
registered with PlxPci_NotificationRegisterFor will not signal when the DMA has completed.

The PLX_DMA_PARAMS structure contains members whose meanings may differ or even be ignored
depending on the DMA transfer type selected by the calling function.

PLX_DMA_PARAMS:

Structure Element Description

UserVa Ignored.
AddrSource (8000 DMA) Source PCI address
AddrDest (8000 DMA) Destination PCI address
PciAddr (9000 DMA) The PCI address to transfer to/from. 64-bit is supported
LocalAddr (9000 DMA) The Local address for the transfer
ByteCount The number of bytes to transfer.

Direction (8000 DMA) Ignored. AddrSource & AddrDest fields inherently imply transfer direction
(9000 DMA) Direction of the transfer. Refer to PLX_DMA_DIR

bConstAddrSrc (8000 DMA) Keeps the source address constant
bConstAddrDest (8000 DMA) Keeps the destination address constant
bForceFlush (8000 DMA) DMA engine will issue a Zero-length TLP to flush final writes.
bIgnoreBlockInt Will disable the DMA done interrupt. API DMA done notification will timeout in this case.

5-36

Usage:
 PLX_DMA_PARAMS DmaParams;
 PLX_PHYSICAL_MEM PciBuffer;

 // Get Common buffer information
 PlxPci_CommonBufferProperties(
 pDevice,
 &PciBuffer
);

 memset(&DmaParams, 0, sizeof(PLX_DMA_PARAMS));

 // Fill in DMA transfer parameters
 DmaParams.TransferCount = 0x1000;

 if (pDevObj->Key.PlxChipFamily == PLX_FAMILY_BRIDGE_P2L)
 {
 // 9000/8311 DMA
 DmaParams.PciAddr = PciBuffer.PhysicalAddr;
 DmaParams.LocalAddr = 0x0;
 DmaParams.Direction = PLX_DMA_LOC_TO_PCI;
 }
 else
 {
 // 8000 DMA
 DmaParams.AddrSource = PciBuffer.PhysicalAddr;
 DmaParams.AddrDest = PciBuffer.PhysicalAddr + 0x5000;
 }

 rc =
 PlxPci_DmaTransferBlock(
 pDevice,
 0, // Channel 0
 &DmaParams, // DMA transfer parameters
 (3 * 1000) // Specify time to wait for DMA completion
);

 if (rc != PLX_STATUS_OK)
 {
 if (rc == PLX_STATUS_TIMEOUT)
 // Timed out waiting for DMA completion
 else
 // ERROR - Unable to perform DMA transfer
 }

5-37

PlxPci_DmaTransferUserBuffer

Syntax:
PLX_STATUS
PlxPci_DmaTransferUserBuffer(
 PLX_DEVICE_OBJECT *pDevice,
 U8 channel,
 PLX_DMA_PARAMS *pDmaParams,
 U64 Timeout_ms
);

PLX Chip Support:
9054, 9056, 9080, 9656, 8311, & 8000 DMA

* On some versions of Windows (e.g. 2003 Server) or system with more than 4GB of RAM, the physical address
of some user mode buffer pages may require 64-bit addressing. If this is detected, the PLX driver will
automatically use features in the PLX chip to access these pages. For legacy PCI DMA chips, PCI dual-
addressing is enabled. For newer PCI Express switch DMA, extended descriptors are used as needed. Dual-
addressing is not supported on the PLX 9080 device; therefore, the API will return an error if 64-bit is required
with this device.

Description:
Transfers a user-supplied buffer using the DMA channel. SGL mode of the DMA channel is used, but this is
transparent to the application. The function works as follows:

− The PLX driver takes the provided user-mode buffer and page-locks it into memory.
− The buffer is typically scattered throughout memory in non-contiguous pages. As a result, the driver

then determines the physical address of each page of memory of the buffer and creates an SGL
descriptor for each page. The descriptors are placed into an internal driver allocated buffer.

− The DMA channel is programmed to start at the first descriptor.
− After DMA transfer completion, an interrupt will occur and the driver will then perform all cleanup tasks.

Parameters:
pDevice

Pointer to an open device

channel
The open DMA channel number to use for the transfer

pDmaParams
A pointer to a structure containing the DMA transfer parameters

Timeout_ms
Specifies the timeout, in milliseconds, for the function to wait for DMA completion.

If 0, the API returns immediately after starting the DMA transfer and does not wait for its completion.

To have the function wait indefinitely for DMA completion, use the value PLX_TIMEOUT_INFINITE.

5-38

Return Codes:

Code Description

PLX_STATUS_OK The function returned successfully
PLX_STATUS_NULL_PARAM One or more parameters is NULL
PLX_STATUS_INVALID_OBJECT The device object is not valid
PLX_STATUS_LOW_POWER The PLX device is in a power state that is lower than required for this function
PLX_STATUS_INVALID_ADDR The DMA channel is not supported by the PLX chip
PLX_STATUS_INVALID_ACCESS The DMA channel was not previously opened by the caller
PLX_STATUS_IN_PROGRESS The DMA transfer is currently in-progress
PLX_STATUS_TIMEOUT No interrupt was received to signal DMA completion
PLX_STATUS_PAGE_GET_ERROR The driver was unable to obtain the page list for the user- mode buffer
PLX_STATUS_PAGE_LOCK_ERROR The driver was unable to page lock the user-mode buffer
PLX_STATUS_INSUFFICIENT_RES The driver was unable to allocate an internal buffer to store SGL descriptors
PLX_STATUS_IN_USE The DMA channel is open but owned by another calling thread or process

Notes:
The driver will always enable the DMA channel interrupt when this function is used. This is required so the
driver can perform cleanup routines, such as unlock the buffer and release descriptors, after the transfer has
completed.

The PLX_DMA_PARAMS structure contains members whose meanings may differ or even be ignored
depending on the DMA transfer type selected by the calling function.

PLX_DMA_PARAMS:

Structure Element Description

UserVa Virtual address of the user-mode buffer to transfer
AddrSource Ignored
AddrDest Ignored

PciAddr (9000 DMA) Ignored
(8000 DMA) Specifies the PCI address to transfer to/from, depending upon Direction

LocalAddr (9000 DMA) The Local address for the transfer
ByteCount The number of bytes to transfer
Direction Direction of the transfer. Refer to PLX_DMA_DIR
bConstAddrSrc (8000 DMA) Keeps the source address constant
bConstAddrDest (8000 DMA) Keeps the destination address constant
bForceFlush (8000 DMA) DMA engine will issue a Zero-length TLP to flush final writes.
bIgnoreBlockInt Ignored. PLX driver always enables DMA done interrupt to cleanup SGL

5-39

Usage:
 U8 *pBuffer;
 PLX_DMA_PARAMS DmaParams;

 // Allocate a 500k buffer
 pBuffer = malloc(500 * 1024);

 // Clear DMA parameters
 memset(DmaParams, 0, sizeof(PLX_DMA_PARAMS));

 // Setup DMA parameters (9000 DMA)
 DmaParams.UserVa = (PLX_UINT_PTR)pBuffer;
 DmaParams.ByteCount = (500 * 1024);

 if (pDevObj->Key.PlxChipFamily == PLX_FAMILY_BRIDGE_P2L)
 {
 // 9000/8311 DMA
 DmaParams.LocalAddr = 0x0;
 DmaParams.Direction = PLX_DMA_LOC_TO_PCI;
 }
 else
 {
 // 8000 DMA
 DmaParams.PciAddr = 0x1F000000;
 DmaParams.Direction = PLX_DMA_PCI_TO_USER;
 }

 rc =
 PlxPci_DmaTransferUserBuffer(
 pDevice,
 0, // Channel 0
 &DmaParams, // DMA transfer parameters
 (3 * 1000) // Specify time to wait for DMA completion
);

 if (rc != PLX_STATUS_OK)
 {
 if (rc == PLX_STATUS_TIMEOUT)
 // Timed out waiting for DMA completion
 else
 // ERROR - Unable to perform DMA transfer
 }

5-40

PlxPci_DriverProperties

Syntax:
PLX_STATUS
PlxPci_DriverProperties(
 PLX_DEVICE_OBJECT *pDevice,
 PLX_DRIVER_PROP *pDriverProp
);

PLX Chip Support:
All devices

Description:
Returns properties of the PLX driver in use for the selected device

Parameters:
pDevice

Pointer to an open device

pDriverProp
A pointer to PLX_DRIVER_PROP structure that will contain the driver properties

Return Codes:

Code Description

PLX_STATUS_OK The function returned successfully
PLX_STATUS_NULL_PARAM One or more parameters is NULL
PLX_STATUS_INVALID_OBJECT The device object is not valid

5-41

Usage:
 PLX_STATUS rc;
 PLX_DRIVER_PROP DriverProp;
 PLX_DEVICE_OBJECT Device;

 // Determine if Service or PnP driver in use
 rc =
 PlxPci_DriverProperties(
 &Device,
 &DriverProp
);

 if (rc == PLX_STATUS_OK)
 {
 Cons_printf(
 “Driver Properties:\n
 “ Version : %d.%02d\n”
 “ Name : %s\n”
 “ Full Name: %s\n”,
 DriverProp Version,
 DriverProp.Name,
 DriverProp.FullName
);

 if (DriverProp.bIsServiceDriver)
 {
 Cons_printf(“Using PLX Service driver\n”,);
 }
 else
 {
 Cons_printf(“Using PLX PnP driver\n”,);
 }

 Cons_printf(
 “PCIe Located at 0x%qX\n”,
 DriverProp.AcpiPcieEcam
);
 }

5-42

PlxPci_DriverScheduleRescan

Syntax:
PLX_STATUS
PlxPci_DriverScheduleRescan(
 PLX_DEVICE_OBJECT *pDevice
);

Note: This function has not yet been implemented in the PLX SDK. This documentation is left here for a
future SDK version when it is implemented. This function and its parameters are subject to change.

PLX Chip Support:
Any device when selected via the PLX PCI/PCIe Service driver

Description:
Makes a request to the PLX PCI Service driver to rescan the PCI/PCIe bus and rebuild its internal device list.
Since the Service driver is not informed of Plug ‘n’ Play events (e.g. device additional/removal or resource
changes), its internal list of detected devices could contain erroneous information.

Once the driver receives the request, it will perform the operation when all connections to it have been closed.

Parameters:
pDevice

Pointer to an open device

Return Codes:

Code Description

PLX_STATUS_OK The function returned successfully
PLX_STATUS_NULL_PARAM One or more parameters is NULL
PLX_STATUS_INVALID_OBJECT The device object is not valid
PLX_STATUS_UNSUPPORTED The function was called with a device that is not accessed via the Service driver

Usage:
PLX_STATUS status;

// Inform the service driver to rebuild its internal list
status =
 PlxPci_DriverScheduleRescan(
 pDevice
);

// Close device to allow driver to rescan
PlxPci_DeviceClose(
 pDevice
);

5-43

PlxPci_DriverVersion

Syntax:
PLX_STATUS
PlxPci_DriverVersion(
 PLX_DEVICE_OBJECT *pDevice,
 U8 *pVersionMajor,
 U8 *pVersionMinor,
 U8 *pVersionRevision
);

PLX Chip Support:
All devices

Description:
Returns the PLX driver version information

Parameters:
pDevice

Pointer to an open device

pVersionMajor
A pointer to an 8-bit buffer to contain the Major version number

pVersionMinor
A pointer to an 8-bit buffer to contain the Minor version number

pVersionRevision
A pointer to an 8-bit buffer to contain the Revision version number

Return Codes:

Code Description

PLX_STATUS_OK The function returned successfully
PLX_STATUS_NULL_PARAM One or more parameters is NULL
PLX_STATUS_INVALID_OBJECT The device object is not valid

5-44

Usage:
 U8 DriverMajor;
 U8 DriverMinor;
 U8 DriverRevision;
 PLX_STATUS rc;

 rc =
 PlxPci_DriverVersion(
 pDevice,
 &DriverMajor,
 &DriverMinor,
 &DriverRevision
);

 if (rc != PLX_STATUS_OK)
 {
 // ERROR – Unable to get Driver version information
 }
 else
 {
 Cons_printf(
 "PLX Driver Version = %d.%d%d\n",
 DriverMajor, DriverMinor, DriverRevision
);
 }

5-45

PlxPci_EepromPresent

Syntax:
PLX_EEPROM_STATUS
PlxPci_EepromPresent(
 PLX_DEVICE_OBJECT *pDevice,
 PLX_STATUS *pStatus
);

PLX Chip Support:
All PLX devices

Description:
Returns the state of the EEPROM as reported by the PLX device.

Parameters:
pDevice

Pointer to an open device

pStatus
Pointer to a PLX_STATUS variable to hold the status. (May be NULL)

Return Codes:
If the function is successful, it will return a PLX_EEPROM_STATUS code.

If the PLX_STATUS variable is not NULL, one of the following values is returned:

Code Description

PLX_STATUS_OK The function returned successfully
PLX_STATUS_NULL_PARAM One or more parameters is NULL
PLX_STATUS_INVALID_OBJECT The device object is not a valid PLX device or has not been opened
PLX_STATUS_UNSUPPORTED EEPROM access to device is not supported

Notes:
The EEPROM status is read directly from the PLX status register. The status is generally only valid at the time
of power up or after a reset. The status may not reflect the true status of the EEPROM after reset.
Modifications of EEPROM values, including the CRC, are not reflected in the chip’s EEPROM status until the
next reset when the EEPROM contents are loaded.

5-46

Usage:
 PLX_STATUS rc;
 PLX_EEPROM_STATUS EepStatus;

 // Check if EEPROM present
 EepStatus =
 PlxPci_EepromPresent(
 pDevice,
 &rc
);

 if (rc == PLX_STATUS_OK)
 {
 switch (EepStatus)
 {
 case PLX_EEPROM_STATUS_NONE:
 // No EEPROM Present
 break;

 case PLX_EEPROM_STATUS_VALID:
 // EEPROM present with valid data
 break;

 case PLX_EEPROM_STATUS_INVALID_DATA:
 case PLX_EEPROM_STATUS_BLANK:
 case PLX_EEPROM_STATUS_CRC_ERROR:
 // Present but invalid data, CRC error, or blank
 break;
 }
 }

5-47

PlxPci_EepromProbe

Syntax:
BOOLEAN
PlxPci_EepromProbe (
 PLX_DEVICE_OBJECT *pDevice,
 PLX_STATUS *pStatus
);

PLX Chip Support:
All PLX devices

Description:
Manually probes for the presence of an EEPROM. The API does this by writing to a specific EEPROM location
and then reading it back to verify the write operation.

Parameters:
pDevice

Pointer to an open device

pStatus
Pointer to a PLX_STATUS variable to hold the status. (May be NULL)

Return Codes:

Code Description

PLX_STATUS_OK The function returned successfully
PLX_STATUS_NULL_PARAM One or more parameters is NULL
PLX_STATUS_INVALID_OBJECT The device object is not a valid PLX device or has not been opened
PLX_STATUS_TIMEOUT The PLX EEPROM controller is busy and not accepting new commands
PLX_STATUS_UNSUPPORTED EEPROM access to device is not supported

Usage:
 BOOLEAN bEepromPresent;
 PLX_STATUS rc;

 bEepromPresent =
 PlxPci_EepromProbe (
 pDevice,
 &rc
);

 if (rc == PLX_STATUS_OK)
 {
 if (bEepromPresent)
 // Programmed EEPROM exists
 else
 // EEPROM does not exist
 }

5-48

PlxPci_EepromCrcGet

Syntax:
BOOLEAN
PlxPci_EepromCrcGet(
 PLX_DEVICE_OBJECT *pDevice,
 U32 *pCrc,
 U8 *pCrcStatus
);

PLX Chip Support:
All PLX 8000 devices with an EEPROM CRC feature

Description:
Reads the current CRC value from the EEPROM. The status of the CRC as reported by the PLX chip is
returned.

Parameters:
pDevice

Pointer to an open device

pCrc
Pointer to a 32-bit buffer to contain the current CRC

pCrcStatus
Pointer to an 8-bit buffer to store the CRC status as reported by the PLX chip. The possible status codes
are in PLX_CRC_STATUS.

Return Codes:

Code Description

PLX_STATUS_OK The function returned successfully
PLX_STATUS_NULL_PARAM One or more parameters is NULL
PLX_STATUS_INVALID_OBJECT The device object is not a valid PLX device or has not been opened
PLX_STATUS_TIMEOUT The PLX EEPROM controller is busy and not accepting new commands
PLX_STATUS_UNSUPPORTED EEPROM access to device is not supported

Notes:
Note that the CRC status is simply the status as reported by the PLX chip. This status may not be consistent
with the EEPROM CRC if the EEPROM has been updated. The status of the CRC in the PLX chip is updated
only upon power up when the PLX chip loads values from the EEPROM.

5-49

Usage:
 U8 CrcStatus;
 U32 Crc;

 // Get current EEPROM CRC
 PlxPci_EepromCrcGet(
 pDevice,
 &Crc,
 &CrcStatus
);

 Cons_printf(
 "CRC=%08x Status=%s)\n",
 Crc,
 (CrcStatus == PLX_CRC_VALID) ? "Valid" : "Invalid"
);

5-50

PlxPci_EepromCrcUpdate

Syntax:
BOOLEAN
PlxPci_EepromCrcUpdate(
 PLX_DEVICE_OBJECT *pDevice,
 U32 *pCrc,
 BOOLEAN bUpdateEeprom
);

PLX Chip Support:
All PLX 8000 devices with a CRC feature

Description:
Reads the current EEPROM contents and calculates an updated CRC. If requested, this function can update
the CRC stored in the EEPROM.

Parameters:
pDevice

Pointer to an open device

pCrc
Pointer to a 32-bit buffer to contain the newly calculated CRC

bUpdateEeprom
If TRUE, the function will update the CRC in the EEPROM. If FALSE, it will not modify the EEPROM
contents.

Return Codes:

Code Description

PLX_STATUS_OK The function returned successfully
PLX_STATUS_NULL_PARAM One or more parameters is NULL
PLX_STATUS_INVALID_OBJECT The device object is not a valid PLX device or has not been opened
PLX_STATUS_TIMEOUT The PLX EEPROM controller is busy and not accepting new commands
PLX_STATUS_UNSUPPORTED EEPROM access to device is not supported

5-51

Usage:
 U8 CrcStatus;
 U32 Crc;
 U32 CrcNew;

 // Get current EEPROM CRC
 PlxPci_EepromCrcGet(
 pDevice,
 &Crc,
 &CrcStatus
);

 // Calculate new CRC
 PlxPci_EepromCrcUpdate(
 pDevice,
 &CrcNew,
 FALSE // Don't update EEPROM
);

 if (Crc == CrcNew)
 {
 Cons_printf("CRC in EEPROM is valid\n”);
 }
 else
 {
 Cons_printf("CRCs do not match, CRC in EEPROM not valid\n");

 // Calculate new CRC
 PlxPci_EepromCrcUpdate(
 pDevice,
 &CrcNew,
 TRUE // Update CRC in EEPROM
);

 Cons_printf("Updated CRC in EEPROM to valid value\n");
 }

5-52

PlxPci_EepromGetAddressWidth

Syntax:
PLX_STATUS
PlxPci_EepromGetAddressWidth(
 PLX_DEVICE_OBJECT *pDevice,
 U8 *pWidth
);

PLX Chip Support:
8111, 8112, & 8000 devices

Description:
Return the current EEPROM byte-addressing width.

Parameters:
pDevice

Pointer to an open device

pWidth
Pointer the a byte that will contain the EEPROM byte-address width. Valid values are 1,2,3. If a value of
0 is returned, the PLX chip’s internal EEPROM controller did not identify the EEPROM byte-addressing
during power-up.

Return Codes:

Code Description

PLX_STATUS_OK The function returned successfully
PLX_STATUS_NULL_PARAM One or more parameters is NULL
PLX_STATUS_INVALID_OBJECT The device object is not a valid PLX device or has not been opened
PLX_STATUS_UNSUPPORTED Device does not support EEPROM address width

Notes:
During power up, PLX chips attempt to load values from an EEPROM if present. During this sequence, the PLX
chip also attempts to automatically determine the EEPROM byte addressing. If an EEPROM is not present, is
blank, or if the first byte in the EEPROM is not a valid signature (5Ah), the EEPROM controller will not be able to
identify the byte-addressing. The EEPROM controller usually defaults to a 1B byte-address width. This function
will return ‘0’ in this case.

If the EEPROM part doesn’t match the detected address width, software will not be able to properly access the
EEPROM. On newer PLX chips, use PlxPci_EepromSetAddressWidth to override the setting to program blank
or undetected EEPROMs.

5-53

Usage:
 U8 width;
 PLX_STATUS status;

 // Get current EEPROM width from device
 status =
 PlxPci_EepromGetAddressWidth(
 pDevice,
 &width
);

 if (status == PLX_STATUS_UNSUPPORTED)
 {
 // Error - Device doesn’t support EEPROM width
 return status;
 }

 if (width == 0)
 {
 // EEPROM width not detected, set it manually
 status =
 PlxPci_EepromSetAddressWidth(
 pDevice,
 2 // Use 2-byte addressing
 };

 if (status != PLX_STATUS_OK)
 {
 // Error – Unable to override address width
 return status;
 }
 }

 // EEPROM can now be properly accessed
 PlxPci_EepromWriteByOffset(
 pDevice,
 0x0,
 0x0000005A;
);

5-54

PlxPci_EepromSetAddressWidth

Syntax:
PLX_STATUS
PlxPci_EepromSetAddressWidth(
 PLX_DEVICE_OBJECT *pDevice,
 U8 width
);

PLX Chip Support:
8111, 8112, & 8000 devices that support EEPROM address width override

Description:
Sets the EEPROM addressing width

Parameters:
pDevice

Pointer to an open device

width
The byte addressing to be used for EEPROM accesses. Width must by 1, 2, or 3.

Return Codes:

Code Description

PLX_STATUS_OK The function returned successfully
PLX_STATUS_NULL_PARAM One or more parameters is NULL
PLX_STATUS_INVALID_OBJECT The device object is not a valid PLX device or has not been opened
PLX_STATUS_UNSUPPORTED Device does not support EEPROM address width override
PLX_STATUS_INVALID_DATA The EEPROM width is not valid

Notes:
Note that this setting only remains persistent as long as the PLX driver is loaded. If it is unloaded or the system
is restarted, this API call must be called again.

