AX_

Yy
TECHNOLOGY ®
THE I/O INTERCONNECT SOLUTION

PLX SDK User Manual

Version 7.20

December 2014

PLX SOFTWARE LICENSE AGREEMENT

THIS PLX SOFTWARE IS LICENSED TO YOU
UNDER SPECIFIC TERMS AND CONDITIONS.
CAREFULLY READ THE TERMS AND
CONDITIONS PRIOR TO USING THIS
SOFTWARE. INSTALLING THIS SOFTWARE
PACKAGE OR INITIAL USE OF THIS SOFTWARE
INDICATES YOUR ACCEPTANCE OF THE
TERMS AND CONDITIONS. IF YOU DO NOT
AGREE WITH THEM, YOU SHOULD NOT
INSTALL THE PLX SDK SOFTWARE PACKAGE.

LICENSE Copyright © 2014 PLX Technology, Inc.

This PLX Software License agreement is a legal
agreement between you and PLX Technology, Inc.
for the PLX Software, which is provided on the
enclosed PLX CD-ROM. PLX Technology owns
this PLX Software. The PLX Software is protected
by copyright laws and international copyright
treaties, as well as other intellectual property laws
and treaties, and is licensed, not sold.

PLX Software License Agreement

GENERAL

If you do not agree to the terms and conditions of
this PLX Software License Agreement, do not install
or use the PLX Software. You may terminate your
PLX Software license at any time. PLX Technology
may terminate your PLX Software license if you fail
to comply with the terms and conditions of this
License Agreement. In either event, you must
destroy all your copies of this PLX Software. Any
attempt to sub-license, rent, lease, assign or to
transfer the PLX Software except as expressly
provided by this license, is hereby rendered null
and void.

WARRANTY

PLX Technology, Inc. provides this PLX Software
AS IS, WITHOUT ANY WARRANTY, EXPRESS
OR IMPLIED, INCLUDING WITHOUT LIMITATION,
AND ANY WARRANTY OF MERCHANTIBILITY
OR FITNESS FOR A PARTICULAR PURPOSE.
PLX makes no guarantee or representations
regarding the use of, or the results based on the
use of the software and documentation in terms of
correctness, or otherwise; and that you rely on the
software, documentation, and results solely at your
own risk. In no event shall PLX be liable for any
loss of use, loss of business, loss of profits,
incidental, special or, consequential damages of
any kind. In no event shall PLX's total liability
exceed the sum paid to PLX for the product
licensed here under.

Table of Contents

PLX SDK USEI MANUALccoiiiiiiiiiiiiieiie ettt nnnnne 1
LI 1o 1[0) B Oo] g1 (=T o1 £ TP 1-1
1 General INFOrMEaTIONuiiiieiii e e e e e e s eas 1-1
1.1 ADOUL tRIS IMBINUAL.......ceiiiiiiie ittt e et e e e ss bt e e e skb et e e e ek be e e e st be e e e sbreeeeanneeeeans 1-1

1.2 PLX SDK FRALUIES ...ttt ettt e e e e s s et e e e e s e st e b e e e e e e s s s saebrneeeeee s 1-1

0 B 1Y 11 oo o R 1-1

A € 1= 1 41 [] = 1 =T 2-1
2% I oA 7= Fo o 0=) A 1 T)£ SRR 2-1
2.2 PLX SDK Version CompatiDilityuueeiiiiiii et 2-1

2.3 PLX SDK Installation in MiCroSOft WINGOWScoiuiiieiiiiiieiiieie et 2-1

2.4 PLX SDK REMOVALeeeiiiiiiiieiitete ettt ettt ettt st e sttt e e sk e e e e st e e e e sab et e e aabb et e e anbre e e e nnnneeas 2-1

2.5 Installation of PLX Device Drivers in WINGOWSueiiiiiiieiiiiee it 2-2
2.5.1 PLX Plug and Play Device Driver INStallation. ... 2-2