5-55

Usage:
 U8 width;
 PLX_STATUS status;

 // Get current EEPROM width from device
 status =
 PlxPci_EepromGetAddressWidth(
 pDevice,
 &width
);

 if (status == PLX_STATUS_UNSUPPORTED)
 {
 // Error - Device doesn’t support EEPROM width
 return status;
 }

 if (width == 0)
 {
 // EEPROM width not detected, set it manually
 status =
 PlxPci_EepromSetAddressWidth(
 pDevice,
 2 // Use 2-byte addressing
 };

 if (status != PLX_STATUS_OK)
 {
 // Error – Unable to override address width
 return status;
 }
 }

 // EEPROM can now be properly accessed
 PlxPci_EepromWriteByOffset(
 pDevice,
 0x0,
 0x0000005A;
);

5-56

PlxPci_EepromReadByOffset

Syntax:
PLX_STATUS
PlxPci_EepromReadByOffset(
 PLX_DEVICE_OBJECT *pDevice,
 U32 offset,
 U32 *pValue
);

PLX Chip Support:
All PLX devices

Description:
Reads a 32-bit value from a specified offset from the configuration EEPROM connected to the PLX chip

Parameters:
pDevice

Pointer to an open device

offset
The EEPROM offset of the location to read. (Must be aligned on a 32-bit boundary)

pValue
Pointer to a 32-bit buffer to contain the EEPROM value

Return Codes:

Code Description

PLX_STATUS_OK The function returned successfully
PLX_STATUS_NULL_PARAM One or more parameters is NULL
PLX_STATUS_INVALID_OBJECT The device object is not a valid PLX device or has not been opened
PLX_STATUS_UNSUPPORTED EEPROM access to device is not supported
PLX_STATUS_TIMEOUT The PLX EEPROM controller is busy and not accepting new commands
PLX_STATUS_INVALID_OFFSET Offset not aligned on 32-bit boundary

Usage:
 U32 EepromData;
 PLX_STATUS status;

 // Read the Subsystem Device ID of the 9054
 status =
 PlxPci_EepromReadByOffset(
 pDevice,
 0x44, // Subsystem Device ID EEPROM offset
 &EepromData
);

 if (status != PLX_STATUS_OK)
 // ERROR – Unable to read EEPROM

5-57

PlxPci_EepromWriteByOffset

Syntax:
PLX_STATUS
PlxPci_EepromWriteByOffset(
 PLX_DEVICE_OBJECT *pDevice,
 U32 offset,
 U32 value
);

PLX Chip Support:
All PLX devices

Description:
Writes a 32-bit value to a specified offset of the EEPROM connected to the PLX chip

Parameters:
pDevice

Pointer to an open device

offset
The EEPROM offset of the location to write. (Must be aligned on a 32-bit boundary)

value
The 32-bit value to write

Return Codes:

Code Description

PLX_STATUS_OK The function returned successfully
PLX_STATUS_NULL_PARAM One or more parameters is NULL
PLX_STATUS_INVALID_OBJECT The device object is not a valid PLX device or has not been opened
PLX_STATUS_UNSUPPORTED EEPROM access to device is not supported
PLX_STATUS_TIMEOUT The PLX EEPROM controller is busy and not accepting new commands
PLX_STATUS_INVALID_OFFSET Offset not aligned on 32-bit boundary

Usage:
 PLX_STATUS status;

 // Write to the Subsystem Device ID of the 9054
 status =
 PlxPci_EepromWriteByOffset(
 pDevice,
 0x44, // Subsystem Device ID EEPROM offset
 0x524510B5
);

 if (status != PLX_STATUS_OK)
 // ERROR – Unable to write to EEPROM

5-58

PlxPci_EepromReadByOffset_16

Syntax:
PLX_STATUS
PlxPci_EepromReadByOffset_16(
 PLX_DEVICE_OBJECT *pDevice,
 U32 offset,
 U16 *pValue
);

PLX Chip Support:
All PLX devices

Description:
Reads a 16-bit value from a specified offset from the configuration EEPROM connected to the PLX chip

Parameters:
pDevice

Pointer to an open device

offset
The EEPROM offset of the location to read. (Must be aligned on a 16-bit boundary)

pValue
Pointer to a 16-bit buffer to contain the EEPROM value

Return Codes:

Code Description

PLX_STATUS_OK The function returned successfully
PLX_STATUS_NULL_PARAM One or more parameters is NULL
PLX_STATUS_INVALID_OBJECT The device object is not a valid PLX device or has not been opened
PLX_STATUS_UNSUPPORTED EEPROM access to device is not supported
PLX_STATUS_TIMEOUT The PLX EEPROM controller is busy and not accepting new commands
PLX_STATUS_INVALID_OFFSET Offset not aligned on 16-bit boundary

Usage:
 U16 EepromData;
 PLX_STATUS status;

 // Read the Subsystem Device ID of the 6540
 status =
 PlxPci_EepromReadByOffset_16(
 pDevice,
 0x26, // Subsystem Device ID EEPROM offset
 &EepromData
);

 if (status != PLX_STATUS_OK)
 // ERROR – Unable to read EEPROM

5-59

PlxPci_EepromWriteByOffset_16

Syntax:
PLX_STATUS
PlxPci_EepromWriteByOffset_16(
 PLX_DEVICE_OBJECT *pDevice,
 U32 offset,
 U16 value
);

PLX Chip Support:
All PLX devices

Description:
Writes a 16-bit value to a specified offset of the EEPROM connected to the PLX chip

Parameters:
pDevice

Pointer to an open device

offset
The EEPROM offset of the location to write. (Must be aligned on a 16-bit boundary)

value
The 16-bit value to write

Return Codes:

Code Description

PLX_STATUS_OK The function returned successfully
PLX_STATUS_NULL_PARAM One or more parameters is NULL
PLX_STATUS_INVALID_OBJECT The device object is not a valid PLX device or has not been opened
PLX_STATUS_UNSUPPORTED EEPROM access to device is not supported
PLX_STATUS_TIMEOUT The PLX EEPROM controller is busy and not accepting new commands
PLX_STATUS_INVALID_OFFSET Offset not aligned on 16-bit boundary

Usage:
 PLX_STATUS status;

 // Write to the Subsystem Device ID of the 9054
 status =
 PlxPci_EepromWriteByOffset_16(
 pDevice,
 0x44, // Subsystem Device ID EEPROM offset
 0x5245
);

 if (status != PLX_STATUS_OK)
 {
 // ERROR – Unable to write to EEPROM
 }

5-60

PlxPci_GetPortProperties

Syntax:
PLX_STATUS
PlxPci_GetPortProperties(
 PLX_DEVICE_OBJECT *pDevice,
 PLX_PORT_PROP *pPortProp
);

PLX Chip Support:
All devices

Description:
Returns properties of the PLX driver in use for the selected device

Parameters:
pDevice

Pointer to an open device

pPortProp
A pointer to PLX_PORT_PROP structure that will contain the port properties

Return Codes:

Code Description

PLX_STATUS_OK The function returned successfully
PLX_STATUS_NULL_PARAM One or more parameters is NULL
PLX_STATUS_INVALID_OBJECT The device object is not valid

Usage:
 PLX_PORT_PROP PortProp;

 PlxPci_GetPortProperties(
 pDevice,
 &PortProp
);

 Cons_printf("Port Type : %02d ", PortProp.PortType);

 switch (PortProp.PortType)
 {
 case PLX_PORT_ENDPOINT: // PLX_PORT_NON_TRANS
 Cons_printf("(Endpoint or NT port)\n");
 break;

 case PLX_PORT_UPSTREAM:
 Cons_printf("(Upstream)\n");
 break;

 case PLX_PORT_DOWNSTREAM:

5-61

 Cons_printf("(Downstream)\n");
 break;

 case PLX_PORT_LEGACY_ENDPOINT:
 Cons_printf("(Endpoint)\n");
 break;

 case PLX_PORT_ROOT_PORT:
 Cons_printf("(Root Port)\n");
 break;

 case PLX_PORT_PCIE_TO_PCI_BRIDGE:
 Cons_printf("(PCIe-to-PCI Bridge)\n");
 break;

 case PLX_PORT_PCI_TO_PCIE_BRIDGE:
 Cons_printf("(PCI-to-PCIe Bridge)\n");
 break;

 case PLX_PORT_ROOT_ENDPOINT:
 Cons_printf("(Root Complex Endpoint)\n");
 break;

 case PLX_PORT_ROOT_EVENT_COLL:
 Cons_printf("(Root Complex Event Collector)\n");
 break;

 case PLX_PORT_UNKNOWN:
 default:
 Cons_printf("(Unknown?)\n");
 break;
 }

 Cons_printf("Port Number: %02d\n", PortProp.PortNumber);
 Cons_printf("Max Payload: %02d\n", PortProp.MaxPayloadSize);
 Cons_printf("Link Width : %d\n", PortProp.LinkWidth);
}

5-62

PlxPci_I2cGetPorts

Syntax:
PLX_STATUS
PlxPci_I2cGetPorts(
 PLX_API_MODE ApiMode,
 U32 *pI2cPorts
);

PLX Chip Support:
All devices

Description:
Returns the I2C ports detected in the system and their availability.

Parameters:
ApiMode

Specifies the PLX_API_MODE to use. At this time, only PLX_API_MODE_I2C_AARDVARK is supported.

pI2cPorts
A 32-bit value containing information about the I2C ports in the system. Bits [15:0] denote whether the
specific port is in the system and bits [31:16] denote whether the port is in-use.

Return Codes:

Code Description

PLX_STATUS_OK The function returned successfully
PLX_STATUS_NULL_PARAM One or more parameters is NULL
PLX_STATUS_INVALID_ACCESS The ApiMode parameter is not PLX_API_MODE_I2C_AARDVARK
PLX_STATUS_NO_DRIVER The Aardvark USB device does not exist or driver is not installed

5-63

Usage:
 U8 i;
 U32 I2cPorts;
 PLX_STATUS status;

 // Get available I2C ports
 status =
 PlxPci_I2cGetPorts(
 PLX_API_MODE_I2C_AARDVARK,
 &I2cPorts
);

 if ((status != PLX_STATUS_OK) || (I2cPorts == 0))
 {
 // No I2C ports detected
 }
 else
 {
 // Parse through active ports
 for (i = 0; i < 16; i++)
 {
 // Check if port is active
 if (I2cPorts & (1 << i))
 {
 // Port exists in the system

 // Check if port is in-use
 if ((I2cPorts >> 16) & (1 << i))
 {
 // Port is in use by another application
 }
 }
 }
 }

5-64

PlxPci_I2cVersion

Syntax:
PLX_STATUS
PlxPci_I2cVersion (
 U16 I2cPort,
 PLX_VERSION *pVersion
);

PLX Chip Support:
All devices

Description:
Returns the version information for a specific I2C port.

Parameters:
I2cPort

Specifies the I2C port.

pVersion
A pointer to a.PLX_VERSION structure that will contain version information.

Return Codes:

Code Description

PLX_STATUS_OK The function returned successfully
PLX_STATUS_NULL_PARAM One or more parameters is NULL
PLX_STATUS_INVALID_ACCESS The ApiMode parameter is not PLX_API_MODE_I2C_AARDVARK
PLX_STATUS_NO_DRIVER The Aardvark USB device does not exist or driver is not installed

5-65

Usage:
 PLX_STATUS status;
 PLX_VERSION I2cVersion;

 // Get I2C version
 status =
 PlxPci_I2cVersion(
 0, // I2C USB device
 &I2cVersion
);

 if (status != PLX_STATUS_OK)
 {
 // Error – Unable to get I2C version information
 }
 else
 {
 Cons_printf(
 “I2C Version Info:\n”
 “ API:v%01d.%02d SW:v%01d.%02d FW:v%01d.%02d HW:v%01d.%02d\n”,
 (I2c.ApiLibrary >> 8), I2c.ApiLibrary & 0xFF,
 (I2c.Software >> 8), I2c.Software & 0xFF,
 (I2c.Firmware >> 8), I2c.Firmware & 0xFF,
 (I2c.Hardware >> 8), I2c.Hardware & 0xFF,

 // Verify required versions
 if (I2c.SwReqByFw < I2c.Software)
 Cons_printf(“Error: I2C SW ver is not compatible with FW version\n”);

 if (I2c.FwReqBySw < I2c.Firmware)
 Cons_printf(“Error: I2C FW ver is not compatible with SW version\n”);

 if (I2c.ApiReqBySw < I2c.ApiLibrary)
 Cons_printf(“Error: I2C API ver is not compatible with SW version\n”);
 }

5-66

PlxPci_IoPortRead

Syntax:
PLX_STATUS
PlxPci_IoPortRead(
 PLX_DEVICE_OBJECT *pDevice,
 U64 port,
 VOID *pBuffer,
 U32 ByteCount,
 PLX_ACCESS_TYPE AccessType
);

PLX Chip Support:
All devices

Description:
Reads one or more values from an I/O port.

Parameters:
pDevice

Pointer to an open device

port
The I/O port address to read from. Must be a multiple of the AccessType.

pBuffer
A pointer to a buffer that will contain the data read from the I/O port

ByteCount
The number of bytes to read from the I/O port. Must be a multiple of the AccessType.

AccessType
Determines the size of each unit of data accessed: 8, 16, or 32-bit.

Return Codes:

Code Description

PLX_STATUS_OK The function returned successfully
PLX_STATUS_INVALID_OBJECT The device object is not a valid PLX device or has not been opened
PLX_STATUS_NULL_PARAM One or more parameters is NULL
PLX_STATUS_INVALID_ADDR The I/O port is not aligned on a boundary that is a multiple of the AccessType.
PLX_STATUS_INVALID_ACCESS An invalid or unsupported PLX_ACCESS_TYPE parameter

PLX_STATUS_INVALID_SIZE The region to access is not a valid I/O port or the I/O port is not aligned on a boundary
that is a multiple of the AccessType.

5-67

Usage:
 U8 MyBuffer[0x100];
 PLX_STATUS rc;

 // Read from an I/O port
 rc =
 PlxPci_IoPortRead(
 pDevice,
 200h, // Specify I/O port base
 &MyBuffer, // Buffer to place data into
 0x100, // Number of bytes to read
 BitSize8 // Perform 8-bit reads
);

 if (rc != PLX_STATUS_OK)
 {
 // ERROR - Unable to read from I/O port
 }

5-68

PlxPci_IoPortWrite

Syntax:
PLX_STATUS
PlxPci_IoPortWrite(
 PLX_DEVICE_OBJECT *pDevice,
 U64 port,
 VOID *pBuffer,
 U32 ByteCount,
 PLX_ACCESS_TYPE AccessType
);

PLX Chip Support:
All devices

Description:
Writes one or more values to an I/O port.

Parameters:
pDevice

Pointer to an open device

port
The I/O port address to write to. Must be aligned on an AccessType boundary.

pBuffer
A pointer to a buffer that contains the data to write to the I/O port

ByteCount
The number of bytes to write to the I/O port. Must be a multiple of the AccessType.

AccessType
Determines the size of each unit of data accessed: 8, 16, or 32-bit.

Return Codes:

Code Description

PLX_STATUS_OK The function returned successfully
PLX_STATUS_INVALID_OBJECT The device object is not a valid PLX device or has not been opened
PLX_STATUS_NULL_PARAM One or more parameters is NULL
PLX_STATUS_INVALID_ADDR The I/O port is not aligned on a boundary that is a multiple of the AccessType.
PLX_STATUS_INVALID_ACCESS An invalid or unsupported PLX_ACCESS_TYPE parameter

PLX_STATUS_INVALID_SIZE The region to access is not a valid I/O port or the I/O port is not aligned on a
boundary that is a multiple of the AccessType.

5-69

Usage:
 U8 MyBuffer[0x100];
 PLX_STATUS rc;

 // Read from an I/O port
 rc =
 PlxPci_IoPortWrite(
 pDevice,
 200h, // Specify I/O port base
 &MyBuffer, // Buffer that contains write data
 0x100, // Number of bytes to write
 BitSize16 // Perform 16-bit writes
);

 if (rc != PLX_STATUS_OK)
 {
 // ERROR - Unable to write to I/O port
 }

5-70

PlxPci_InterruptDisable

Syntax:
PLX_STATUS
PlxPci_InterruptDisable(
 PLX_DEVICE_OBJECT *pDevice,
 PLX_INTERRUPT *pPlxIntr
);

PLX Chip Support:
All PLX 9000 devices, 8311, 8000 DMA, 6000 NT, & 8000 NT

Description:
Disables PLX-specific interrupt(s)

Parameters:
pDevice

Pointer to an open device

pPlxIntr
A pointer to the interrupt structure specifying the interrupts to disable

Return Codes:

Code Description

PLX_STATUS_OK The function returned successfully
PLX_STATUS_NULL_PARAM One or more parameters is NULL
PLX_STATUS_INVALID_OBJECT The device object is not a valid PLX device or has not been opened
PLX_STATUS_LOW_POWER The PLX device is in a power state that is lower than required for this function

Usage:
 PLX_STATUS rc;
 PLX_INTERRUPT PlxIntr;

 // Clear interrupt structure
 memset(&PlxIntr, 0, sizeof(PLX_INTERRUPT));

 // Set interrupts to disable
 PlxIntr.LocalToPci_1 = 1; // Generic Local-to-PCI int (LINT#)
 PlxIntr.DmaChannel_0 = 1; // PCI DMA Channel 0

 rc =
 PlxPci_InterruptDisable(
 pDevice,
 &PlxIntr
);

 if (rc != PLX_STATUS_OK)
 // ERROR - Unable to disable interrupts

5-71

PlxPci_InterruptEnable

Syntax:
PLX_STATUS
PlxPci_InterruptEnable(
 PLX_DEVICE_OBJECT *pDevice,
 PLX_INTERRUPT *pPlxIntr
);

PLX Chip Support:
All PLX 9000 devices, 8311, 8000 DMA, 6000 NT, & 8000 NT

Description:
Enables PLX-specific interrupt(s)

Parameters:
pDevice

Pointer to an open device

pPlxIntr
A pointer to the interrupt structure specifying the interrupts to enable

Return Codes:

Code Description

PLX_STATUS_OK The function returned successfully
PLX_STATUS_NULL_PARAM One or more parameters is NULL
PLX_STATUS_INVALID_OBJECT The device object is not a valid PLX device or has not been opened
PLX_STATUS_LOW_POWER The PLX device is in a power state that is lower than required for this function

Usage:
 PLX_STATUS rc;
 PLX_INTERRUPT PlxIntr;

 // Clear interrupt structure
 memset(&PlxIntr, 0, sizeof(PLX_INTERRUPT));

 // Set interrupts to enable
 PlxIntr.LocalToPci_1 = 1; // Generic Local-to-PCI int (LINT#)
 PlxIntr.DmaChannel_0 = 1; // PCI DMA Channel 0

 rc =
 PlxPci_InterruptEnable(
 pDevice,
 &PlxIntr
);

 if (rc != PLX_STATUS_OK)
 // ERROR - Unable to enable interrupts

5-72

PlxPci_MailboxRead

Syntax:
U32
PlxPci_MailboxRead(
 PLX_DEVICE_OBJECT *pDevice,
 U16 mailbox,
 PLX_STATUS *pStatus
);

PLX Chip Support:
All PLX 9000 devices, 8311, & 8000 NT

Description:
Returns the value of the specified mailbox/scratchpad register.

Parameters:
pDevice

Pointer to an open device

mailbox
The specified mailbox to read

pStatus
Pointer to a PLX_STATUS variable to contain the status. (May be NULL)

Return Codes:

Code Description

PLX_STATUS_OK The function returned successfully
PLX_STATUS_NULL_PARAM One or more parameters is NULL
PLX_STATUS_INVALID_OBJECT The device object is not a valid PLX device or has not been opened
PLX_STATUS_UNSUPPORTED The function is not supported by the driver/device
PLX_STATUS_INVALID_DATA The specified mailbox is invalid for the selected device

Usage:
 U32 MB_Value;

 // Read MB
 MB_Value =
 PlxPci_MailboxRead(
 pDevice,
 4, // Mailbox 4
 NULL
);

5-73

PlxPci_MailboxWrite

Syntax:
PLX_STATUS
PlxPci_MailboxWrite(
 PLX_DEVICE_OBJECT *pDevice,
 U16 mailbox,
 U32 value
);

PLX Chip Support:
All PLX 9000 devices, 8311, & 8000 NT

Description:
Writes a value to the specified mailbox/scratchpad register.

Parameters:
pDevice

Pointer to an open device

mailbox
The specified mailbox to write

value
The 32-bit value to write

Return Codes:

Code Description

PLX_STATUS_OK The function returned successfully
PLX_STATUS_NULL_PARAM One or more parameters is NULL
PLX_STATUS_INVALID_OBJECT The device object is not a valid PLX device or has not been opened
PLX_STATUS_UNSUPPORTED The function is not supported by the driver/device
PLX_STATUS_INVALID_DATA The specified mailbox is invalid for the selected device

Usage:
#define MSG_READY 0x1234ABCD

 // Post ready to other side
 PlxPci_MailboxWrite(
 pDevice,
 4, // Mailbox 4
 MSG_READY
);

5-74

PlxPci_MH_GetProperties

Syntax:
PLX_STATUS
PlxPci_MH_GetProperties(
 PLX_DEVICE_OBJECT *pDevice,
 PLX_MULTI_HOST_PROP *pMHProp
);

PLX Chip Support:
PLX 8000 virtual switches that support multi-host feature

Description:
Returns the current properties of a PLX switch capable of supporting multi-host.

Parameters:
pDevice

Pointer to an open device

pMHProp
A pointer to a PLX_MULTI_HOST_PROP structure that will contain the device’s properties.

Return Codes:

Code Description

PLX_STATUS_OK The function returned successfully
PLX_STATUS_NULL_PARAM One or more parameters is NULL
PLX_STATUS_INVALID_OBJECT The device object is not a valid PLX device or has not been opened

PLX_STATUS_UNSUPPORTED
Selected device does not support multi-host capabilities or device is not the
management port in Virtual Switch mode

5-75

Usage:
 PLX_STATUS rc;
 PLX_MULTI_HOST_PROP MHProp;

 // Query MH switch properties
 rc =
 PlxPci_MH_GetProperties(
 pDevice,
 &MHProp
);

 if (rc != PLX_STATUS_OK)
 // Error – Unable to obtain MH switch properties
 else
 {
 // Display properties
 if (MHProp.SwitchMode == PLX_CHIP_MODE_STANDARD)
 Cons_printf(“Switch is in standard single-host mode\n”);

 if (MHProp.SwitchMode == PLX_CHIP_MODE_VIRT_SW)
 {
 if (MHProp.bIsMgmtPort == FALSE)
 {
 // Device properties only available through mgmt port
 Cons_printf(
 “Switch mode is multi-host but port not management\n”
);
 }
 else
 {
 Cons_printf(
 “Properties:\n”
 “ Mode : Multi-host\n”
 “ Curr Mgmt Port : %d (%s)\n”
 “ Backup Mgmt Port : %d (%s)\n”
 “ Active VS port mask: %08X\n”,
 MHProp.MgmtPortNumActive,
 (MHProp.bMgmtPortActiveEn) ? “Enabled” : “Disabled”,
 MHProp.MgmtPortNumRedundant,
 (MHProp.bMgmtPortRedundantEn) ? “Enabled” : “Disabled”,
 MHProp.VS_EnabledMask
);
 }
 }
 }

5-76

PlxPci_MH_MigratePorts

Syntax:
PLX_STATUS
PlxPci_MH_MigratePorts(
 PLX_DEVICE_OBJECT *pDevice,
 U16 VS_Source,
 U16 VS_Dest,
 U32 DsPortMask,
 BOOLEAN bResetSrc
);

PLX Chip Support:
PLX 8000 virtual switches that support multi-host feature

Description:
Migrates one or more downstream ports from one virtual switch host to another.

Parameters:
pDevice

Pointer to an open device

VS_Source
The virtual host to remove downstream port(s) from.

VS_Dest
The virtual host that will be assigned the downstream port(s).

DsPortMask
A mask of the downstream port(s) to move. Each bit position corresponds to a port number. One or more
ports may be specified but must be downstream type.

bResetSrc
Flag to specify whether to reset the source virtual switch.

Return Codes:

Code Description

PLX_STATUS_OK The function returned successfully
PLX_STATUS_NULL_PARAM One or more parameters is NULL
PLX_STATUS_INVALID_OBJECT The device object is not a valid PLX device or has not been opened

PLX_STATUS_UNSUPPORTED
Selected device does not support multi-host capabilities or device is not the
management port in Virtual Switch mode

5-77

Usage:
 // Move ports 2 & 5 from VS1 to VS4
 status =
 PlxPci_MH_MigratePorts(
 pDevice,
 1, // Source port
 4, // Destination port
 (1 << 5) | (1 << 2), // DS ports 2 & 5
 FALSE // Do not reset source port
);

 if (status == PLX_STATUS_OK)
 // Moved ports
 else
 // Error – Unable to move port

5-78

PlxPci_NotificationCancel

Syntax:
PLX_STATUS
PlxPci_NotificationCancel(
 PLX_DEVICE_OBJECT *pDevice,
 PLX_NOTIFY_OBJECT *pEvent
);

PLX Chip Support:
All PLX 9000 devices, 8311, 8000 DMA, 6000 NT, & 8000 NT

Description:
Cancels a notification object previously registered with PlxPci_NotificationRegisterFor.

Parameters:
pDevice

Pointer to an open device

pEvent
A pointer to a PLX notification object previously registered with PlxPci_NotificationRegisterFor.

Return Codes:

Code Description

PLX_STATUS_OK The function returned successfully
PLX_STATUS_NULL_PARAM One or more parameters is NULL
PLX_STATUS_INVALID_OBJECT The device object is not a valid PLX device or has not been opened
PLX_STATUS_INVALID_ACCESS The PLX driver was unable to reference the event handle
PLX_STATUS_INSUFFICIENT_RES Insufficient resources to create the notification object
PLX_STATUS_FAILED The notification object is not valid or not registered

Usage:
 PLX_INTERRUPT IntSources;
 PLX_STATUS rc;
 PLX_NOTIFY_OBJECT Event;

 // Clear interrupt sources
 memset(&IntSources, 0, sizeof(PLX_INTERRUPT));

5-79

 // Register for interrupt notification
 IntSources.Doorbell = (1 << 16) | 0xF; // Doorbells 16, & 0-3
 IntSources.Message_0 = 1;
 IntSources.ResetDeassert = 1;
 IntSources.PmeDeassert = 1;
 IntSources.GPIO_4_5 = 1;
 IntSources.GPIO_14_15 = 1;

 rc =
 PlxPci_NotificationRegisterFor(
 pDevice,
 &IntSources,
 &Event
);

 if (rc != PLX_STATUS_OK)
 {
 // ERROR – Unable to register interrupt notification
 }

 // Wait for the interrupt
 rc =
 PlxPci_NotificationWait(
 pDevice,
 &Event,
 10 * 1000 // 10 second timeout
);

 switch (rc)
 {
 case PLX_STATUS_OK:
 // Interrupt occurred
 break;

 case PLX_STATUS_TIMEOUT:
 // ERROR - Timeout waiting for Interrupt Event
 break;

 case PLX_STATUS_CANCELED:
 // ERROR – Event not registered for wait
 break;
 }

 // Cancel interrupt notification
 rc =
 PlxPci_NotificationCancel(
 pDevice,
 &Event
);

 if (rc != PLX_STATUS_OK)
 {
 // ERROR – Unable to cancel interrupt notification
 }

5-80

PlxPci_NotificationRegisterFor

Syntax:
PLX_STATUS
PlxPci_NotificationRegisterFor(
 PLX_DEVICE_OBJECT *pDevice,
 PLX_INTERRUPT *pPlxIntr,
 PLX_NOTIFY_OBJECT *pEvent
);

PLX Chip Support:
All PLX 9000 devices, 8311, 8000 DMA, 6000 NT, & 8000 NT

Description:
Registers a notification object with the PLX driver for the specified interrupt(s). It is used in conjunction with
PlxPci_NotificationWait.

Parameters:
pDevice

Pointer to an open device

pPlxIntr
A pointer to a structure containing the sources of interrupts that the application would like to be notified of.
An event will occur if ANY one of the registered interrupts occurs.

pEvent
A pointer to a PLX notification object that can be used with PlxPci_NotificationWait.

Return Codes:

Code Description

PLX_STATUS_OK The function returned successfully
PLX_STATUS_INVALID_OBJECT The device object is not a valid PLX device or has not been opened
PLX_STATUS_NULL_PARAM One or more parameters is NULL
PLX_STATUS_INSUFFICIENT_RES Not enough memory to allocate a new event handle

Notes:
This function does not actually enable interrupt(s). It only registers for interrupt notification with the PLX driver.
To enable an interrupt(s), refer to PlxPci_InterruptEnable.

Once the registration is complete, the event will continue to signal until it is cancelled. There is no need to
continuously re-register for notification.

WARNING: For users porting applications written with PCI SDK 4.2 or older, note that you only need to call this
function one time for each interrupt registration. In SDK 4.2 and older, the PlxIntrAttach API call required
constant re-registration. This limitation no longer applies starting with SDK 4.3. If you continuously call
PlxPci_NotificationRegisterFor, the registrations will remain persistent in an internal PLX driver list and consume
system resources, possibly resulting in an unstable system.

5-81

Usage:
 PLX_STATUS rc;
 PLX_INTERRUPT IntSources;
 PLX_NOTIFY_OBJECT Event;

 // Clear interrupt sources
 memset(&IntSources, 0, sizeof(PLX_INTERRUPT));

 // Register for doorbell interrupts 1, 3, & 24
 IntSources.Doorbell = (1 << 24) | (1 << 3) | (1 << 1);

 // Also register for DMA channel 1
 IntSources.DmaChannel_1;

 rc =
 PlxPci_NotificationRegisterFor(
 pDevice,
 &IntSources,
 &Event
);

 if (rc != PLX_STATUS_OK)
 {
 // ERROR – Unable to register interrupt notification
 }

 // Wait for interrupt
 rc =
 PlxPci_NotificationWait(
 pDevice,
 &Event,
 PLX_TIMEOUT_INFINITE // Wait forever
);

 switch (rc)
 {
 case PLX_STATUS_OK:
 // Interrupt triggered
 break;

 case PLX_STATUS_TIMEOUT:
 // ERROR - Timeout waiting for interrupts
 break;

 case PLX_STATUS_CANCELED:
 case PLX_STATUS_FAILED:
 default:
 // ERROR - Failed while waiting for interrupt
 break;
 }

5-82

PlxPci_NotificationStatus

Syntax:
PLX_STATUS
PlxPci_NotificationStatus(
 PLX_DEVICE_OBJECT *pDevice,
 PLX_NOTIFY_OBJECT *pEvent,
 PLX_INTERRUPT *pPlxIntr
);

PLX Chip Support:
All PLX 9000 devices, 8311, 8000 DMA, 6000 NT, & 8000 NT

Description:
Returns which interrupt(s) caused the provided notification event to trigger.

Parameters:
pDevice

Pointer to an open device

pEvent
A pointer to a PLX notification object previously registered with PlxPci_NotificationRegisterFor.

pPlxIntr
A pointer to a PLX_INTERRUPT structure that will contain all triggered interrupts that caused the
notification event to become signaled.

Return Codes:

Code Description

PLX_STATUS_OK The function returned successfully
PLX_STATUS_INVALID_OBJECT The device object is not a valid PLX device or has not been opened
PLX_STATUS_NULL_PARAM One or more parameters is NULL
PLX_STATUS_INSUFFICIENT_RES Not enough memory to allocate a new event handle

Notes:
This function will set the flag for all interrupts that have caused a notification event since the last query. In other
words, if two different interrupts occurred, the status will indicate two different interrupts. There is no way to
determine if the same interrupt triggered multiple times since the last query.

5-83

Usage:
 PLX_INTERRUPT IntSources;
 PLX_STATUS rc;
 PLX_NOTIFY_OBJECT Event;

 // Clear interrupt sources
 memset(&IntSources, 0, sizeof(PLX_INTERRUPT));

 // Wait for interrupt on previously registered event
 rc =
 PlxPci_NotificationWait(
 pDevice,
 &Event,
 10 * 1000 // 10 second timeout
);

 if (rc != PLX_STATUS_OK)
 {
 // ERROR – Interrupt wait failed
 }

 // Determine which interrupt occurred
 rc =
 PlxPci_NotificationStatus(
 pDevice,
 &NotifyObject,
 &IntSources
);

 if (rc == PLX_STATUS_OK)
 {
 Cons_printf("Triggered interrupt(s):");

 if (IntSources.Doorbell)
 Cons_Printf(" <Doorbell>");

 if (IntSources.DmaChannel_0)
 Cons_Printf(" <DMA 0>");

 if (IntSources.GPIO_14_15)
 Cons_Printf(" <GPIO_14_15>");

 if (IntSources.LocalToPci_1)
 Cons_Printf(" <L-to-P 1>");

 Cons_Printf("\n");
 }

5-84

PlxPci_NotificationWait

Syntax:
PLX_STATUS
PlxPci_NotificationWait(
 PLX_DEVICE_OBJECT *pDevice,
 PLX_NOTIFY_OBJECT *pEvent,
 U64 Timeout_ms
);

PLX Chip Support:
All PLX 9000 devices, 8311, 8000 DMA, 6000 NT, & 8000 NT

Description:
Wait for a specific interrupt(s) associated with a PLX notification object to occur or until the timeout is reached.

Parameters:
pDevice

Pointer to an open device

pEvent
A pointer to a PLX notification object previously registered with PlxPci_NotificationRegisterFor.

Timeout_ms
The desired time to wait, in milliseconds, for the event to occur. To wait forever, use the pre-defined value
PLX_TIMEOUT_INFINITE.

Return Codes:

Code Description

PLX_STATUS_OK The function returned successfully and at least one event ocurred
PLX_STATUS_NULL_PARAM One or more parameters is NULL
PLX_STATUS_INVALID_OBJECT The device object is not a valid PLX device or has not been opened
PLX_STATUS_FAILED The notification object is not valid or not registered
PLX_STATUS_TIMEOUT Reached timeout waiting for event
PLX_STATUS_CANCELED Wait event was cancelled

5-85

Usage:
 PLX_STATUS rc;
 PLX_INTERRUPT IntSources;
 PLX_NOTIFY_OBJECT Event;

 // Clear interrupt sources
 memset(&IntSources, 0, sizeof(PLX_INTERRUPT));

 // Register for interrupt notification
 IntSources.DmaChannel_0 = 1;

 rc =
 PlxPci_NotificationRegisterFor(
 pDevice,
 &IntSources,
 &Event
);

 if (rc != PLX_STATUS_OK)
 {
 // ERROR – Unable to register interrupt notification
 }

 // Wait for the interrupt
 rc =
 PlxPci_NotificationWait(
 pDevice,
 &Event,
 10 * 1000 // 10 second timeout
);

 switch (rc)
 {
 case PLX_STATUS_OK:
 // Interrupt occurred
 break;

 case PLX_STATUS_TIMEOUT:
 // ERROR - Timeout waiting for Interrupt Event
 break;

 case PLX_STATUS_CANCELED:
 // ERROR – Event not registered for wait
 break;
 }

5-86

PlxPci_Nt_LutAdd

Syntax:
PLX_STATUS
PlxPci_Nt_LutAdd(
 PLX_DEVICE_OBJECT *pDevice,
 U16 *pLutIndex,
 U16 ReqId,
 U32 flags
);

PLX Chip Support:
PLX 8000 NT

Description:
Adds a PCIe Requester ID entry to the PLX NT port Look-Up Table (LUT)

Parameters:
pDevice

Pointer to an open device

pLutIndex
(May be NULL) A pointer to a variable containing the desired LUT index. If set to -1 (FFFF), the index will
be auto-determined by the driver.
On output and if not NULL, will contain the LUT index used.

ReqId
The Requester ID to add. The format of the ID is standard PCIe format found in TLPs:

15 8 7 3 2 0
Bus Num Device/Slot Num Function Num

flags
One or more flags to set in the entry. Refer to PLX_NT_LUT_FLAG.

Return Codes:

Code Description

PLX_STATUS_OK The function returned successfully
PLX_STATUS_NULL_PARAM One or more parameters is NULL
PLX_STATUS_INVALID_OBJECT The device object is not a valid PLX device or has not been opened
PLX_STATUS_UNSUPPORTED The selected device is not being accessed through the PLX NT driver
PLX_STATUS_INVALID_DATA The specified LUT index was outside the range of possible values
PLX_STATUS_INSUFFICIENT_RES No available LUT entry was available to use

5-87

Usage:
 // Probe for write ReqID
 if (PlxPci_Nt_ReqIdProbe(
 &Device,
 FALSE, // Probe for writes
 &ReqId_Write
) == FALSE)
 {
 Cons_printf("ERROR: Unable to probe ReqID\n");
 }
 else
 {
 Cons_printf(
 "Write ReqID=%04X [b:%02X s:%02X f:%01X])\n",
 ReqId_Write,
 (ReqId_Write >> 8) & 0xFF,
 (ReqId_Write >> 3) & 0x1F,
 (ReqId_Write >> 0) & 0x03
);

 // Default to auto-selected LUT index
 LutIndex = (U16)-1;

 // Add write Req ID to LUT
 if (PlxPci_Nt_LutAdd(
 &Device,
 &LutIndex,
 ReqId_Write,
 FALSE // Snoop must be disabled
) != PLX_STATUS_OK)
 {
 Cons_printf("ERROR: Unable to add LUT entry\n");
 }
 }

 // Probe for read ReqID
 if (PlxPci_Nt_ReqIdProbe(
 &Device,
 TRUE, // Probe for reads
 &ReqId_Read
) == FALSE)
 Cons_printf("ERROR: Unable to probe ReqID\n");
 else
 {
 Cons_printf(
 "Read ReqID=%04X [b:%02X s:%02X f:%01X])\n",
 ReqId_Read,
 (ReqId_Read >> 8) & 0xFF,
 (ReqId_Read >> 3) & 0x1F,
 (ReqId_Read >> 0) & 0x03
);

5-88

 if (ReqId_Read == ReqId_Write)
 {
 Cons_printf("-- Read Req ID matches write, skip LUT add --\n");
 }
 else
 {
 // Default to auto-selected LUT index
 LutIndex = (U16)-1;

 // Add read Req ID to LUT
 if (PlxPci_Nt_LutAdd(
 &Device,
 &LutIndex,
 ReqId_Read,
 FALSE // Snoop must be disabled
) != PLX_STATUS_OK)
 {
 Cons_printf("ERROR: Unable to add LUT entry\n");
 }
 else
 {
 Cons_printf("Ok (LUT_Index=%d No_Snoop=OFF)\n", LutIndex);
 }
 }
 }

5-89

PlxPci_Nt_LutDisable

Syntax:
PLX_STATUS
PlxPci_Nt_LutDisable(
 PLX_DEVICE_OBJECT *pDevice,
 U16 LutIndex
);

** Note: Not yet implemented in the PLX SDK and will currently return PLX_STATUS_UNSUPPORTED **

PLX Chip Support:
PLX 8000 NT

Description:
Disables the specified NT LUT index.

Parameters:
pDevice

Pointer to an open device

LutIndex
The NT LUT index to disable

Return Codes:

Code Description

PLX_STATUS_OK The function returned successfully
PLX_STATUS_NULL_PARAM One or more parameters is NULL
PLX_STATUS_INVALID_OBJECT The device object is not a valid PLX device or has not been opened
PLX_STATUS_UNSUPPORTED The selected device is not being accessed through the PLX NT driver
PLX_STATUS_INVALID_DATA The specified LUT index was outside the range of possible values

Notes:
The NT LUT is shared by all processes. On successful return, the LUT entry may still actually be enabled in the
PLX chip if other active processes also added the same ReqID and the entry was re-used.

Usage:

5-90

PlxPci_Nt_LutProperties

Syntax:
PLX_STATUS
PlxPci_Nt_LutProperties(
 PLX_DEVICE_OBJECT *pDevice,
 U16 LutIndex,
 U16 *pReqId,
 U32 *pFlags,
 BOOLEAN *pbEnabled
);

** Note: Not yet implemented in the PLX SDK and will currently return PLX_STATUS_UNSUPPORTED **

PLX Chip Support:
PLX 8000 NT

Description:
Returns the requested properties of the specified PLX NT LUT entry

Parameters:
pDevice

Pointer to an open device

LutIndex
The NT LUT index to retrieve properties for

pReqId
(May be NULL) A pointer to contain the ReqID in the entry The format of the ID is standard PCIe format
found in TLPs:

15 8 7 3 2 0
Bus Num Device/Slot Num Function Num

pFlags
(May be NULL) A pointer to contain any additional entry properties. Refer to PLX_NT_LUT_FLAG.

pbEnabled
(May be NULL) A pointer to contain a BOOLEAN specifying whether the entry is enabled or not

Return Codes:

Code Description

PLX_STATUS_OK The function returned successfully
PLX_STATUS_NULL_PARAM One or more parameters is NULL
PLX_STATUS_INVALID_OBJECT The device object is not a valid PLX device or has not been opened
PLX_STATUS_UNSUPPORTED The selected device is not being accessed through the PLX NT driver
PLX_STATUS_INVALID_DATA The specified LUT index was outside the range of possible values

Usage:

5-91

PlxPci_Nt_ReqIdProbe

Syntax:
PLX_STATUS
PlxPci_Nt_ReqIdProbe(
 PLX_DEVICE_OBJECT *pDevice
 BOOLEAN bRead,
 U16 *pReqId
);

PLX Chip Support:
PLX 8000 NT

Description:
Attempts to determine the Host PCIe Requester ID when it accesses one of the PLX NT BAR spaces. The
ReqID must then be added to the PLX NT LUT in order for the NT port to accept memory transactions from the
Host. Refer to the PlxPci_Nt_LutAdd function.

Parameters:
pDevice

Pointer to an open device

bRead
Determines whether the algorithm probes using memory read or write access

pReqId
A pointer to contain the detected Requester ID. The format of the ID is standard PCIe format found in
TLPs:

15 8 7 3 2 0
Bus Num Device/Slot Num Function Num

Return Codes:

Code Description

PLX_STATUS_OK The function returned successfully
PLX_STATUS_NULL_PARAM One or more parameters is NULL
PLX_STATUS_INVALID_OBJECT The device object is not a valid PLX device or has not been opened
PLX_STATUS_UNSUPPORTED The selected device is not being accessed through the PLX NT driver
PLX_STATUS_FAILED The determination algorithm failed to properly detect the ReqID

Notes:
The determination of the Host ReqID involves a special algorithm. This feature may not always be successful in
determining the ReqID, in which case, other techniques must be used. For algorithm details, please refer to
PLX driver source code.
On most systems, the PCIe ReqID used for memory reads and writes will be the same. PLX has noticed,
however, that many newer chipsets will use 2 different ReqIDs. In general, the ReqID for write TLPs will be the
Root Complex (bus:0 slot:0: fn:0) & the ReqID for read TLPs will be the parent PCIe Root Complex Root Port of
the NT port.

5-92

Usage:
 // Probe for write ReqID
 if (PlxPci_Nt_ReqIdProbe(
 &Device,
 FALSE, // Probe for writes
 &ReqId_Write
) == FALSE)
 {
 Cons_printf("ERROR: Unable to probe ReqID\n");
 }
 else
 {
 Cons_printf(
 "Write ReqID=%04X [b:%02X s:%02X f:%01X])\n",
 ReqId_Write,
 (ReqId_Write >> 8) & 0xFF,
 (ReqId_Write >> 3) & 0x1F,
 (ReqId_Write >> 0) & 0x03
);

 // Default to auto-selected LUT index
 LutIndex = (U16)-1;

 // Add write Req ID to LUT
 if (PlxPci_Nt_LutAdd(
 &Device,
 &LutIndex,
 ReqId_Write,
 FALSE // Snoop must be disabled
) != PLX_STATUS_OK)
 {
 Cons_printf("ERROR: Unable to add LUT entry\n");
 }
 }

 // Probe for read ReqID
 if (PlxPci_Nt_ReqIdProbe(
 &Device,
 TRUE, // Probe for reads
 &ReqId_Read
) == FALSE)
 Cons_printf("ERROR: Unable to probe ReqID\n");
 else
 {
 Cons_printf(
 "Read ReqID=%04X [b:%02X s:%02X f:%01X])\n",
 ReqId_Read,
 (ReqId_Read >> 8) & 0xFF,
 (ReqId_Read >> 3) & 0x1F,
 (ReqId_Read >> 0) & 0x03
);

 if (ReqId_Read == ReqId_Write)
 {
 Cons_printf("-- Read Req ID matches write, skip LUT add --\n");
 }

5-93

 else
 {
 // Default to auto-selected LUT index
 LutIndex = (U16)-1;

 // Add read Req ID to LUT
 if (PlxPci_Nt_LutAdd(
 &Device,
 &LutIndex,
 ReqId_Read,
 FALSE // Snoop must be disabled
) != PLX_STATUS_OK)
 {
 Cons_printf("ERROR: Unable to add LUT entry\n");
 }
 else
 {
 Cons_printf("Ok (LUT_Index=%d No_Snoop=OFF)\n", LutIndex);
 }
 }
 }

5-94

PlxPci_PciBarSpaceRead

Syntax:
PLX_STATUS
PlxPci_PciBarSpaceRead(
 PLX_DEVICE_OBJECT *pDevice,
 U8 BarIndex,
 U32 offset,
 VOID *pBuffer,
 U32 ByteCount,
 PLX_ACCESS_TYPE AccessType,
 BOOLEAN bOffsetAsLocalAddr
);

PLX Chip Support:
All 9000 series & 8311

Description:
Reads from the specified PCI BAR space of a PLX chip (sometimes referred to as Direct Slave Read).

Parameters:
pDevice

Pointer to an open device

BarIndex
The index of the PCI BAR to access. Valid values are in the range 0-5.

offset
If bOffsetAsLocalAddr is FALSE, offset is an offset from the PCI BAR space. The mapping will not be
adjusted because the function assumes the space is already mapped correctly. The data range accessed
must not be larger than the size of the PCI-to-Local Space window.

If bOffsetAsLocalAddr is TRUE, offset is treated as the actual local bus base address to start reading from.
For 32-bit devices, this allows access to any location on the 4GB local bus space.

pBuffer
A pointer to a user supplied buffer that will contain the retrieved data. This buffer must be large enough to
hold the amount of data requested.

ByteCount
The number of bytes to read. Note: This a number of bytes, not units of data determined by AccessType.

AccessType
Determines the size of each unit of data accessed: 8, 16, or 32-bit.

bOffsetAsLocalAddr (9000 & 8311 devices only)
Determines how the API treats the offset parameter.

If FALSE, offset is treated as an offset from the PCI BAR space.
If TRUE, offset is treated as the actual local bus address. The driver will adjust the space remap register
to access the address.

5-95

Return Codes:

Code Description
PLX_STATUS_OK The function returned successfully
PLX_STATUS_INVALID_ACCESS The function was passed an invalid device handle
PLX_STATUS_NULL_PARAM One or more parameters is NULL
PLX_STATUS_LOW_POWER The PLX device is in a power state that is lower than required for this function
PLX_STATUS_INSUFFICIENT_RES The API was unable to communicate with the driver due to insufficient resources
PLX_STATUS_INVALID_ACCESS An invalid or unsupported PLX_ACCESS_TYPE parameter
PLX_STATUS_INVALID_ADDR The offset parameter is not aligned based on the AccessType
PLX_STATUS_INVALID_SIZE The transfer size parameter is 0 or is not aligned based on the AccessType

Notes:
This function requires that the PCI-to-Local space is valid, enabled, and the space bus descriptors are setup
properly. Incorrect settings may result in incorrect data or system crashes.

For better performance, use the PlxPci_PciBarMap function and access local memory from an application
directly through a virtual address. This will completely bypass the driver and provide direct access to the local
bus. The disadvantage to the direct method is that the application will be responsible for manually configuring
the PLX chip local space re-map window. This will affect code portability, but overall performance is greater
than using the API function.

The end result of this function is a read from the device’s local bus. If no device on the local bus responds,
system crashes may result. Please make sure that valid devices are accessible and addresses are correct
before using this function.

Usage:
 U32 buffer[0x40];

 // Read from an absolute local bus address
 PlxPci_PciBarSpaceRead(
 pDevice,
 2, // Use BAR 2
 0x00100000, // Absolute local address of 1MB
 buffer, // Destination buffer
 sizeof(buffer), // Buffer size in bytes
 BitSize32, // 32-bit accesses
 TRUE // Treat offset as a local bus address
);

 // Read from an offset into the PCI BAR
 PlxPci_PciBarSpaceRead(
 pDevice,
 3, // Use BAR 3
 0x00000100, // Offset from BAR to start reading from
 buffer, // Destination buffer
 sizeof(buffer), // Buffer size in bytes
 BitSize16, // 16-bit accesses
 FALSE // Treat Offset as an offset from BAR
);

5-96

PlxPci_PciBarSpaceWrite

Syntax:
PLX_STATUS
PlxPci_PciBarSpaceWrite(
 PLX_DEVICE_OBJECT *pDevice,
 U8 BarIndex,
 U32 offset,
 VOID *pBuffer,
 U32 ByteCount,
 PLX_ACCESS_TYPE AccessType,
 BOOLEAN bOffsetAsLocalAddr
);

PLX Chip Support:
All 9000 series & 8311

Description:
Writes to the specified PCI BAR space of PLX chip (sometimes referred to as Direct Slave Write).

Parameters:
pDevice

Pointer to an open device

BarIndex
The index of the PCI BAR to access. Valid values are in the range 0-5.

offset
If bOffsetAsLocalAddr is FALSE, offset is an offset from the PCI BAR space. The mapping will not be
adjusted because the function assumes the space is already mapped correctly. The data range accessed
must not be larger than the size of the PCI-to-Local Space window.

If bOffsetAsLocalAddr is TRUE, offset is treated as the actual local bus base address to start reading from.
For 32-bit devices, this allows access to any location on the 4GB local bus space.

pBuffer
A pointer to a user supplied buffer that contains the data to write.

ByteCount
The number of bytes to write. Note: This a number of bytes, not units of data determined by AccessType.

AccessType
Determines the size of each unit of data accessed: 8, 16, or 32-bit.

bOffsetAsLocalAddr (9000 & 8311 devices only)
Determines how the API treats the offset parameter.

If FALSE, offset is treated as an offset from the PCI BAR space.
If TRUE, offset is treated as the actual local bus address. The driver will adjust the space remap register
to access the address.

5-97

Return Codes:
Code Description

PLX_STATUS_OK The function returned successfully
PLX_STATUS_INVALID_ACCESS The function was passed an invalid device handle
PLX_STATUS_NULL_PARAM One or more parameters is NULL
PLX_STATUS_LOW_POWER The PLX device is in a power state that is lower than required for this function
PLX_STATUS_INSUFFICIENT_RES The API was unable to communicate with the driver due to insufficient resources
PLX_STATUS_INVALID_ACCESS An invalid or unsupported PLX_ACCESS_TYPE parameter
PLX_STATUS_INVALID_ADDR The address parameter is not aligned based on the accessType
PLX_STATUS_INVALID_SIZE The transfer size parameter is 0 or is not aligned based on the accessType

Notes:
This function requires that the PCI-to-Local space is valid, enabled, and the space bus descriptors are setup
properly. Incorrect settings may result in incorrect data or system crashes.

For better performance, use the PlxPci_PciBarMap function and access local memory from an application
directly through a virtual address. This will completely bypass the driver and provide direct access to the local
bus. The disadvantage to the direct method is that the application will be responsible for manually configuring
the PLX chip local space re-map window. This will affect code portability, but overall performance is greater
than using the API function.

The end result of this function is a write to the device’s local bus. If no device on the local bus responds, system
crashes may result. Please make sure that valid devices are accessible and addresses are correct before using
this function.

Usage:
 U32 buffer[0x40];

 // Write to an absolute local bus address
 PlxPci_PciBarSpaceWrite(
 pDevice,
 2, // Use BAR 2
 0x00100000, // Absolute local address of 1MB
 buffer, // Destination buffer
 sizeof(buffer), // Buffer size in bytes
 BitSize32, // 32-bit accesses
 TRUE // Treat offset as a local bus address
);

 // Write to an offset from the PCI BAR window
 PlxPci_PciBarSpaceWrite(
 pDevice,
 3, // Use BAR 3
 0x00000100, // Offset from BAR to start reading from
 buffer, // Source buffer
 sizeof(buffer), // Buffer size in bytes
 BitSize16, // 16-bit accesses
 FALSE // Treat Offset as an offset from BAR
);

5-98

PlxPci_PciBarMap

Syntax:
PLX_STATUS
PlxPci_PciBarMap(
 PLX_DEVICE_OBJECT *pDevice,
 U8 BarIndex,
 VOID **pVa
);

PLX Chip Support:
All devices

Description:
Maps a PCI BAR into user virtual space and returns the virtual address. User applications may then bypass the
driver and directly access a PCI space for optimal performance.

Parameters:
pDevice

Pointer to an open device

BarIndex
The index of the PCI BAR to map. Valid values are in the range 0-5.

pVa
Pointer to a buffer which will contain the base virtual address

Return Codes:

Code Description

PLX_STATUS_OK The function returned successfully
PLX_STATUS_INVALID_OBJECT The device object is not a valid PLX device or has not been opened
PLX_STATUS_NULL_PARAM One or more parameters is NULL

PLX_STATUS_UNSUPPORTED Mapping of a PCI BAR space is not supported by the installed PLX
driver

PLX_STATUS_INVALID_DATA PCI BAR index is not in the range of valid values
PLX_STATUS_FAILED Virtual address mapping failed
PLX_STATUS_INVALID_ADDR The PCI space is of type I/O, not memory
PLX_STATUS_INVALID_SIZE The PCI space is of size 0 (disabled)
PLX_STATUS_INVALID_ADDR The PCI space does not contain a valid PCI address or is disabled

PLX_STATUS_INSUFFICIENT_RES The driver was not able to map the space due to insufficient OS
resources

Notes:
It is important to un-map a PCI Space when the virtual address is no longer needed. This should always be
done before the device is released with PlxPci_DeviceClose. Un-mapping a space will release the PTE
resources used back to the OS. Refer to PlxPci_PciBarUnmap.

The PCI space that will be mapped into user virtual space must be a PCI memory type. Mapping of I/O type
spaces is not allowed. I/O type spaces should be accessed with PlxPci_IoPortRead and PlxPci_IoPortWrite.

5-99

The virtual address will cease to be valid after the device is closed. Attempts to use the virtual address after closing a
device will result in exceptions.

Virtual mappings consume Page-Table Entries (PTEs), which are a limited resource in the OS. The OS will fail
a mapping attempt if the number of available PTEs is insufficient to complete the mapping. As the size of a PCI
space gets larger (e.g. 16MB or more), the number of PTEs required increases, resulting in a greater risk of a
failed mapping attempt.

Usage:
 U8 i;
 U32 DataValue;
 VOID *Va[6];
 PLX_STATUS rc;

 for (i = 0; i <= 5; i++)
 {
 rc =
 PlxPci_PciBarMap(
 pDevice,
 i,
 &Va[i]
);

 if (rc != PLX_STATUS_OK)
 {
 // Error – Unable to map PCI bar into virtual space
 }
 }

 printf(
 " BAR 0 VA: 0x%08x\n"
 " BAR 1 VA: 0x%08x\n"
 " BAR 2 VA: 0x%08x\n"
 " BAR 3 VA: 0x%08x\n"
 " BAR 4 VA: 0x%08x\n"
 " BAR 5 VA: 0x%08x\n",
 (PLX_UINT_PTR)Va[0], (PLX_UINT_PTR)Va[1], (PLX_UINT_PTR)Va[2],
 (PLX_UINT_PTR)Va[3], (PLX_UINT_PTR)Va[4], (PLX_UINT_PTR)Va[5]
);

/***
 * NOTE: The configuration of a PCI space is left to the application
 * The translation registers should be configured correctly
 * before accessing the PCI space.
 **/

 // Read a 32-bit value from PCI BAR 0
 value = *(U32*)Va[0];

 // Write an 8-bit value to PCI BAR 1, offset 3Ch
 ((U8)Va[1] + 0x3C) = 0x1A;

5-100

PlxPci_PciBarProperties

Syntax:
PLX_STATUS
PlxPci_PciBarProperties(
 PLX_DEVICE_OBJECT *pDevice,
 U8 BarIndex,
 PLX_PCI_BAR_PROP *pBarProperties
);

PLX Chip Support:
All devices

Description:
Returns the properties of the specified PCI BAR space.

Parameters:
pDevice

Pointer to an open device

BarIndex
The index of the PCI BAR to get. Valid values are in the range 0-5.

pBarProperties
A pointer to a PLX_PCI_BAR_PROP structure that will hold the BAR properties

Return Codes:

Code Description

PLX_STATUS_OK The function returned successfully
PLX_STATUS_INVALID_OBJECT The device object is not a valid PLX device or has not been opened
PLX_STATUS_NULL_PARAM One or more parameters is NULL
PLX_STATUS_INVALID_DATA PCI BAR index is not in the range of valid values

Usage:
 PLX_PCI_BAR_PROP BarProp

 // Get BAR 2 size
 PlxPci_PciBarProperties(
 pDevice,
 2,
 &BarProp
);

 Cons_Printf(
 "BAR 2: %ld bytes",
 (unsigned long)BarProp.Size
);

5-101

PlxPci_PciBarUnmap

Syntax:
PLX_STATUS
PlxPci_PciBarUnmap(
 PLX_DEVICE_OBJECT *pDevice,
 VOID **pVa
);

PLX Chip Support:
All devices

Description:
Unmaps a PCI BAR space from user virtual space, previously mapped with PlxPci_PciBarMap.

Parameters:
pDevice

Pointer to an open device

pVa
Pointer to the virtual address of the PCI BAR to unmap, previously obtained from PlxPci_PciBarMap.

Return Codes:

Code Description

PLX_STATUS_OK The function returned successfully and at least one event ocurred
PLX_STATUS_INVALID_OBJECT The device object is not a valid PLX device or has not been opened

PLX_STATUS_UNSUPPORTED Unmapping of a PCI BAR space is not supported by the installed PLX
driver

PLX_STATUS_NULL_PARAM One or more parameters is NULL
PLX_STATUS_INVALID_ADDR The virtual address is invalid or not a previously mapped address

Notes:
The virtual address must be an address previously obtained with a call to PlxPci_PciBarMap.

This function should be called before a device is released with PlxPci_DeviceClose. The virtual address will cease to
be valid after the device is closed.

5-102

Usage:
 U32 *Va;
 PLX_STATUS rc;

 // Map PCI BAR 0
 rc =
 PlxPci_PciBarMap(
 pDevice,
 0,
 (VOID**)&Va
);

 if (rc != PLX_STATUS_OK)
 {
 // Error – Unable to map PCI bar into virtual space
 }

 //
 // Access PCI space as needed ...
 //

 // Unmap the space
 rc =
 PlxPci_PciBarUnmap(
 pDevice,
 (VOID**)&Va
);

 if (rc != PLX_STATUS_OK)
 {
 // Error – Unable to unmap PCI BAR from virtual space
 }

5-103

PlxPci_PciRegisterRead

Syntax:
U32
PlxPci_PciRegisterRead(
 U8 bus,
 U8 slot,
 U8 function,
 U16 offset,
 PLX_STATUS *pStatus
);

PLX Chip Support:
All devices

Description:
Returns the value of a PCI configuration register at a specified offset

Parameters:
bus

Device bus number

slot
Device slot number

function
Device function number

offset
PCI register 32-bit aligned offset

pStatus
Pointer to a PLX_STATUS variable to contain the status. (May be NULL)

Return Codes:

Code Description

PLX_STATUS_OK The function returned successfully
PLX_STATUS_NULL_PARAM One or more parameters is NULL
PLX_STATUS_NO_DRIVER A valid PLX driver is not loaded in the system
PLX_STATUS_FAILED The PCI configuration access failed or device does not exist

Notes:
For faster access to the PCI registers of a device that is already selected, refer to the function
PlxPci_PciRegisterReadFast.

5-104

Usage:
 U8 bus;
 U8 slot;
 U32 RegValue;
 PLX_STATUS rc;

 // Scan for all PCI devices
 for (bus = 0; bus < 32; bus++)
 {
 for (slot = 0; slot < 32; slot+)
 {
 // Read the Device/Vendor ID
 RegValue =
 PlxPci_PciRegisterRead(
 bus,
 slot,
 0, // Just function 0 devices
 0x0, // Device/Vendor ID register
 &rc
);

 if ((rc == PLX_STATUS_OK) && (RegValue != (U32)-1))
 {
 // Found a valid PCI device
 Cons_Printf(
 “Device ID: %08x [bus %02x slot %02x]\n”,
 RegValue, bus, slot
);
 }
 }
 }

5-105

PlxPci_PciRegisterWrite

Syntax:
PLX_STATUS
PlxPci_PciRegisterWrite(
 U8 bus,
 U8 slot,
 U8 function,
 U16 offset,
 U32 value
);

PLX Chip Support:
All devices

Description:
Writes a 32-bit value to a PCI configuration register at a specified offset

Parameters:
bus

Device bus number

slot
Device slot number

function
Device function number

offset
PCI register 32-bit aligned offset

value
The 32-bit value to write

Return Codes:

Code Description

PLX_STATUS_OK The function returned successfully
PLX_STATUS_NULL_PARAM One or more parameters is NULL
PLX_STATUS_NO_DRIVER A valid PLX driver is not loaded in the system
PLX_STATUS_FAILED The PCI configuration access failed or device does not exist

Notes:
For faster access to the PCI registers of a device that is already selected, refer to the function
PlxPci_PciRegisterWriteFast.

5-106

Usage:
 U32 RegValue;
 PLX_STATUS rc;

 // Read the PCI Command/Status register
 RegValue =
 PlxPci_PciRegisterRead(
 1,
 0xe,
 0,
 CFG_COMMAND, // PCI Command/Status register
 &rc
);

 if (rc != PLX_STATUS_OK)
 {
 // ERROR – Unable to read PCI configuration register
 }

 // Check for any PCI Errors or Aborts
 if (RegValue & 0xf8000000)
 {
 // Write PCI Status back to itself to clear any errors
 rc =
 PlxPci_PciRegisterWrite(
 1,
 0xe,
 0,
 CFG_COMMAND,
 RegValue
);

 if (rc != PLX_STATUS_OK)
 {
 // ERROR – Unable to write to PCI configuration register
 }
 }

5-107

PlxPci_PciRegisterReadFast

Syntax:
U32
PlxPci_PciRegisterReadFast(
 PLX_DEVICE_OBJECT *pDevice,
 U16 offset,
 PLX_STATUS *pStatus
);

PLX Chip Support:
All devices

Description:
Reads the value of a PCI configuration register on the selected device.

Parameters:
pDevice

Pointer to an open device

offset
PCI register 32-bit aligned offset

pStatus
Pointer to a PLX_STATUS variable to contain the status. (May be NULL)

Return Codes:

Code Description

PLX_STATUS_OK The function returned successfully
PLX_STATUS_NULL_PARAM One or more parameters is NULL
PLX_STATUS_INVALID_OBJECT The device object is not a valid PLX device or has not been opened
PLX_STATUS_FAILED The PCI configuration access failed or device does not exist

Usage:
 U32 RegValue;
 PLX_STATUS rc;

 // Read Device/Vendor ID
 RegValue =
 PlxPci_PciRegisterReadFast(
 pDevice,
 CFG_VENDOR_ID,
 &rc
);

 if ((rc != PLX_STATUS_OK) || (RegValue == (U32)-1))
 {
 // ERROR – Unable to read PCI register
 }

5-108

PlxPci_PciRegisterWriteFast

Syntax:
PLX_STATUS
PlxPci_PciRegisterWriteFast(
 PLX_DEVICE_OBJECT *pDevice,
 U16 offset,
 U32 value
);

PLX Chip Support:
All devices

Description:
Writes to a PCI configuration register on the selected device.

Parameters:
pDevice

Pointer to an open device

offset
PCI register 32-bit aligned offset

value
The 32-bit value to write

Return Codes:

Code Description

PLX_STATUS_OK The function returned successfully
PLX_STATUS_NULL_PARAM One or more parameters is NULL
PLX_STATUS_INVALID_OBJECT The device object is not a valid PLX device or has not been opened
PLX_STATUS_FAILED The PCI configuration access failed or device does not exist

5-109

Usage:
 U32 RegValue;
 PLX_STATUS rc;

 // Read the PCI Command/Status register
 RegValue =
 PlxPci_PciRegisterReadFast(
 pDevice,
 CFG_COMMAND, // PCI Command/Status register
 &rc
);

 if (rc != PLX_STATUS_OK)
 {
 // ERROR – Unable to read PCI configuration register
 }

 // Check for any PCI Errors or Aborts
 if (RegValue & 0xf8000000)
 {
 // Write PCI Status back to itself to clear any errors
 rc =
 PlxPci_PciRegisterWriteFast(
 pDevice,
 CFG_COMMAND,
 RegValue
);

 if (rc != PLX_STATUS_OK)
 {
 // ERROR – Unable to write to PCI configuration register
 }
 }

5-110

PlxPci_PciRegisterRead_BypassOS

Syntax:
U32
PlxPci_PciRegisterRead_BypassOS(
 U8 bus,
 U8 slot,
 U8 function,
 U16 offset,
 PLX_STATUS *pStatus
);

PLX Chip Support:
All devices

Description:
Bypasses the OS services to read a specific PCI configuration register

Parameters:
bus

Device bus number

slot
Device slot number

function
Device function number

offset
PCI register 32-bit aligned offset

pStatus
Pointer to a PLX_STATUS variable to contain the status. (May be NULL)

Return Codes:

Code Description

PLX_STATUS_OK The function returned successfully
PLX_STATUS_NO_DRIVER A valid PLX driver is not loaded in the system
PLX_STATUS_UNSUPPORTED The function is not supported by the installed PLX driver

Notes:
Due to the nature of the implementation of this function, PLX cannot guarantee its functionality in future SDK
releases. For example, future versions of the OS may not allow PCI I/O port accesses. As a result, PLX does
not support this function. It is provided for customers who absolutely need this functionality.

Although this function may return PLX_STATUS_OK in the return code, this does not necessarily indicate a
successful access to the device since the driver gets no indication of success or failure. If the register value
returned is FFFF_FFFFh, it is usually an indication of an error or non-existent device in the specified bus/slot.

5-111

Usage:
 U8 bus;
 U8 slot;
 U32 RegValue;
 PLX_STATUS rc;

 // Scan for all PCI devices
 for (bus = 0; bus < 32; bus++)
 {
 for (slot = 0; slot < 32; slot+)
 {
 // Read the Device/Vendor ID
 RegValue =
 PlxPci_PciRegisterRead_BypassOS(
 bus,
 slot,
 0, // Just function 0 devices
 0x0, // Device/Vendor ID
 &rc
);

 if ((rc == PLX_STATUS_OK) && (RegValue != 0xFFFFFFFF))
 {
 // Found a valid PCI device
 Cons_Printf(
 “Device ID: %08x [bus %02x slot %02x]\n”,
 RegValue, bus, slot
);
 }
 }
 }

5-112

PlxPci_PciRegisterWrite_BypassOS

Syntax:
PLX_STATUS
PlxPci_PciRegisterWrite_BypassOS(
 U8 bus,
 U8 slot,
 U8 function,
 U16 offset,
 U32 value
);

PLX Chip Support:
All devices

Description:
Bypasses the OS services to write to a specific PCI configuration register

Parameters:
bus

Device bus number

slot
Device slot number

function
Device function number

offset
PCI register 32-bit aligned offset

value
The 32-bit value to write

Return Codes:

Code Description

PLX_STATUS_OK The function returned successfully
PLX_STATUS_NO_DRIVER A valid PLX driver is not loaded in the system
PLX_STATUS_UNSUPPORTED The function is not supported by the installed PLX driver

Notes:
Due to the nature of the implementation of this function, PLX cannot guarantee its functionality in future SDK
releases. For example, future versions of the OS may not allow PCI I/O port accesses. As a result, PLX does
not support this function. It is provided for customers who absolutely need this functionality.

Although this function may return PLX_STATUS_OK in the return code, this does not necessarily indicate a
successful access to the device since the driver gets no indication of success or failure. If the register value
returned is FFFF_FFFFh, it is usually an indication of an error or non-existent device in the specified bus/slot.

Use of this function is NOT recommended. Direct modification of PCI registers may result in system instability
or device failure. This function is provided only for completeness and for reference purposes.

5-113

Usage:
 U32 RegValue;
 PLX_STATUS rc;

 // Read the PCI Command/Status register
 RegValue =
 PlxPci_PciRegisterRead(
 1,
 0xe,
 0,
 CFG_COMMAND, // PCI Command/Status register
 &rc
);

 if (rc != PLX_STATUS_OK)
 {
 // ERROR – Unable to read PCI configuration register
 }

 // Check for any PCI Errors or Aborts
 if (RegValue & 0xf8000000)
 {
 // Write PCI Status back to itself to clear any errors
 rc =
 PlxPci_PciRegisterWrite_BypassOS(
 1,
 0xe,
 0,
 CFG_COMMAND,
 RegValue
);

 if (rc != PLX_STATUS_OK)
 {
 // ERROR – Unable to write to PCI configuration register
 }

5-114

PlxPci_PerformanceCalcStatistics

Syntax:
PLX_STATUS
PlxPci_PerformanceCalcStatistics(
 PLX_PERF_PROP *pPerfProp,
 PLX_PERF_STATS *pPerfStats,
 U32 ElapsedTime_ms
);

PLX Chip Support:
PLX PCI Express 8000 switches that support internal Performance Counters.

Description:
Uses the performance properties to calculate the resulting performance statistics for a specific port

Parameters:
pPerfProp

Pointer to a PLX_PERF_PROP structure that contains the performance counters and properties filled in
from a call to PlxPci_PerformanceGetCounters().

pPerfStats
Pointer to a PLX_PERF_STATS structure that will contain the calculated performance statistics based
upon the counters and elapsed time.

ElapsedTime_ms
The elapsed time in milliseconds betweens reads of the Performance Counters (i.e. calls to
PlxPci_PerformanceGetCounters()).

Return Codes:

Code Description

PLX_STATUS_OK The function returned successfully
PLX_STATUS_NULL_PARAM One or more parameters is NULL
PLX_STATUS_INVALID_DATA Elapsed time is invalid

Notes:

5-115

Usage:
 U32 ElapsedTime_ms;
 struct timeb PrevTime, EndTime;
 PLX_PERF_PROP PerfProp;
 PLX_PERF_STATS PerfStats;

 // Initialize performance objects
 PlxPci_PerformanceInitializeProperties(
 pDevice,
 &PerfProp
);

 // Start performance monitor
 PlxPci_PerformanceMonitorControl(
 pDevice,
 PLX_PERF_CMD_START
);

 // Reset counters
 PlxPci_PerformanceResetCounters(
 pDevice,
 &PerfProp,
 1 // Only one object
);

 // Get starting time
 ftime(&PrevTime);

 // Insert small delay
 Plx_sleep(1000);

 // Get statistics
 PlxPci_PerformanceGetCounters(
 pDevice,
 &PerfProp,
 1 // Only one object
);

 // Get end time
 ftime(&EndTime);

 // Calculate elapsed time in milliseconds
 ElapsedTime_ms = (((U32)EndTime.time * 1000) + EndTime.millitm) -
 (((U32)PrevTime.time * 1000) + PrevTime.millitm);

 // Calculate performance statistics
 PlxPci_PerformanceCalcStatistics(
 &PerfProp,
 &PerfStats,
 ElapsedTime_ms
);

5-116

PlxPci_PerformanceGetCounters

Syntax:
PLX_STATUS
PlxPci_PerformanceGetCounters(
 PLX_DEVICE_OBJECT *pDevice,
 PLX_PERF_PROP *pPerfProp,
 U8 NumOfObjects
);

PLX Chip Support:
PLX PCI Express 8000 switches that support internal Performance Counters.

Description:
Fills in all the performance counters in the provided performance property objects

Parameters:
pDevice

Pointer to an open device

pPerfProp
A pointer to one or more PLX_PERF_PROP structures.

NumOfObjects
Specifies the number of PLX_PERF_PROP objects pointed to by pPerfProp.

Return Codes:

Code Description

PLX_STATUS_OK The function returned successfully
PLX_STATUS_NULL_PARAM One or more parameters is NULL

PLX_STATUS_INVALID_OBJECT
The device object is not a valid PLX device or has not been opened or one or
more PLX_PERF_PROP objects is invalid or has not been initialized.

PLX_STATUS_UNSUPPORTED The PLX chip does not support Performance Counters.

Notes:

5-117

Usage:
 U32 ElapsedTime_ms;
 struct timeb PrevTime, EndTime;
 PLX_PERF_PROP PerfProp;
 PLX_PERF_STATS PerfStats;

 // Initialize performance objects
 PlxPci_PerformanceInitializeProperties(
 pDevice,
 &PerfProp
);

 // Start performance monitor
 PlxPci_PerformanceMonitorControl(
 pDevice,
 PLX_PERF_CMD_START
);

 // Reset counters
 PlxPci_PerformanceResetCounters(
 pDevice,
 &PerfProp,
 1 // Only one object
);

 // Get starting time
 ftime(&PrevTime);

 // Insert small delay
 Plx_sleep(1000);

 // Get statistics
 PlxPci_PerformanceGetCounters(
 pDevice,
 &PerfProp,
 1 // Only one object
);

 // Get end time
 ftime(&EndTime);

 // Calculate elapsed time in milliseconds
 ElapsedTime_ms = (((U32)EndTime.time * 1000) + EndTime.millitm) -
 (((U32)PrevTime.time * 1000) + PrevTime.millitm);

 // Calculate performance statistics
 PlxPci_PerformanceCalcStatistics(
 &PerfProp,
 &PerfStats,
 ElapsedTime_ms
);

5-118

PlxPci_PerformanceInitializeProperties

Syntax:
PLX_STATUS
PlxPci_PerformanceInitializeProperties(
 PLX_DEVICE_OBJECT *pDevice,
 PLX_PERF_PROP *pPerfProp
);

PLX Chip Support:
PLX PCI Express 8000 switches that support internal Performance Counters.

Description:
Initializes a performance object for use with the performance counter functions

Parameters:
pDevice

Pointer to an open device

pPerfProp
Pointer to a PLX_PERF_PROP object

Return Codes:

Code Description

PLX_STATUS_OK The function returned successfully
PLX_STATUS_NULL_PARAM One or more parameters is NULL

PLX_STATUS_INVALID_OBJECT The device object is not a valid PLX device or has not been opened or one or more
PLX_PERF_PROP objects is invalid or has not been initialized.

PLX_STATUS_UNSUPPORTED The PLX chip does not support Performance Counters or the port number is invalid.

Notes:

5-119

Usage:
 U32 ElapsedTime_ms;
 struct timeb PrevTime, EndTime;
 PLX_PERF_PROP PerfProp;
 PLX_PERF_STATS PerfStats;

 // Initialize performance objects
 PlxPci_PerformanceInitializeProperties(
 pDevice,
 &PerfProp
);

 // Start performance monitor
 PlxPci_PerformanceMonitorControl(
 pDevice,
 PLX_PERF_CMD_START
);

 // Reset counters
 PlxPci_PerformanceResetCounters(
 pDevice,
 &PerfProp,
 1 // Only one object
);

 // Get starting time
 ftime(&PrevTime);

 // Insert small delay
 Plx_sleep(1000);

 // Get statistics
 PlxPci_PerformanceGetCounters(
 pDevice,
 &PerfProp,
 1 // Only one object
);

 // Get end time
 ftime(&EndTime);

 // Calculate elapsed time in milliseconds
 ElapsedTime_ms = (((U32)EndTime.time * 1000) + EndTime.millitm) -
 (((U32)PrevTime.time * 1000) + PrevTime.millitm);

 // Calculate performance statistics
 PlxPci_PerformanceCalcStatistics(
 &PerfProp,
 &PerfStats,
 ElapsedTime_ms
);

5-120

PlxPci_PerformanceMonitorControl

Syntax:
PLX_STATUS
PlxPci_PerformanceMonitorControl(
 PLX_DEVICE_OBJECT *pDevice,
 PLX_PERF_CMD command
);

PLX Chip Support:
PLX PCI Express 8000 switches that support internal Performance Counters.

Description:
Controls the PLX Performance Counters

Parameters:
pDevice

Pointer to an open device

command
A PLX_PERF_CMD that specifies the operation to perform

Return Codes:

Code Description

PLX_STATUS_OK The function returned successfully
PLX_STATUS_NULL_PARAM One or more parameters is NULL
PLX_STATUS_INVALID_OBJECT The device object is not a valid PLX device or has not been opened
PLX_STATUS_UNSUPPORTED The PLX chip does not support Performance Counters.
PLX_STATUS_INVALID_DATA The command parameter is not a valid PLX_PERF_CMD value.

Notes:

5-121

Usage:
 U32 ElapsedTime_ms;
 PLX_PERF_PROP PerfProp;
 PLX_PERF_STATS PerfStats;

 // Set desired elapsed time
 ElapsedTime_ms = 1000;

 // Initialize performance objects
 PlxPci_PerformanceInitializeProperties(
 pDevice,
 &PerfProp
);

 // Start performance monitor
 PlxPci_PerformanceMonitorControl(
 pDevice,
 PLX_PERF_CMD_START
);

 // Reset counters
 PlxPci_PerformanceResetCounters(
 pDevice,
 &PerfProp,
 1 // Only one object
);

 // Insert small delay
 Plx_sleep(ElapsedTime_ms);

 // Get statistics
 PlxPci_PerformanceGetCounters(
 pDevice,
 &PerfProp,
 1 // Only one object
);

 // Stop performance monitor
 PlxPci_PerformanceMonitorControl(
 pDevice,
 PLX_PERF_CMD_STOP
);

 // Calculate performance statistics
 PlxPci_PerformanceCalcStatistics(
 &PerfProp,
 &PerfStats,
 ElapsedTime_ms
);

5-122

PlxPci_PerformanceResetCounters

Syntax:
PLX_STATUS
PlxPci_PerformanceResetCounters(
 PLX_DEVICE_OBJECT *pDevice,
 PLX_PERF_PROP *pPerfProp,
 U8 NumOfObjects
);

PLX Chip Support:
PLX PCI Express 8000 switches that support internal Performance Counters.

Description:
Resets all the performance counters in the provided performance property objects

Parameters:
pDevice

Pointer to an open device

pPerfProp
A pointer to one or more PLX_PERF_PROP structures.

NumOfObjects
Specifies the number of PLX_PERF_PROP objects pointed to by pPerfProp.

Return Codes:

Code Description

PLX_STATUS_OK The function returned successfully
PLX_STATUS_NULL_PARAM One or more parameters is NULL

PLX_STATUS_INVALID_OBJECT
The device object is not a valid PLX device or has not been opened or
one or more PLX_PERF_PROP objects is invalid or has not been
initialized.

PLX_STATUS_UNSUPPORTED The PLX chip does not support Performance Counters.

Notes:

5-123

Usage:
 U32 ElapsedTime_ms;
 struct timeb PrevTime, EndTime;
 PLX_PERF_PROP PerfProp;
 PLX_PERF_STATS PerfStats;

 // Initialize performance objects
 PlxPci_PerformanceInitializeProperties(
 pDevice,
 &PerfProp
);

 // Start performance monitor
 PlxPci_PerformanceMonitorControl(
 pDevice,
 PLX_PERF_CMD_START
);

 // Reset counters
 PlxPci_PerformanceResetCounters(
 pDevice,
 &PerfProp,
 1 // Only one object
);

 // Get starting time
 ftime(&PrevTime);

 // Insert small delay
 Plx_sleep(1000);

 // Get statistics
 PlxPci_PerformanceGetCounters(
 pDevice,
 &PerfProp,
 1 // Only one object
);

 // Get end time
 ftime(&EndTime);

 // Calculate elapsed time in milliseconds
 ElapsedTime_ms = (((U32)EndTime.time * 1000) + EndTime.millitm) -
 (((U32)PrevTime.time * 1000) + PrevTime.millitm);

 // Calculate performance statistics
 PlxPci_PerformanceCalcStatistics(
 &PerfProp,
 &PerfStats,
 ElapsedTime_ms
);

5-124

PlxPci_PhysicalMemoryAllocate

Syntax:
PLX_STATUS
PlxPci_PhysicalMemoryAllocate(
 PLX_DEVICE_OBJECT *pDevice,
 PLX_PHYSICAL_MEM *pMemoryInfo,
 BOOLEAN bSmallerOk
);

PLX Chip Support:
All devices

Description:
Attempts to allocate a physically contiguous, page-locked buffer which is safe for use with DMA operation.

Parameters:
pDevice

Pointer to an open device

pMemoryInfo
A pointer to a PLX_PHYSICAL_MEM structure will contain the buffer information. The requested size of
the buffer to allocate should be set in this structure before making the call. The actual size of the
allocated buffer will be specified in the same field when the call returns.

bSmallerOk
Flag to specify whether a buffer of size smaller than specified is acceptable

• If FALSE, the driver will return an error if the buffer allocation fails
• If TRUE and the allocation fails, the driver will reattempt to allocate the buffer, but decrement

the size each time until the allocation succeeds.

Return Codes:

Code Description

PLX_STATUS_OK The function returned successfully and at least one event ocurred
PLX_STATUS_NULL_PARAM One or more parameters is NULL
PLX_STATUS_INVALID_OBJECT The device object is not a valid PLX device or has not been opened
PLX_STATUS_INSUFFICIENT_RES Insufficient resource to allocate buffer

Notes:
The allocation of a physically contiguous page-locked buffer is dependent upon system resources and the
fragmentation of memory. This type of memory is typically a limited resource in OS environments. As a result,
allocation of large size buffers (> 512k) may fail.

In current versions of Linux, the size of a buffer is additionally limited. In Linux kernel version 2.4 & 2.6, the maximum
is 4MB unless the kernel is modified.

It is possible to call this function to allocate multiple buffers, even if a single call for a large buffer may fail. For example,
a call to allocate a 4MB buffer may fail, but two calls to allocate two 2MB buffers may succeed. It must be noted,
however, that these buffers together do not make up a contiguous 4MB block in memory; they are separate.

5-125

The purpose of these buffers is typically for use with PLX DMA engines or for transfers across an NT port. Since the
buffers are page-locked and physically contiguous in memory, the DMA engine can access the memory as one
continuous block. When using a buffer for DMA transfers, the bus physical address should be used when specifying
the PCI address of a block DMA transfer.

The allocated buffer is not mapped into user virtual space when allocated. To map the buffer into virtual space, use
PlxPci_PhysicalMemoryMap.

Usage:
 PLX_STATUS rc;
 PLX_PHYSICAL_MEM Buffer_1;
 PLX_PHYSICAL_MEM Buffer_2;

 // Allocate a buffer that must succeed

 // Set desired size
 Buffer_1.Size = 0x300000; // 3MB

 rc =
 PlxPci_PhysicalMemoryAllocate(
 pDevice,
 &Buffer_1,
 FALSE // Do not allocate a smaller buffer on failure
);

 if (rc != PLX_STATUS_OK)
 {
 // Error – unable to allocate physical buffer
 }

 // Allocate a buffer, accepting any size

 // Set desired size
 RequestSize = 0x1000000; // 16MB
 Buffer_2.Size = RequestSize;

 rc =
 PlxPci_PhysicalMemoryAllocate(
 pDevice,
 &Buffer_2,
 TRUE // A smaller size buffer is acceptable
);

 if (rc != PLX_STATUS_OK)
 {
 // Error – unable to allocate physical buffer
 }

 if (Buffer_2.Size != RequestSize)
 {
 // Buffer allocated, but smaller than requested size
 }

5-126

PlxPci_PhysicalMemoryFree

Syntax:
PLX_STATUS
PlxPci_PhysicalMemoryFree(
 PLX_DEVICE_OBJECT *pDevice,
 PLX_PHYSICAL_MEM *pMemoryInfo
);

PLX Chip Support:
All devices

Description:
Releases a buffer previously allocated with PlxPci_PhysicalMemoryAllocate.

Parameters:
pDevice

Pointer to an open device

pMemoryInfo
A pointer to a PLX_PHYSICAL_MEM structure which contains the buffer information.

Return Codes:

Code Description

PLX_STATUS_OK The function returned successfully and at least one event ocurred
PLX_STATUS_NULL_PARAM One or more parameters is NULL
PLX_STATUS_INVALID_OBJECT The device object is not a valid PLX device or has not been opened

PLX_STATUS_INVALID_DATA The buffer information is invalid or it was not allocated with
PlxPci_PhysicalMemoryAllocate

Notes:
If the buffer was previously mapped to user virtual space, with PlxPci_PhysicalMemoryMap, it should be unmapped
with PlxPci_PhysicalMemoryUnmap before freeing it from memory.

Once this buffer is released, any virtual mappings to it will fail and the buffer should no longer be used by hardware,
such as the DMA engine. The memory will be returned to the operating system.

All allocated buffers should be unmapped and freed before releasing a device with a call to PlxPci_DeviceClose.
Buffers will become invalid once a device is released.

5-127

Usage:
 PLX_STATUS rc;
 PLX_PHYSICAL_MEM Buffer;

 // Allocate a buffer

 // Set desired size
 Buffer.Size = 0x1000;

 rc =
 PlxPci_PhysicalMemoryAllocate(
 pDevice,
 &Buffer,
 FALSE // Do not allocate a smaller buffer on failure
);

 if (rc != PLX_STATUS_OK)
 {
 // Error – unable to allocate physical buffer
 }

 //
 // Use the buffer as needed
 //

 // Release the buffer
 rc =
 PlxPci_PhysicalMemoryFree(
 pDevice,
 &Buffer
);

 if (rc != PLX_STATUS_OK)
 {
 // Error – unable to free physical buffer
 }

5-128

PlxPci_PhysicalMemoryMap

Syntax:
PLX_STATUS
PlxPci_PhysicalMemoryMap(
 PLX_DEVICE_OBJECT *pDevice,
 PLX_PHYSICAL_MEM *pMemoryInfo
);

PLX Chip Support:
All devices

Description:
Maps into user virtual space a buffer previously allocated with PlxPci_PhysicalMemoryAllocate.

Parameters:
pDevice

Pointer to an open device

pMemoryInfo
A pointer to a PLX_PHYSICAL_MEM structure which contains the buffer information.

Return Codes:

Code Description

PLX_STATUS_OK The function returned successfully and at least one event ocurred
PLX_STATUS_NULL_PARAM One or more parameters is NULL
PLX_STATUS_INVALID_OBJECT The device object is not a valid PLX device or has not been opened
PLX_STATUS_INVALID_DATA Buffer information is invalid or buffer not allocated properly
PLX_STATUS_INVALID_ADDR Physical address of buffer is invalid or buffer not allocated properly
PLX_STATUS_INSUFFICIENT_RES Insufficient resources to perform the mapping

Notes:
Mapping of physical memory into user virtual space may fail due to insufficient Page-Table Enties (PTEs). The
larger the buffer size, the greater the number of PTEs required to map it into user space.

The buffer should be unmapped before calling PlxPci_DeviceClose to close the device. The virtual address will
cease to be valid after closing the device or after unmapping the buffer. Refer to
PlxPci_PhysicalMemoryUnmap.

5-129

Usage:
 U8 value;
 PLX_STATUS rc;
 PLX_PHYSICAL_MEM Buffer;

 // Allocate a buffer

 // Set desired size
 Buffer.Size = 0x1000;

 rc =
 PlxPci_PhysicalMemoryAllocate(
 pDevice,
 &Buffer,
 FALSE // Do not allocate a smaller buffer on failure
);

 if (rc != PLX_STATUS_OK)
 {
 // Error – unable to allocate physical buffer
 }

 // Map the buffer into user space
 rc =
 PlxPci_PhysicalMemoryMap(
 pDevice,
 &Buffer
);

 if (rc != PLX_STATUS_OK)
 {
 // Error – unable to map physical buffer
 }

 // Write 32-bit value to buffer
 (U32)(Buffer.UserAddr + 0x100) = 0x12345;

 // Read 8-bit value from buffer
 value = *(U8*)(Buffer.UserAddr + 0x54);

5-130

PlxPci_PhysicalMemoryUnmap

Syntax:
PLX_STATUS
PlxPci_PhysicalMemoryUnmap(
 PLX_DEVICE_OBJECT *pDevice,
 PLX_PHYSICAL_MEM *pMemoryInfo
);

PLX Chip Support:
All devices

Description:
Unmaps a physical buffer previously mapped with PlxPci_PhysicalMemoryMap.

Parameters:
pDevice

Pointer to an open device

pMemoryInfo
A pointer to a PLX_PHYSICAL_MEM structure which contains the buffer information

Return Codes:

Code Description

PLX_STATUS_OK The function returned successfully and at least one event ocurred
PLX_STATUS_NULL_PARAM One or more parameters is NULL
PLX_STATUS_INVALID_OBJECT The device object is not a valid PLX device or has not been opened

PLX_STATUS_INVALID_ADDR
The virtual address is invalid or was not previously mapped with
PlxPci_PhysicalMemoryMap

PLX_STATUS_INVALID_DATA The buffer information is invalid or it was not allocated with
PlxPci_PhysicalMemoryAllocate

Notes:
It is important to unmap a physical buffer when it is no longer needed to release mapping resources back to the
system.

The buffer should be un-mapped before calling PlxPci_DeviceClose to close the device. The virtual address will
cease to be valid after closing the device or after un-mapping the buffer.

5-131

Usage:
 PLX_STATUS rc;
 PLX_PHYSICAL_MEM Buffer;

 // Allocate a buffer (not shown)

 // Map buffer into user space to get virtual address
 rc =
 PlxPci_PhysicalMemoryMap(
 pDevice,
 &Buffer
);

 if (rc != PLX_STATUS_OK)
 {
 // Error – unable to map physical buffer
 }

 //
 // Access buffer as needed
 //

 // Unmap the buffer from virtual space
 rc =
 PlxPci_PhysicalMemoryUnmap(
 pDevice,
 &Buffer
);

 if (rc != PLX_STATUS_OK)
 {
 // Error – unable to unmap physical buffer
 }

5-132

PlxPci_PlxRegisterRead

Syntax:
U32
PlxPci_PlxRegisterRead(
 PLX_DEVICE_OBJECT *pDevice,
 U32 offset,
 PLX_STATUS *pStatus
);

PLX Chip Support:
All PLX devices

Description:
Reads a PLX-specific register from the selected device

Parameters:
pDevice

Pointer to an open device

offset
PLX register 32-bit aligned offset

pStatus
Pointer to a PLX_STATUS variable to contain the status. (May be NULL)

Return Codes:

Code Description

PLX_STATUS_OK The function returned successfully
PLX_STATUS_NULL_PARAM One or more parameters is NULL
PLX_STATUS_INVALID_OBJECT The device object is not a valid PLX device or has not been opened
PLX_STATUS_INVALID_OFFSET The register offset is not aligned or is not one a PLX-specific register

Notes:
For PLX 8000 series devices, the PLX driver will internally adjust the register offset based on the device port
number. For example, if the selected PCI device is Port 8 of the PLX switch, the driver will add (8 * 4k) to the
offset parameter in order to access the correct register region for that specific port.

5-133

Usage:
 U32 RegValue;
 PLX_STATUS rc;

 // Read the PCI Control register
 RegValue =
 PlxPci_PlxRegisterRead(
 pDevice,
 0x100C, // PCI Control register
 &rc
);

 if (rc != PLX_STATUS_OK)
 {
 // ERROR – Unable to read PLX register
 }

 // Determine PCI clock rate
 if (RegValue & (1 << 7))
 // PCI clock is running at 66MHz
 else
 // PCI clock is running at 33MHz

5-134

PlxPci_PlxRegisterWrite

Syntax:
PLX_STATUS
PlxPci_PlxRegisterWrite(
 PLX_DEVICE_OBJECT *pDevice,
 U32 offset,
 U32 value
);

PLX Chip Support:
All PLX devices

Description:
Writes to a PLX-specific register on the selected device

Parameters:
pDevice

Pointer to an open device

offset
PLX register 32-bit aligned offset

value
The 32-bit value to write

Return Codes:

Code Description

PLX_STATUS_OK The function returned successfully
PLX_STATUS_NULL_PARAM One or more parameters is NULL
PLX_STATUS_INVALID_OBJECT The device object is not a valid PLX device or has not been opened
PLX_STATUS_INVALID_OFFSET The register offset is not aligned or is not one a PLX-specific register

Notes:
For PLX 8000 series devices, the PLX driver will internally adjust the register offset based on the device port
number. For example, if the selected PCI device is Port 8 of the PLX switch, the driver will add (8 * 4k) to the
offset parameter in order to access the correct register region for that specific port.

5-135

Usage:
 U32 RegValue;
 PLX_STATUS rc;

 // Write a value to the Mailbox 1 register
 rc =
 PlxPci_PlxRegisterWrite (
 pDevice,
 0x1034, // Mailbox 1 register
 0xFF001300
);

 if (rc != PLX_STATUS_OK)
 {
 // ERROR – Unable to write to PLX register
 }

5-136

PlxPci_PlxMappedRegisterRead

Syntax:
U32
PlxPci_PlxMappedRegisterRead(
 PLX_DEVICE_OBJECT *pDevice,
 U32 offset,
 PLX_STATUS *pStatus
);

PLX Chip Support:
All PLX devices

Description:
Reads a PLX-specific register from the selected device without adjusting the offset based on the port.

Parameters:
pDevice

Pointer to an open device

offset
PLX register 32-bit aligned offset

pStatus
Pointer to a PLX_STATUS variable to contain the status. (May be NULL)

Return Codes:

Code Description

PLX_STATUS_OK The function returned successfully
PLX_STATUS_NULL_PARAM One or more parameters is NULL
PLX_STATUS_INVALID_OBJECT The device object is not a valid PLX device or has not been opened
PLX_STATUS_INVALID_OFFSET The register offset is not aligned or is not one a PLX-specific register

Notes:
This function is identical to PlxPci_PlxRegisterRead except the PLX driver will not make an internal adjustment
for the port number. The register accessed is simply BAR 0 of the upstream port plus the offset parameter.

5-137

Usage:
 U32 RegValue;
 PLX_STATUS rc;

 // Read register 264h from Port 9
 RegValue =
 PlxPci_PlxMappedRegisterRead(
 pDevice,
 0x264 + (9 * (4 * 1024)),
 &rc
);

 if (rc != PLX_STATUS_OK)
 {
 // ERROR – Unable to read PLX register
 }

5-138

PlxPci_PlxMappedRegisterWrite

Syntax:
PLX_STATUS
PlxPci_PlxMappedRegisterWrite(
 PLX_DEVICE_OBJECT *pDevice,
 U32 offset,
 U32 value
);

PLX Chip Support:
All PLX devices

Description:
Writes to a PLX-specific register on the selected device without adjusting the offset based on the port

Parameters:
pDevice

Pointer to an open device

offset
PLX register 32-bit aligned offset

value
The 32-bit value to write

Return Codes:

Code Description

PLX_STATUS_OK The function returned successfully
PLX_STATUS_NULL_PARAM One or more parameters is NULL
PLX_STATUS_INVALID_OBJECT The device object is not a valid PLX device or has not been opened
PLX_STATUS_INVALID_OFFSET The register offset is not aligned or is not one a PLX-specific register

Notes:
This function is identical to PlxPci_PlxRegisterWrite except the PLX driver will not make an internal adjustment
for the port number. The register accessed is simply BAR 0 of the upstream port plus the offset parameter.

5-139

Usage:
 U32 RegValue;
 PLX_STATUS rc;

 // Write a value to register 660h from Port 8
 rc =
 PlxPci_PlxMappedRegisterWrite(
 pDevice,
 0x660 + (8 * (4 * 1024)),
 0xFF001300
);

 if (rc != PLX_STATUS_OK)
 {
 // ERROR – Unable to write to PLX register
 }

5-140

PlxPci_VpdRead

Syntax:
U32
PlxPci_VpdRead(
 PLX_DEVICE_OBJECT *pDevice,
 U16 offset,
 PLX_STATUS *pStatus
);

PLX Chip Support:
Any device that supports the PCI VPD capability

Description:
Reads a 32-bit value at a specified offset of the Vital Product Data.

Parameters:
pDevice

Pointer to an open device

offset
The is the byte offset to read from (must be aligned 32-bit boundary)

pStatus
A pointer to a buffer for the return code

Return Codes:

Code Description

PLX_STATUS_OK The function returned successfully
PLX_STATUS_NULL_PARAM One or more parameters is NULL
PLX_STATUS_INVALID_OBJECT The device object is not a valid PLX device or has not been opened

Usage:
 U32 VpdData;
 PLX_STATUS rc;

 // Read the default Space 1 range (assuming a 9054)
 VpdData =
 PlxPci_VpdRead(
 pDevice,
 0x48,
 &rc
);

 if (rc != PLX_STATUS_OK)
 {
 // ERROR – Unable to read VPD data
 }

5-141

PlxPci_VpdWrite

Syntax:
PLX_STATUS
PlxPci_VpdWrite(
 PLX_DEVICE_OBJECT *pDevice,
 U16 offset,
 U32 value
);

PLX Chip Support:
Any device that supports the PCI VPD capability

Description:
Write a 32-bit value to a specified offset of the Vital Product Data.

Parameters:
pDevice

Pointer to an open device

offset
The is the byte offset to write to (must be aligned 32-bit boundary)

value
The 32-bit value to write

Return Codes:

Code Description

PLX_STATUS_OK The function returned successfully
PLX_STATUS_NULL_PARAM One or more parameters is NULL
PLX_STATUS_INVALID_OBJECT The device object is not a valid PLX device or has not been opened

Usage:
 // Write the new Device/Vendor ID (assuming 9054 device)
 PlxPci_VpdWrite(
 pDevice,
 0x0,
 0x186010b5
);

 // Write custom data to non-PLX used EEPROM space
 PlxPci_VpdWrite(
 pDevice,
 0x60, // 9054 data ends at 0x58
 0x0024beef
);

5-142

5.2 PLX API Data Structures and Types
This section documents details of the structures and data types used by the PLX API.

5.2.1 Standard Data Types
These data types are used for code portability between all supported environments. PLX header files
automatically define the definitions depending upon the build environment.

Data Type Storage Allocation

S8 Signed 8-bit
U8 Unsigned 8-bit
S16 Signed 16-bit
U16 Unsigned 16-bit
S32 Signed 32-bit
U32 Unsigned 32-bit
S64 Signed 64-bit
U64 Unsigned 64-bit

PLX_INT_PTR
PLX_UINT_PTR

Types large enough to contain a pointer on the target platform. Will be 32-bit on
32-bit platforms and 64-bit on 64-bit CPU platforms. Signed (INT) and unsigned
(UINT) types are provided.

5.2.1.1 Code Portability Macros
To support source code portability between platforms, the following macros are provided:

• PLX_PTR_TO_INT(pointer) - Converts a pointer to an integer

• PLX_INT_TO_PTR(integer) - Convert an integer to a pointer

5.2.2 Enumerated Types
This section contains the enumerated data types used in the PLX API.

5-143

PLX_ACCESS_TYPE
typedef enum _ACCESS_TYPE
{
 BitSize8,
 BitSize16,
 BitSize32,
 BitSize64
} ACCESS_TYPE;

Purpose
Enumerated type used for determining the access type size for a data transfer.

Members
BitSize8

Use 8-bits access

BitSize16
Use 16-bit access

BitSize32
Use 32-bit access

BitSize64
Use 64-bit access (may not be supported on target platform)

5-144

PLX_BAR_FLAG
typedef enum _PLX_BAR_FLAG
{
 PLX_BAR_FLAG_MEM = (1 << 0),
 PLX_BAR_FLAG_IO = (1 << 1),
 PLX_BAR_FLAG_BELOW_1MB = (1 << 2),
 PLX_BAR_FLAG_32_BIT = (1 << 3),
 PLX_BAR_FLAG_64_BIT = (1 << 4),
 PLX_BAR_FLAG_PREFETCHABLE = (1 << 5),
 PLX_BAR_FLAG_UPPER_32 = (1 << 6),
 PLX_BAR_FLAG_PROBED = (1 << 7)
} PLX_BAR_FLAG;

Purpose
Enumerated type to specify additional PCI BAR properties

Members
PLX_BAR_FLAG_MEM

BAR type is a memory space

PLX_BAR_FLAG_IO
BAR type is an I/O space

PLX_BAR_FLAG_BELOW_1MB
BAR is requesting a memory address below 1MB in PCI space (deprecated in PCI 2.0 & higher)

PLX_BAR_FLAG_32_BIT
BAR is requesting a memory address in 32-bit space

PLX_BAR_FLAG_64_BIT
BAR is requesting a memory address in 64-bit space (Uses up 2 BARs)

PLX_BAR_FLAG_PREFETCHABLE
BAR supports Prefetch & write-combining

PLX_BAR_FLAG_UPPER_32
BAR is used as the upper 32-bits of a 64-bit BAR space

PLX_BAR_FLAG_PROBED
Used internally by PLX software for probing & mapping purposes

5-145

PLX_API_MODE
typedef enum _PLX_API_MODE
{
 PLX_API_MODE_PCI,
 PLX_API_MODE_I2C_AARDVARK,
 PLX_API_MODE_TCP
} PLX_API_MODE;

Purpose
Enumerated type to specify the method used to access a device.

Members
PLX_API_MODE_PCI

Device is accessed via the PLX driver over PCI/PCI Express bus

PLX_API_MODE_I2C_AARDVARK
Device is accessed over I2C using the Aadvark USB I2C /SPI connector

PLX_API_MODE_TCP
Device is accessed over TCP/IP (not currently supported)

5-146

PLX_CHIP_FAMILY
typedef enum _PLX_CHIP_FAMILY
{
 PLX_FAMILY_NONE = 0,
 PLX_FAMILY_UNKNOWN,
 PLX_FAMILY_BRIDGE_P2L, // 9000 series & 8311
 PLX_FAMILY_BRIDGE_PCI_P2P, // 6000 series
 PLX_FAMILY_BRIDGE_PCIE_P2P, // 8111,8112,8114
 PLX_FAMILY_ALTAIR, // 8525,8533,8547,8548
 PLX_FAMILY_ALTAIR_XL, // 8505,8509
 PLX_FAMILY_VEGA, // 8516,8524,8532
 PLX_FAMILY_VEGA_LITE, // 8508,8512,8517,8518
 PLX_FAMILY_DENEB, // 8612,8616,8624,8632,8647,8648
 PLX_FAMILY_SIRIUS, // 8604,8606,8608,8609,8613,8614,8615
 // 8617,8618,8619
 PLX_FAMILY_CYGNUS, // 8625,8636,8649,8664,8680,8696
 PLX_FAMILY_SCOUT, // 8700
 PLX_FAMILY_DRACO_1, // 8712,8716,8724,8732,8747,8748,8749
 PLX_FAMILY_DRACO_2, // 8713,8717,8725,8733 + [Draco 1 rev BA]
 PLX_FAMILY_MIRA, // 2380,3380,3382,8603,8605
 PLX_FAMILY_CAPELLA_1, // 8714,8718,8734,8750,8764,8780,8796
 PLX_FAMILY_CAPELLA_2 // 9712,9713,9716,9717,9733,9734,9749
 // 9750,9765,9766,9781,9782,9797,9798
 PLX_FAMILY_LAST_ENTRY // -- Must be final entry --
} PLX_CHIP_FAMILY;

Purpose
Enumerated type to specify the PLX chip family.

Members
PLX_FAMILY_NONE

Device is not a PLX chip

PLX_FAMILY_UNKOWN
The PLX chip family was unable to be determined

PLX_FAMILY_xxxx
The various PLX chip families

5-147

PLX_CHIP_MODE
typedef enum _PLX_CHIP_MODE
{
 PLX_CHIP_MODE_UNKNOWN,
 PLX_CHIP_MODE_STANDARD, // Standard switch fan-out mode
 PLX_CHIP_MODE_STD_LEGACY_NT, // Standard mode w/NT but no parent DS P2P
 PLX_CHIP_MODE_STD_NT_DS_P2P, // Standard mode w/NT & parent DS P2P
 PLX_CHIP_MODE_VIRT_SW, // Virtual Switch (VS) mode
 PLX_CHIP_MODE_FABRIC, // PCIe fabric mode
 PLX_CHIP_MODE_ROOT_COMPLEX, // RC mode
 PLX_CHIP_MODE_LEGACY_ADAPTER // Legacy adapter mode
} PLX_CHIP_MODE;

Purpose
Enumerated type to specify the current PLX chip running mode.

Members
Refer to comments in structure

5-148

PLX_CRC_STATUS
typedef enum _PLX_CRC_STATUS
{
 PLX_CRC_INVALID = 0,
 PLX_CRC_VALID = 1,
 PLX_CRC_UNSUPPORTED = 2,
 PLX_CRC_UNKNOWN = 3
} PLX_CRC_STATUS;

Purpose
Enumerated type used to report EEPROM CRC status

Members
PLX_CRC_INVALID

The CRC is not valid

PLX_CRC_VALID
The CRC is valid

PLX_CRC_UNSUPPORTED
The CRC feature is not supported by the selected device

PLX_CRC_UNKNOWN
The CRC status is unknown

5-149

PLX_DMA_COMMAND
typedef enum _PLX_DMA_COMMAND
{
 DmaPause,
 DmaPauseImmediate,
 DmaResume,
 DmaAbort
} PLX_DMA_COMMAND;

Purpose
Enumerated type used to control DMA transfers.

Members
DmaPause

Pause a DMA transfer, gracefully if supported by hardware (i.e. completes pending transfers, etc).

DmaPauseImmediate
Pause a DMA transfer immediately without waiting for pending transfers to complete.

DmaResume
Resume a paused DMA transfer.

DmaAbort
Abort a DMA transfer.

5-150

PLX_DMA_DESCR_MODE
typedef enum _PLX_DMA_DESCR_MODE
{
 PLX_DMA_MODE_BLOCK = 0,
 PLX_DMA_MODE_SGL = 1,
 PLX_DMA_MODE_SGL_INTERNAL = 2,
} PLX_DMA_DESCR_MODE;

Purpose
Enumerated type used to control DMA transfers.

Members
PLX_DMA_MODE_BLOCK

DMA operates in single transfer block mode

PLX_DMA_MODE_SGL
DMA operates in SGL (ring) transfer mode with descriptors held externally (off-chip mode)

PLX_DMA_MODE_SGL_INTERNAL
DMA operates in SGL (ring) transfer mode with descriptors held in internal RAM (on-chip mode)

5-151

PLX_DMA_RING_DELAY_TIME
typedef enum _PLX_DMA_RING_DELAY_TIME
{
 PLX_DMA_RING_DELAY_0 = 0,
 PLX_DMA_RING_DELAY_1us = 1,
 PLX_DMA_RING_DELAY_2us = 2,
 PLX_DMA_RING_DELAY_8us = 3,
 PLX_DMA_RING_DELAY_32us = 4,
 PLX_DMA_RING_DELAY_128us = 5,
 PLX_DMA_RING_DELAY_512us = 6,
 PLX_DMA_RING_DELAY_1ms = 7
} PLX_DMA_RING_DELAY_TIME;

Purpose
In SGL mode, when DMA reaches the end of the ring and ring wrap mode is enabled, this controls the delay
before the DMA wraps back to the beginning of the ring.

Members
DMA ring delay period varies from none or 1μs  1ms via preset values. Refer to the member name for the
delay time.

5-152

PLX_DMA_DIR
typedef enum _PLX_DMA_DIR
{
 PLX_DMA_PCI_TO_LOC = 0, // PCI --> Local bus (9000 DMA)
 PLX_DMA_LOC_TO_PCI = 1, // Local bus --> PCI (9000 DMA)
 PLX_DMA_USER_TO_PCI = PLX_DMA_PCI_TO_LOC, // User buffer --> PCI (8000 DMA)
 PLX_DMA_PCI_TO_USER = PLX_DMA_LOC_TO_PCI // PCI --> User buffer (8000 DMA)
} PLX_DMA_DIR;

Purpose
Enumerated type used to specify the direction of DMA transfers.

Members
PLX_DMA_PCI_TO_LOC (9000 DMA)

Sets the DMA transfer direction from PCI  Local Bus

PLX_DMA_LOC_TO_PCI (9000 DMA)
Sets the DMA transfer direction from Local Bus  PCI

PLX_DMA_USER_TO_PCI (8000 DMA)
Sets the DMA transfer direction from a user mode provided buffer  a destination PCI address

PLX_DMA_PCI_TO_USER (8000 DMA)
Sets the DMA transfer direction from a source PCI address  a user mode provided buffer

5-153

PLX_DMA_MAX_SRC_TSIZE
typedef enum _PLX_DMA_MAX_SRC_TSIZE
{
 PLX_DMA_MAX_SRC_TSIZE_64B = 0,
 PLX_DMA_MAX_SRC_TSIZE_128B = 1,
 PLX_DMA_MAX_SRC_TSIZE_256B = 2,
 PLX_DMA_MAX_SRC_TSIZE_512B = 3,
 PLX_DMA_MAX_SRC_TSIZE_1K = 4,
 PLX_DMA_MAX_SRC_TSIZE_2K = 5,
 PLX_DMA_MAX_SRC_TSIZE_4K = 7
} PLX_DMA_SRC_MAX_TSIZE;

Purpose
Sets the TLP Max Payload Size (MPS) when the DMA engine reads the source location. This should not
exceed the MPS set by the system in the DMA PCIe Capabilities.

Members
DMA maximum transfer sizes vary from 64B  4KB.. Refer to the member name for the maximum transfer size

5-154

PLX_EEPROM_PORT
typedef enum _PLX_EEPROM_PORT
{
 PLX_EEPROM_PORT_NONE = 0,
 PLX_EEPROM_PORT_NT_VIRT_0 = 254,
 PLX_EEPROM_PORT_NT_LINK_0 = 253,
 PLX_EEPROM_PORT_NT_VIRT_1 = 252,
 PLX_EEPROM_PORT_NT_LINK_1 = 251,
 PLX_EEPROM_PORT_DMA_0 = 250,
 PLX_EEPROM_PORT_DMA_1 = 249,
 PLX_EEPROM_PORT_DMA_2 = 248,
 PLX_EEPROM_PORT_DMA_3 = 247,
 PLX_EEPROM_PORT_SHARED_MEM = 246
} PLX_EEPROM_PORT

Purpose
Enumerated type used for specifying ports other than standard transparent to target in EEPROM values

Members
PLX_EEPROM_PORT_NONE

Port type not specified

PLX_EEPROM_PORT_NT_xxx
One of the NT-virtual or NT-Link ports

PLX_EEPROM_PORT_DMA_xxx
One of the DMA functions

PLX_EEPROM_PORT_SHARED_MEM
Shared memory in the PLX chip (8111/8112)

5-155

PLX_EEPROM_STATUS
typedef enum _PLX_EEPROM_STATUS
{
 PLX_EEPROM_STATUS_NONE = 0,
 PLX_EEPROM_STATUS_VALID = 1,
 PLX_EEPROM_STATUS_INVALID_DATA = 2,
 PLX_EEPROM_STATUS_BLANK = PLX_EEPROM_STATUS_INVALID_DATA,
 PLX_EEPROM_STATUS_CRC_ERROR = PLX_EEPROM_STATUS_INVALID_DATA
} PLX_EEPROM_STATUS;

Purpose
Enumerated type used for providing EEPROM status

Members
PLX_EEPROM_STATUS_NONE

EEPROM not present.

PLX_EEPROM_STATUS_VALID
EEPROM is present with valid data

PLX_EEPROM_STATUS_INVALID_DATA
EEPROM is present with invalid data or CRC error

PLX_EEPROM_STATUS_BLANK
EEPROM is blank. Returns same value as PLX_EEPROM_STATUS_INVALID_DATA

PLX_EEPROM_STATUS_CRC_ERROR
EEPROM has CRC error. Returns same value as PLX_EEPROM_STATUS_INVALID_DATA

5-156

PLX_FLAG_PORT
typedef enum _PLX_FLAG_PORT
{
 PLX_FLAG_PORT_NT_LINK_1 = 63, // Bit for NT Link port 0
 PLX_FLAG_PORT_NT_LINK_0 = 62, // Bit for NT Link port 1
 PLX_FLAG_PORT_NT_VIRTUAL_1 = 61, // Bit for NT Virtual port 0
 PLX_FLAG_PORT_NT_VIRTUAL_0 = 60, // Bit for NT Virtual port 1
 PLX_FLAG_PORT_NT_DS_P2P = 59, // Bit for NT DS P2P port (Virtual)
 PLX_FLAG_PORT_DMA_RAM = 58, // Bit for DMA RAM
 PLX_FLAG_PORT_DMA_3 = 57, // Bit for DMA channel 3
 PLX_FLAG_PORT_DMA_2 = 56, // Bit for DMA channel 2
 PLX_FLAG_PORT_DMA_1 = 55, // Bit for DMA channel 1
 PLX_FLAG_PORT_DMA_0 = 54, // Bit for DMA ch 0 or Func 1 (all 4 ch)
 PLX_FLAG_PORT_PCIE_TO_USB = 53, // Bit for PCIe-to-USB P2P or Root Port
 PLX_FLAG_PORT_USB = 52, // Bit for USB Host/Bridge
 PLX_FLAG_PORT_ALUT_3 = 51, // Bit for ALUT RAM arrays 0
 PLX_FLAG_PORT_ALUT_2 = 50, // Bit for ALUT RAM arrays 1
 PLX_FLAG_PORT_ALUT_1 = 49, // Bit for ALUT RAM arrays 2
 PLX_FLAG_PORT_ALUT_0 = 48, // Bit for ALUT RAM arrays 3
 PLX_FLAG_PORT_VS_REGS_S5 = 47, // Bit for VS mode station 0 specific regs
 PLX_FLAG_PORT_VS_REGS_S4 = 46, // Bit for VS mode station 1 specific regs
 PLX_FLAG_PORT_VS_REGS_S3 = 45, // Bit for VS mode station 2 specific regs
 PLX_FLAG_PORT_VS_REGS_S2 = 44, // Bit for VS mode station 3 specific regs
 PLX_FLAG_PORT_VS_REGS_S1 = 43, // Bit for VS mode station 4 specific regs
 PLX_FLAG_PORT_VS_REGS_S0 = 42, // Bit for VS mode station 5 specific regs
 PLX_FLAG_PORT_MAX = 41 // Bit for highest possible standard port
} PLX_FLAG_PORT;

Purpose
Enumerated type used for providing special ports in the PLX chip port mask

Members
PLX_FLAG_PORT_xxxx

Bit position representing the PLX port type

5-157

PLX_NT_LUT_FLAG
typedef enum _PLX_NT_LUT_FLAG
{
 PLX_NT_LUT_FLAG_NONE = 0,
 PLX_NT_LUT_FLAG_NO_SNOOP = (1 << 0),
 PLX_NT_LUT_FLAG_READ = (1 << 1),
 PLX_NT_LUT_FLAG_WRITE = (1 << 2)
} PLX_NT_LUT_FLAG;

Purpose
Enumerated type used for reporting NT port type

Members
PLX_NT_LUT_FLAG_NONE

No active flags

PLX_NT_LUT_FLAG_NO_SNOOP
Enables the No_Snoop disable option for the LUT entry

PLX_NT_LUT_FLAG_READ
Enables memory read TLP access (Not supported in current PLX chips)

PLX_NT_LUT_FLAG_WRITE
Enables memory write TLP access (Not supported in current PLX chips)

5-158

PLX_PERF_CMD
typedef enum _PLX_PERF_CMD
{
 PLX_PERF_CMD_START,
 PLX_PERF_CMD_STOP,
} PLX_PERF_CMD;

Purpose
Commands to control the PLX Performance Counters

Members
PLX_PERF_CMD_START

Starts the Performance Counters

PLX_PERF_CMD_STOP
Stops the Performance Counters

5-159

PLX_PORT_TYPE
typedef enum _PLX_PORT_TYPE
{
 PLX_PORT_UNKNOWN = 0xFF,
 PLX_PORT_ENDPOINT = 0,
 PLX_PORT_LEGACY_ENDPOINT = 1,
 PLX_PORT_ROOT_PORT = 4,
 PLX_PORT_UPSTREAM = 5,
 PLX_PORT_DOWNSTREAM = 6,
 PLX_PORT_PCIE_TO_PCI_BRIDGE = 7,
 PLX_PORT_PCI_TO_PCIE_BRIDGE = 8,
 PLX_PORT_ROOT_ENDPOINT = 9,
 PLX_PORT_ROOT_EVENT_COLL = 10
} PLX_PORT_TYPE;

Purpose
Enumerated type used for providing port type information.

Members
N/A

5-160

PLX_SPECIFIC_PORT_TYPE
typedef enum _PLX_SPECIFIC_PORT_TYPE
{
 PLX_SPEC_PORT_UNKNOWN = 0, // Unknown port type
 PLX_SPEC_PORT_INVALID = 0xFF, // Invalid port type
 PLX_SPEC_PORT_NT_VIRTUAL = 1, // NT Virtual-side
 PLX_SPEC_PORT_NT_LINK = 2, // NT Link-side
 PLX_SPEC_PORT_UPSTREAM = 3, // Upstream port
 PLX_SPEC_PORT_DOWNSTREAM = 4, // Downstream port
 PLX_SPEC_PORT_P2P_BRIDGE = 5, // P2P bridge
 PLX_SPEC_PORT_LEGACY_EP = 6, // Legacy EP
 PLX_SPEC_PORT_DMA = 7, // DMA EP
 PLX_SPEC_PORT_HOST = 8, // Host port
 PLX_SPEC_PORT_FABRIC = 9, // Fabric port
 PLX_SPEC_PORT_GEP = 10, // Global EP
 PLX_SPEC_PORT_SYNTH_NIC = 11, // Synthetic NIC VF
 PLX_SPEC_PORT_SYNTH_TWC = 12, // Synthetic TWC EP
 PLX_SPEC_PORT_SYNTH_EN_EP = 13 // Synthetic Enabler EP

 // Following definitions are deprecated & only remain for compatibility
 ,PLX_NT_PORT_NONE = PLX_SPEC_PORT_UNKNOWN,
 PLX_NT_PORT_PRIMARY = PLX_SPEC_PORT_NT_VIRTUAL,
 PLX_NT_PORT_SECONDARY = PLX_SPEC_PORT_NT_LINK,
 PLX_NT_PORT_VIRTUAL = PLX_SPEC_PORT_NT_VIRTUAL,
 PLX_NT_PORT_LINK = PLX_SPEC_PORT_NT_LINK,
 PLX_NT_PORT_UNKOWN = PLX_SPEC_PORT_INVALID
} PLX_SPECIFIC_PORT_TYPE;

Purpose
Enumerated type used for reporting PLX-specific port types

Members
Refer to comments in structure

5-161

PLX_STATE
typedef enum _PLX_STATE
{
 PLX_STATE_OK,
 PLX_STATE_NO_CHANGE,
 PLX_STATE_WORKING,
 PLX_STATE_ERROR,
 PLX_STATE_ENABLED,
 PLX_STATE_DISABLED,
 PLX_STATE_UNINITIALIZED,
 PLX_STATE_INITIALIZING,
 PLX_STATE_INITIALIZED,
 PLX_STATE_IDLE,
 PLX_STATE_BUSY,
 PLX_STATE_STARTED,
 PLX_STATE_STARTING,
 PLX_STATE_STOPPED,
 PLX_STATE_STOPPING,
 PLX_STATE_CANCELED,
 PLX_STATE_DELETED,
 PLX_STATE_MARKED_FOR_DELETE,
 PLX_STATE_OK_TO_DELETE,
 PLX_STATE_TRIGGERED,
 PLX_STATE_PENDING,
 PLX_STATE_WAITING,
 PLX_STATE_TIMEOUT,
 PLX_STATE_REQUESTING,
 PLX_STATE_REQUESTED,
 PLX_STATE_ACCEPTING,
 PLX_STATE_ACCEPTED,
 PLX_STATE_REJECTED,
 PLX_STATE_COMPLETING,
 PLX_STATE_COMPLETED,
 PLX_STATE_CONNECTING,
 PLX_STATE_CONNECTED,
 PLX_STATE_DISCONNECTING,
 PLX_STATE_DISCONNECTED
} PLX_STATE;

Purpose
Enumerated type to provide generic states for general use

Members
Self-explanatory

5-162

PLX_STATUS
// Return type
typedef int PLX_STATUS;

// API Return Code Values
typedef enum _PLX_STATUS_CODE
{
 PLX_STATUS_OK,
 PLX_STATUS_FAILED,
 PLX_STATUS_NULL_PARAM,
 PLX_STATUS_UNSUPPORTED,
 PLX_STATUS_NO_DRIVER,
 PLX_STATUS_INVALID_OBJECT,
 PLX_STATUS_VER_MISMATCH,
 PLX_STATUS_INVALID_OFFSET,
 PLX_STATUS_INVALID_DATA,
 PLX_STATUS_INVALID_SIZE,
 PLX_STATUS_INVALID_ADDR,
 PLX_STATUS_INVALID_ACCESS,
 PLX_STATUS_INSUFFICIENT_RES,
 PLX_STATUS_TIMEOUT,
 PLX_STATUS_CANCELED,
 PLX_STATUS_COMPLETE,
 PLX_STATUS_PAUSED,
 PLX_STATUS_IN_PROGRESS,
 PLX_STATUS_PAGE_GET_ERROR,
 PLX_STATUS_PAGE_LOCK_ERROR,
 PLX_STATUS_LOW_POWER,
 PLX_STATUS_IN_USE,
 PLX_STATUS_DISABLED,
 PLX_STATUS_PENDING,
 PLX_STATUS_NOT_FOUND,
 PLX_STATUS_INVALID_STATE,
 PLX_STATUS_BUFF_TOO_SMALL,
 PLX_STATUS_RSVD_LAST_ERROR // Do not add API errors below this line
} PLX_STATUS_CODE;

Purpose
Type used for providing PLX status codes for all PLX API functions.

Members
N/A

5-163

5.2.3 Data Structures
This section contains the enumerated data types used in the PLX API.

5-164

PLX_DEVICE_KEY
typedef struct _PLX_DEVICE_KEY
{
 U32 IsValidTag; // Internal Use - Magic number for validity
 U8 domain; // Physical device location
 U8 bus;
 U8 slot;
 U8 function;
 U16 VendorId; // Device Identifier
 U16 DeviceId;
 U16 SubVendorId;
 U16 SubDeviceId;
 U8 Revision;
 U16 PlxChip; // Internal Use - PLX chip type
 U8 PlxRevision; // Internal Use - PLX chip revision
 U8 PlxFamily; // Internal Use - PLX chip family
 U8 ApiIndex; // Internal Use - Used by PLX API
 U8 DeviceNumber; // Internal Use - Used by PLX device drivers
 U8 ApiMode; // Internal Use – API Mode to access device
 U8 PlxPort; // Internal Use - PLX port number of device
 union
 {
 U8 PlxPortType; // PLX-specific port type (NT/DMA/Host/etc)
 U8 NTPortType; // (Deprecated) If NT, stores NT port type
 };
 U8 NTPortNum; // Internal Use - If NT port, NT port number
 U8 DeviceMode; // Internal Use - Device mode used by PLX API
 U32 ApiInternal[2]; // Internal Use - Reserved for PLX API use
} PLX_DEVICE_KEY;

Purpose
Uniquely identifies a PCI device in a system. The values in the key are used throughout the PLX API and
drivers and should not be modified.

Members
IsValidTag

Reserved for internal use by the PLX API

domain
PCI segment/domain number

bus
The PCI device bus number

slot
The PCI device slot number

function
The PCI device function number

VendorId
The PCI device Vendor ID

DeviceId
The PCI device Device ID

5-165

SubVendorId
The PCI device subsystem Vendor ID

SubDeviceId
The PCI device subsystem Device ID

Revision
The PCI device revision

PlxChip
The PLX chip type. Will be 0 if non-PLX chip.

PlxRevision
The PLX chip revision

PlxFamily
The PLX chip family. Refer to PLX_CHIP_FAMILY.

ApiIndex
Reserved for internal use by the PLX API

DeviceNumber
Reserved for internal use by PLX device drivers

ApiMode
Mode the PLX API is using to access the device (e.g. PCI, I2C, TCP). Refer to PLX_API_MODE.

PlxPort
The PCI Express port number of the PLX device

PlxPortType
PLX-specific port type. Refer to.PLX_SPECIFIC_PORT_TYPE

NTPortNum
If an NT port exists, specifies the NT port number.

DeviceMode
Mode PLX chip is running in. Refer to PLX_CHIP_MODE.

5-166

PLX_DEVICE_OBJECT
typedef struct _PLX_DEVICE_OBJECT
{
 U32 IsValidTag; // Magic number to determine validity
 PLX_DEVICE_KEY Key; // Device location key identifier
 PLX_DRIVER_HANDLE hDevice; // Handle to driver
 PLX_PCI_BAR_PROP PciBar[6]; // PCI BAR properties
 U64 PciBarVa[6]; // For PCI BAR user-mode BAR mappings
 U8 BarMapRef[6]; // BAR map count used by API
 PLX_PHYSICAL_MEM CommonBuffer; // Used to store common buffer information
 U64 PrivateData[4];// Private storage for user application
} PLX_DEVICE_OBJECT;

Purpose
Opaque structure that describes a selected PLX device object.

Members
The members in this object, other than PrivateData, should never be accessed directly. The structure definition
may change in future SDK versions and its members are reserved for internal use by the PLX API and PLX
drivers.

PrivateData
A set of data locations the device object which an application may use. The PLX API will not access or
modify these values. May be useful if an application needs a private data buffer associated with an open
device.

5-167

PLX_DMA_PARAMS
typedef struct _PLX_DMA_PARAMS
{
 U64 UserVa;
 U64 AddrSource;
 U64 AddrDest;
 U64 PciAddr;
 U32 LocalAddr;
 U32 ByteCount;
 U8 Direction;
 U8 bConstAddrSrc :1;
 U8 bConstAddrDest :1;
 U8 bForceFlush :1;
 U8 bIgnoreBlockInt :1;

Purpose
Structure used to provide the parameters for a DMA transfer.

Members
UserVa

Specifies the virtual address of the user-mode buffer for the DMA transfer.

AddrSource (8000 DMA)
Specifies the source PCI address for a DMA block transfer.

AddrDest (8000 DMA)
Specifies the destination PCI address for a DMA block transfer.

PciAddr (9000 DMA)
Specifies the PCI address for a DMA block transfer. Can be 64-bit.

LocalAddr (9000 DMA)
The 32-bit local bus address for the DMA transfer.

ByteCount
The number of bytes to transfer.

Direction
Specifies the direction of the DMA transfer. Refer to PLX_DMA_DIR.

bConstAddrSrc (8000 DMA)
Specifies that the source PCI address should not be incremented

bConstAddrDest (8000 DMA)
Specifies that the destination PCI address should not be incremented

bForceFlush (8000 DMA)
Forces the DMA to use a write flush to ensure data in the final descriptor is written before the DMA engine
reports DMA completion.

bIgnoreBlockInt
Specifies to disable the DMA done interrupt for the transfer. Typically used if DMA done polling is desired to
eliminate the overhead of handling the DMA done interrupt. Applies only for DMA block mode transfers.

5-168

PLX_DMA_PROP
typedef struct _PLX_DMA_PROP
{
 // 8000 DMA properties
 U8 CplStatusWriteBack :1;
 U8 DescriptorMode :2;
 U8 DescriptorPollMode :1;
 U8 RingHaltAtEnd :1;
 U8 RingWrapDelayTime :3;
 U8 RelOrderDescrRead :1;
 U8 RelOrderDescrWrite :1;
 U8 RelOrderDataReadReq :1;
 U8 RelOrderDataWrite :1;
 U8 NoSnoopDescrRead :1;
 U8 NoSnoopDescrWrite :1;
 U8 NoSnoopDataReadReq :1;
 U8 NoSnoopDataWrite :1;
 U8 MaxSrcXferSize :3;
 U8 MaxDestWriteSize :3;
 U8 TrafficClass :3;
 U8 MaxPendingReadReq :6;
 U8 DescriptorPollTime;
 U8 MaxDescriptorFetch;
 U16 ReadReqDelayClocks;

 // 9000 DMA properties
 U8 ReadyInput :1;
 U8 Burst :1;
 U8 BurstInfinite :1;
 U8 SglMode :1;
 U8 DoneInterrupt :1;
 U8 RouteIntToPci :1;
 U8 ConstAddrLocal :1;
 U8 WriteInvalidMode :1;
 U8 DemandMode :1;
 U8 EnableEOT :1;
 U8 FastTerminateMode :1;
 U8 ClearCountMode :1;
 U8 DualAddressMode :1;
 U8 EOTEndLink :1;
 U8 ValidMode :1;
 U8 ValidStopControl :1;
 U8 LocalBusWidth :2;
 U8 WaitStates :4;
} PLX_DMA_PROP;

Purpose
Structure used to configure the DMA channel properties. For all one-bit values, 0=disable and 1=disable.

5-169

Members

8000 DMA

CplStatusWriteBack
In ring mode, determines whether DMA updates the first DWORD in a DMA descriptor to provide status
information and clear valid bit after the transfer has completed for that descriptor.
(0 = No write back, 1 = Update descriptor with status information)

DescriptorMode
Sets the DMA to Block or Ring/SGL mode. Refer to PLX_DMA_DESCR_MODE.

DescriptorPollMode
** Not available in current DMA hardware Reserved for future use, set to 0. **

RingHaltAtEnd
Determines whether DMA halts when it reaches end of ring or wraps back to beginning.
(0 = Wrap, 1 = Halt)

RingWrapDelayTime
If RingHaltAtEnd is disabled, determines the delay before the DMA wraps to the start of the ring. Refer to
PLX_DMA_RING_DELAY_TIME

RelOrderDescrRead
Use PCIe Relaxed Ordering for descriptor reads

RelOrderDescrWrite
Use PCIe Relaxed Ordering for descriptor writes

RelOrderDataReadReq
Use PCIe Relaxed Ordering for DMA data read requests

RelOrderDataWrite
Use PCIe Relaxed Ordering for DMA data writes

NoSnoopDescrRead
Set TLP No Snoop for descriptor reads

NoSnoopDescrWrite
Set TLP No Snoop for descriptor writes

NoSnoopDataReadReq
Set TLP No Snoop for DMA read requests

NoSnoopDataWrite
Set TLP No Snoop for DMA data writes

MaxSrcXferSize
Sets the maximum TLP read request size the DMA engine may request from the source address. Refer to
PLX_DMA_MAX_SRC_TSIZE.

MaxDestWriteSize (Not supported on 8600 DMA)
Sets the maximum payload size to write to the destination

TrafficClass
Sets the PCI Express Traffic Class used for DMA transfers

MaxPendingReadReq
Determines the maximum number of pending DMA read requests from the source.

DescriptorPollTime
** Not available in current DMA hardware Reserved for future use, set to 0. **

5-170

MaxDescriptorFetch
Sets the maximum number of descriptors to prefetch at any given time

ReadReqDelayClocks
Sets the number of clocks between DMA data read requests. May be used to slow down DMA traffic.

9000 DMA

ReadyInput
Enables the Ready input (READY#)

Burst
Enables bursting for the Local bus (Burst of 4LW if BurstInfinite not enabled).

BurstInfinite
Enables the BTERM# input if set, which allows for infinite bursting. (Burst must also be set)

SglMode
Sets DMA to operate in Scatter-Gather List (SGL) mode

DoneInterrupt
Enables the DMA done interrupt

RouteIntToPci
Set the DMA interrupt to assert to the PCI side. If not set, DMA interrupt to assert on local-side.

ConstAddrLocal
Prevents the DMA engine from incrementing the local bus address

WriteInvalidMode
Enables PCI write and invalidate cycles for DMA transfers

DemandMode
Enables DMA Demand mode if set.

EnableEOT
Enables the DMA EOT# input pin

FastTerminateMode
Specifies the DMA termination mode. 0=Slow, 1=Fast

ClearCountMode
Enable SGL DMA transfer count clear mode if set. The DMA engine will clear the transfer count of each
descriptor once the data has been transferred for that descriptor.

DualAddressMode
Enables DMA dual address cycles for DMA transfers. In block mode, the upper 32-bits of the PCI address
are taken from the Dual Address Cycle register. In SGL mode, SGL descriptors become 5 DWORDs
instead of the standard 4 DWORDS for 32-bit transfers. The 5th DWORD in each descriptor specifies the
upper 32-bits of the PCI address, which will be loaded into the Dual-Address Cycle register.

EOTEndLink
Controls DMA descriptor processing when EOT# is asserted during a DMA SGL transfer. If set (=1), when
EOT# is asserted, the DMA controller halts the current SGL transfer and continues to the next descriptor. If
not set (=0), when EOT# is asserted, the DMA transfer halts the current SGL transfer, but does not continue
to the next descriptor.

ValidMode
Enables DMA descriptor valid mode. The DMA descriptor fetch will then only retrieve descriptors with the
valid bit set.

ValidStopControl
Controls whether the DMA engine continuously polls (=0) the current descriptor’s valid bit or halts the
descriptor fetch (=1) when an invalid descriptor is reached.

5-171

LocalBusWidth
Specifies the local bus width for DMA transfers. 0=8-bit, 1=16-bit, 2=32-bit

WaitStates
The wait states inserted after the address strobe and before the data is ready on the bus is defined with this
value.

5-172

PLX_DRIVER_PROP
typedef struct _PLX_DRIVER_PROP
{
 U32 Version;
 char Name[16];
 char FullName[255];
 U8 bIsServiceDriver;
 U64 AcpiPcieEcam;
 U8 Reserved[40];
} PLX_DRIVER_PROP;

Purpose
Structure used to report properties of the selected PLX device driver.

Members
Version

Returns the driver version in the form Major[19:16], Minor[15:8]

Name
Returns the string name of the PLX driver being used to access the selected device

FullName
Returns the full user-friendly string name of the PLX driver being used to access the selected device

bIsServiceDriver
Returns TRUE if the PLX PCI/PCIe Service driver is being used to access the device; otherwise, a value of
FALSE is returned to indicate a PLX Plug ‘n’ Play driver is being used.

AcpiPcieEcam
If available, returns the ACPI Enhanced Configuration Address Mechanism (ECAM) base address. The
ECAM is specified in the PCI Express Specification and contains the memory mapped PCI configuration
space for all PCI devices in the system. PLX drivers utilize this region when PCI extended configuration
registers are accessed (offsets 100h & above). PLX drivers probe ACPI tables in the system to determine
this address.

5-173

PLX_INTERRUPT
typedef struct _PLX_INTERRUPT
{
 U32 Doorbell; // Up to 32 doorbells
 U8 PciMain :1;
 U8 PciAbort :1;
 U8 LocalToPci :2; // Local->PCI int 1 & 2
 U8 DmaDone :4; // DMA channel 0-3 interrupts
 U8 DmaPauseDone :4;
 U8 DmaAbortDone :4;
 U8 DmaImmedStopDone :4;
 U8 DmaInvalidDescr :4;
 U8 DmaError :4;
 U8 MuInboundPost :1;
 U8 MuOutboundPost :1;
 U8 MuOutboundOverflow :1;
 U8 TargetRetryAbort :1;
 U8 Message :4; // 6000 NT 0-3 message interrupts
 U8 SwInterrupt :1;
 U8 ResetDeassert :1;
 U8 PmeDeassert :1;
 U8 GPIO_4_5 :1; // 6000 NT GPIO 4/5 interrupt
 U8 GPIO_14_15 :1; // 6000 NT GPIO 14/15 interrupt
 U8 NTV_LE_Correctable :1; // 8000 NT Virtual - Link-side error ints
 U8 NTV_LE_Uncorrectable :1;
 U8 NTV_LE_LinkStateChange :1;
 U8 NTV_LE_UncorrErrorMsg :1;
 U8 HotPlugAttention :1;
 U8 HotPlugPowerFault :1;
 U8 HotPlugMrlSensor :1;
 U8 HotPlugChangeDetect :1;
 U8 HotPlugCmdCompleted :1;
} PLX_INTERRUPT;

Purpose
Contains the supported PLX device interrupts used to return active interrupts, enable/disable interrupts, or
select certain interrupts. For all one-bit values, 0=disable and 1=disable.

For multi-bit interrupts, interrupt numbers are associated with bit positions. For example, the DmaDone field is
4 bits, representing up to 4 DMA channel done interrupts. Bit 0 = Channel 0, Bit 1 = Channel 1, Bit 2 = Channel
2, & Bit 3 = Channel 3.

Members
Doorbell

Represents up to 32 (031) doorbell interrupts

PciMain
Represents the main PCI interrupt line. This field is only used in interrupt enable/disable API functions.

PciAbort
Represents the PCI abort interrupt.

LocalToPci
Represents the generic LocalPCI interrupts (bit 0 = LP #1, bit 1 = LP #2)

5-174

DmaDone
Represents the DMA channel transfer complete interrupts (bit 0=Ch 0, bi1=Ch 1, etc)

DmaPauseDone
Represents the DMA pause complete interrupts (bit 0=Ch 0, bi1=Ch 1, etc)

DmaAbortDone
Represents the DMA abort complete interrupts (bit 0=Ch 0, bi1=Ch 1, etc)

DmaImmedStopDone
Represents the DMA immediate pause/stop complete interrupts (bit 0=Ch 0, bi1=Ch 1, etc)

DmaInvalidDescr
Represents the DMA invalid descriptor detected interrupts (bit 0=Ch 0, bi1=Ch 1, etc)

DmaError
Represents the general DMA error interrupts (bit 0=Ch 0, bi1=Ch 1, etc)

MuInboundPost
Represents the messaging unit’s inbound post FIFO interrupt

MuOutboundPost
Represents the messaging unit’s outbound post FIFO interrupt

MuOutboundOverflow
The value represents the messaging unit’s outbound FIFO overflow interrupt

TargetRetryAbort
Represents the PLX chip’s Target Abort interrupt after 256 Master consecutive retries to the target

Message
For 6254/6540/6466 NT mode, represents the four message interrupts (bit 0=Msg 0, bit 1=Msg 1, etc.)

SwInterrupt
Represents the Software-triggered interrupt of PLX 9000 slave devices (9050/9052/9030)

ResetDeassert
For 6254/6540/6466, represents S_RSTIN# or P_RSTIN# de-assertion interrupt

PmeDeassert
For 6254/6540/6466, represents S_PME# or P_PME# de-assertion interrupt

GPIO_4_5
For 6254/6540/6466, represents GPIO4 (primary-side) or GPIO5 (secondary-side) interrupt

GPIO_14_15
For 6254/6540/6466, represents GPIO14 (primary-side) or GPIO15 (secondary-side) interrupt

NT_LE_Correctable
(8000-series NT Virtual side) NT Link interface detected a correctable TLP error

NT_LE_Uncorrectable
(8000-series NT Virtual side) NT Link interface detected an uncorrectable TLP error

NT_LE_LinkStateChange
(8000-series NT Virtual side) Link interface link state changed (Link Down or Link Up)

NT_LE_UncorrErrorMsg
(8000-series NT Virtual side) Link interface received and uncorrectable error message TLP

HotPlugAttention
Represents the Hot Plug Attention button pressed interrupt.

HotPlugPowerFault
Represents the Hot Plug Power Fault interrupt

5-175

HotPlugMrlSensor
Represents the Hot Plug MRL Sensor interrupt

HotPlugChangeDetect
Represents the Hot Plug Change Detected interrupt

HotPlugCmdCompleted
Represents the Hot Plug Command Completed interrupt

5-176

PLX_MULTI_HOST_PROP
typedef struct _PLX_MULTI_HOST_PROP
{
 U8 SwitchMode;
 U16 VS_EnabledMask;
 U8 VS_UpstreamPortNum[8];
 U32 VS_DownstreamPorts[8];
 U8 bIsMgmtPort;
 U8 bMgmtPortActiveEn;
 U8 MgmtPortNumActive;
 U8 bMgmtPortRedundantEn;
 U8 MgmtPortNumRedundant;
} PLX_MULTI_HOST_PROP;

Purpose
Contains properties of PLX multi-root switches.

Members
SwitchMode

Current switch mode. Refer to PLX_CHIP_MODE.

VS_EnabledMask
Bit for each enabled Virtual Switch

VS_UpstreamPortNum
Upstream port number of each Virtual Switch

VS_DownstreamPorts
Downstream ports associated with a Virtual Switch

bIsMgmtPort
Specifies whether the selected port is the management port. Will always be TRUE in standard host mode.
In Multi-host mode, properties are only available through the management port; otherwise, they are invalid.

bMgmtPortActiveEn
Specifies whether the active management port is enabled

MgmtPortNumActive
Active management port number

bMgmtPortRedundantEn
Specifies whether the redundant management port is enabled

MgmtPortNumRedundant
Redundant management port number

5-177

PLX_MODE_PROP
typedef struct _PLX_MODE_PROP
{
 union
 {
 struct
 {
 U16 I2cPort;
 U16 SlaveAddr;
 U32 ClockRate;
 } I2c;

 struct
 {
 U64 IpAddress;
 } Tcp;
 };
} PLX_MODE_PROP;

Purpose
Used to provide API mode properties for finding/selecting a device.

Members
I2c.I2cPort

Contains the port number for the I2C USB device to use. For Aardvark I2C, starts at ‘0’.

I2c.SlaveAddr
The I2C bus address assigned to the PLX chip to access.

I2c.ClockRate
Specifies the I2C clock rate in KHz

Tcp.IpAddress
Specifies the TCP IP address of the device to access (not currently supported)

5-178

PLX_NOTIFY_OBJECT
typedef struct _PLX_NOTIFY_OBJECT
{
 U32 IsValidTag; // Magic number to determine validity
 U64 pWaitObject; // -- INTERNAL -- Wait object used by the driver
 U64 hEvent; // User event handle (HANDLE can be 32 or 64 bit)
} PLX_NOTIFY_OBJECT;

Purpose
Opaque structure that used for interrupt notification functions

Members
The members in this object should never be accessed directly. The structure definition may change in future
SDK versions and its members are reserved for internal use by the PLX API and PLX drivers.

5-179

PLX_PCI_BAR_PROP
typedef struct _PLX_PCI_BAR_PROP
{
 U64 BarValue;
 U64 Physical;
 U64 Size;
 U32 Flags;
} PLX_PCI_BAR_PROP;

Purpose
This data type provides information for a contiguous page-locked buffer allocated by the device driver. This is
typically used as a buffer for DMA transfers.

Members
BarValue

Actual value in the PCI BAR register(s). If the BAR is 64-bit, the value from two BAR spaces will be
combined into a single property.

Physical
The physical address assigned to the BAR

Size
The size of the BAR space

Flags
Contains additional BAR properties as bit flags. Refer to PLX_BAR_FLAG.

5-180

PLX_PERF_PROP
typedef struct _PLX_PERF_PROP
{
 U32 IsValidTag; // Magic number to determine validity

 // Port properties
 U8 PortNumber;
 U8 LinkWidth;
 U8 LinkSpeed;
 U8 Station;
 U8 StationPort;

 // Ingress counters
 U32 IngressPostedHeader;
 U32 IngressPostedDW;
 U32 IngressNonpostedDW;
 U32 IngressCplHeader;
 U32 IngressCplDW;
 U32 IngressDllp;
 U32 IngressPhy;

 // Egress counters
 U32 EgressPostedHeader;
 U32 EgressPostedDW;
 U32 EgressNonpostedDW;
 U32 EgressCplHeader;
 U32 EgressCplDW;
 U32 EgressDllp;
 U32 EgressPhy;

 // Previous Ingress counters
 U32 Prev_IngressPostedHeader;
 U32 Prev_IngressPostedDW;
 U32 Prev_IngressNonpostedDW;
 U32 Prev_IngressCplHeader;
 U32 Prev_IngressCplDW;
 U32 Prev_IngressDllp;
 U32 Prev_IngressPhy;

 // Previous Egress counters
 U32 Prev_EgressPostedHeader;
 U32 Prev_EgressPostedDW;
 U32 Prev_EgressNonpostedDW;
 U32 Prev_EgressCplHeader;
 U32 Prev_EgressCplDW;
 U32 Prev_EgressDllp;
 U32 Prev_EgressPhy;
}

Purpose
Used to store the current and previous performance counters obtained from the PLX chip.

Members
These members are not documented because they are reserved for internal use by PLX software tools.

5-181

PLX_PERF_STATS
typedef struct _PLX_PERF_STATS
{
 S64 IngressTotalBytes; // Total bytes including overhead
 long double IngressTotalByteRate; // Total byte rate
 S64 IngressCplAvgPerReadReq; // Avg completion TLPs per read req
 S64 IngressCplAvgBytesPerTlp; // Avg bytes per completion TLP
 S64 IngressPayloadReadBytes; // Payload bytes read (Cpl TLPs)
 S64 IngressPayloadReadBytesAvg; // Avg read payload bytes (Cpl TLPs)
 S64 IngressPayloadWriteBytes; // Payload bytes written (Posted TLPs)
 S64 IngressPayloadWriteBytesAvg;// Avg write payload bytes (P. TLPs)
 S64 IngressPayloadTotalBytes; // Payload total bytes
 double IngressPayloadAvgPerTlp; // Payload average size per TLP
 long double IngressPayloadByteRate; // Payload byte rate
 long double IngressLinkUtilization; // Total link utilization

 S64 EgressTotalBytes; // Total byte including overhead
 long double EgressTotalByteRate; // Total byte rate
 S64 EgressCplAvgPerReadReq; // Avg completion TLPs per read req
 S64 EgressCplAvgBytesPerTlp; // Avg bytes per completion TLPs
 S64 EgressPayloadReadBytes; // Payload bytes read (Cpl TLPs)
 S64 EgressPayloadReadBytesAvg; // Avg read payload bytes (Cpl TLPs)
 S64 EgressPayloadWriteBytes; // Payload bytes written (Posted TLPs)
 S64 EgressPayloadWriteBytesAvg; // Avg write payload bytes (P. TLPs)
 S64 EgressPayloadTotalBytes; // Payload total bytes
 double EgressPayloadAvgPerTlp; // Payload average size per TLP
 long double EgressPayloadByteRate; // Payload byte rate
 long double EgressLinkUtilization; // Total link utilization
}

Purpose
Used to store the calculated performance values for a particular port

Members
These members are not documented because they are reserved for internal use by PLX software tools.

5-182

PLX_PHYSICAL_MEM
typedef struct _PLX_PHYSICAL_MEM
{
 U64 UserAddr;
 U64 PhysicalAddr;
 U64 CpuPhysical;
 U32 Size;
} PLX_PHYSICAL_MEM;

Purpose
This data type provides information for a contiguous page-locked buffer allocated by the device driver. This is
typically used as a buffer for DMA transfers.

Members
UserAddr

User Virtual Address for the buffer

PhysicalAddr
The Bus or Logical Physical address of the buffer. This address may be used to program the DMA engine.

CpuPhysical
The CPU Physical address of the buffer. This value is used internally by the PLX driver for mappings to
user space.

Size
The size of the buffer.

Notes
The CPU address is the physical address from the point of view of the CPU. The Bus or Logical physical
address is the address from the point of view of a device. The bus address should be used when programming
PCI addresses in hardware (e.g. DMA controllers). On x86 platforms, CPU and Logical addresses are the same
because no I/O Memory Management Unit (IOMMU) exists on these systems. On other platforms, the CPU
address may not be equal to the Logical address.

PLX software already includes placeholders for the various addresses. If the correct field is used when code is
written, applications should work properly on all target platforms, regardless of whether an IOMMU exists or not.

5-183

PLX_PORT_PROP
typedef struct _PLX_PORT_PROP
{
 U8 PortType;
 U8 PortNumber;
 U8 LinkWidth;
 U8 MaxLinkWidth;
 U8 LinkSpeed;
 U8 MaxLinkSpeed;
 U16 MaxReadReqSize;
 U16 MaxPayloadSize;
 U16 MaxPayloadSupported;
 U8 bNonPcieDevice;
} PLX_PORT_PROP;

Purpose
Structure used to report PCI Express port properties.

Members
PortType

Contains the port type (refer to PLX_PORT_TYPE)

PortNumber
Contains the port number

LinkWidth
Specifies the negotiated link width

MaxLinkWidth
Specifies the maximum link width the device is capable of

LinkSpeed
Specifies the negotiated link speed (1 = 2.5 Gbps, 2 = 5 Gbps)

MaxLinkSpeed
Specifies the maximum link speed the device is capable of

MaxReadReqSize
Specifies the maximum amount of data the device may request in a single PCI Express read packet

MaxPayloadSize
Specifies the current maximum TLP payload size (MPS) setting in the device

MaxPayloadSupported
Specifies the maximum TLP payload size (MPS) supported by the device

bNonPcieDevice
Flag to specify whether the device is not a PCI Express device (i.e. does not support PCI Express
Capability)

5-184

PLX_VERSION
typedef struct _PLX_VERSION
{
 PLX_API_MODE ApiMode;

 union
 {
 struct
 {
 U16 ApiLibrary;
 U16 Software;
 U16 Firmware;
 U16 Hardware;
 U16 SwReqByFw;
 U16 FwReqBySw;
 U16 ApiReqBySw;
 U32 Features;
 } I2c;
 };
} PLX_VERSION;

Purpose
Structure used to report version information. All 16-bit version numbers are in the format (Major << 8) | (Minor).
For example, the number 0114h = v1.20.

Members
ApiMode

Contains the ApiMode that the version information is for. This determines which union in the structure is
contains valid information. (Refer to PLX_API_MODE)

I2c.ApiLibrary
Version of the I2C API libraray

I2c.Software
Version of the I2C software

I2c.Firmware
Version of the firmware in the I2C USB device

I2c.Hardware
Version of the I2C USB hardware

I2c.SwReqByFw
Firmware requires that software version must be >= this version

I2c.ApiReqBySw
Software requires that the API version must be >= this version

I2c.Features
Bitmask of features supported by the device. At the time of this writing, these are the features:
 #define AA_FEATURE_SPI 0x00000001
 #define AA_FEATURE_I2C 0x00000002
 #define AA_FEATURE_GPIO 0x00000008
 #define AA_FEATURE_I2C_MONITOR 0x00000010

5-185

	PLX SDK User Manual
	Table of Contents
	1 General Information
	1.1 About this Manual
	1.2 PLX SDK Features
	1.3 Terminology

	2 Getting Started
	2.1 Development Tools
	2.2 PLX SDK Version Compatibility
	2.3 PLX SDK Installation in Microsoft Windows
	2.4 PLX SDK Removal
	2.5 Installation of PLX Device Drivers in Windows
	2.5.1 PLX Plug and Play Device Driver Installation
	2.5.1.1 PLX Device Driver Installation
	2.5.1.2 Modifying the PLX INF File for Use with Custom Device/Vendor IDs

	2.5.2 PLX PCI/PCIe Service Driver
	2.5.2.1 Install Using Service Control Manager (SCM) API
	2.5.2.2 Install Using Windows “sc.exe” Utility
	2.5.2.3 Install Manually via Registry and Reboot
	2.5.2.4 Starting and Stopping the PLX Service Driver
	2.5.2.4.1 Use command-line utilities
	2.5.2.4.2 Use Device Manager

	2.5.3 Modifying PLX Driver Options in the Registry
	2.5.3.1 PLX Driver Options Wizard

	2.6 Installation of PLX Device Drivers in Linux
	2.7 Distribution of PLX Software
	2.7.1 License Agreement

	3 PLX Host-side Software
	3.1 SDK Directory Structure
	3.2 PLX SDK Architecture Overview
	3.3 PLX API Library
	3.4 Device Drivers
	3.5 PLX API and Multi-threading
	3.5.1 PLX Device Driver Directory Structure
	3.5.2 Building Windows Device Drivers

	3.6 User-mode Applications
	3.6.1 PLX Sample Applications
	3.6.2 Creating Windows PCI Host Applications

	4 PLX Debug Utilities
	4.1 PLX PEX Device Editor (PDE)
	4.1.1 Probe Mode
	4.1.2 Selecting Signal combinations for probe mode
	4.1.3 External and Internal Modes
	4.1.4 Capturing, Saving and displaying data
	4.1.5 Serdes Eye Width
	4.1.5.1 Serdes Eye for PLX Gen2 Devices
	4.1.5.2 Serdes Eye for PLX Gen3 Devices

	4.2 PLX GenMon
	4.2.1 Performace Monitor
	4.2.2 Packet Generator

	4.3 PLXMon
	4.3.1 PLXMon Access Modes
	4.3.1.1 PCI Mode
	4.3.1.2 EEPROM File Edit Mode
	4.3.1.3 Serial Mode

	4.3.2 PLXMon Toolbar
	4.3.3 Working with PLXMon Dialogs
	4.3.3.1 Register Dialogs
	4.3.3.2 EEPROM Dialogs
	4.3.3.3 Memory Access Dialog

	4.3.4 Specifying PLX Chip Type for Unknown Devices
	4.3.5 Performance Measure Dialog
	4.3.5.1 Notes before Using the Performance Measure
	4.3.5.2 Performance Measure Options
	4.3.5.3 DMA Performance Test
	4.3.5.4 Direct Slave Performance Test

	4.3.6 The Command-Line Interface
	4.3.7 Working with Virtual Addresses
	4.3.8 Command-Line Variables

	5 PLX SDK API Reference
	5.1 PLX API Functions
	5.2 PLX API Data Structures and Types
	5.2.1 Standard Data Types
	5.2.1.1 Code Portability Macros

	5.2.2 Enumerated Types
	5.2.3 Data Structures