2.5.1.1 PLX Device Driver INSAllationccociiiiiieiiiiie e 2-2

2.5.1.2 Modifying the PLX INF File for Use with Custom Device/Vendor IDSccccccoevvvvvenreeennn. 2-5

2.5.2 PLX PCI/PCIE SEIVICE DIIVEN ...ccuiiiiieieiiei ettt sttt nmne e s e e e e nnne e 2-5

2.5.2.1 Install Using Service Control Manager (SCM) APlueev i a e 2-5

2.5.2.2 Install Using WINndows “SC.eXE” ULIlILYc..uvviiieee et e e 2-5

2.5.2.3 Install Manually via Registry and REDOOLcccoviiiiiiiiiiie e 2-6

2.5.2.4 Starting and Stopping the PLX ServiCe DIVEr.........ccuuuiiiiiiiiiiieie e 2-6

2.5.2.4.1 Use command-ling ULIlItIES.ccoruriiiiiiiiieiiee et 2-6

2.5.2.4.2 USE DEVICE MABNAGETeiiiiiiiiiiiiiieee e ettt e ettt e e e e e et e e e e e e e e sabbeseeeaaeeaasanneees 2-7

2.5.3 Modifying PLX Driver Options in the REGISIIYuuiiiiiiiiiiiiiieeee et 2-9

2.5.3.1 PLX Driver Options WIZArd...........eeiiiiiiiiiiiiieee ettt e e e e e e e snbeaeeeaeas 2-10

2.6 Installation of PLX DeVICe DIVEIS IN LINUX ...ccoiuriiiiiiiiieiiiiiee sttt e s s enre e s s e 2-11

2.7 Distribution Of PLX SOFIWAIEcccueiiiiiiiriie ettt nne e 2-11
A A A o= FT= B o | =TT 41T o | SO 2-11

3 PLX HOSE-SIAE SOFtWAIE.euiiiiiiiiii e a e aeaaeas 3-1
N S T (= Tox (0] VA 10] 18] R 3-1

3.2 PLX SDK AICNItECTUIE OVEIVIEWuitiiieiiiiieeiittee e sttt e skttt e sttt e e st e e st et e e sasb et e e sabbe e e e sasbe e e e snnre e e e aanneeas 3-3

R I I QN o B o = o VP UTUOPPPRRPPP 3-4

3.4 DEVICE DIFIVEIS ...t ettt ettt ettt ettt etttk e ket e o4kt e e ekt e o4 skt e e aa ke e e e e aa b b et e e aab e e e e e anbbe e e s anbre e e s annnee s 3-4

3.5 PLX AP @and MUR-TNIEAAINGceieiiiitiiieii ettt e e e e ettt e e e e e e s e bbb e e e e e e e e e aannenees 3-4
3.5.1 PLX DeVice Driver DIFECIOIY SIUCTUIEciiiiiiiiitiieeea e ettt e e e e ettt e e e e e e eabnbe e e e e e e e s snnbeaeeeeeas 3-5

3.5.2 BUildiNg WiINAOWS DEVICE DIIVEIS.......cccueiieieieeeeiiiiiiieeee e et s ssitaeeeeseesssssntaeeesaesssanssnreeeseeesssnsssnneesees 3-6

I IO Y= T oo LYY o] o] o 1 o] g I SRR 3-8

TG = I QRS T a] o] L= Y o] o] o 11 o o - P 3-8
3.6.2 Creating Windows PCI HOSt APPlICALIONSccoeiicviiiiiiee s s it e e e s eseee e e e e s re e e e e s snnenneeeee s 3-8
I 1= o U o B 1 1L A= 4-1
4.1 PLX PEX DEVICE EQItOr (PDE) ...ceiiiiiiiiiiieitie ettt ettt ettt e e e e e e s st e e e e e e e e annbsseeeae e e e e nnnnnees 4-1
I R e (o] o T Y [o [T TP O PP PPPPP P PPPPPON 4-1
4.1.2 Selecting Signal combinations for probe MOdecooiiiiiiiiii e 4-3
4.1.3 External and INternal MOUESceioiiiiiiiiiie et 4-3
4.1.4 Capturing, Saving and displaying data...........cccceeeiiiiiiiiiiie e 4-4

g RIS Y= o [TSR YTV To | 1 o R 4-4
4.1.5.1 Serdes EYe for PLX GEN2 DEVICESccccciiiiurieeieeeeeiiiiiiieeeeeeseissteeeeesessssssssnneseassssnnsssseseees 4-4

4.1.5.2 Serdes EYe for PLX GEN3 DEVICESccccciiiiuiiiiieeeeeiieiiieeeeeeesssssstaeeesaessssssssseseseaesssnsssseseees 4-5

4.2 PLX GEBNMON ..ttt ettt e o1t e e e e e e a et e e e e e e e e e e e s e e e e s 4-6
4.2.1 Performace MONITOLcooiiiiiee ittt ettt e e ekt e e ek e e s e b e e e e e br e e e s annreeeeannee 4-6
4.2.2 PACKET GEINMEIALON ...eeiiuiiiiieitiiee ettt ettt ettt e e e st e e e skt e e e e a b et e e ek b et e e ek b et e e ab bt e e e abbe e e e anbbe e e e annreeeennes 4-7

4.3 PLXIMON ... 4-9
4.3.1 PLXMON ACCESS MOUESeviieiiiiiie ettt ettt ettt ettt ekt e e ekt e e e bb e e e e s e e e s e nr e e e s anees 4-9
T I A o O I 1Y o T [PP TTT TP 4-9

4.3.1.2 EEPROM File Edit MOOEooiiiiiiiiiiiiii ettt 4-10

4.3.1.3 SErIAI MOUE........oiiiiiieiee ettt ettt 4-11

4.3.2 PLXMON TOOIDAceieiitie ittt ettt ettt et s et nnn e s e s n e nn e s ne e e nnne e 4-12
4.3.3 Working With PLXMON DIAIOGSvvvevieeiiiiiiiiiiiee s ssiiieee s e e e e s s st e e e e e s e ssntnteeeeeeesssnnntnneneeeessnnnnnnnns 4-13
T 0 A =T 153 =T gl 10 =1 o o 1SS 4-13

TR B | 1 = =@ 1Y/ - 1 oY £ SR 4-14

4.3.3.3 MEMOIY ACCESS DIAIOQ ... ueeeiiiiiiiiiiiiti ettt ettt e e e e e e et e e e e e e e e e e annnaees 4-15

4.3.4 Specifying PLX Chip Type for UNKNOWN DEVICES..........ciiiiiiiiiiiiiiieiaae ittt 4-16
4.3.5 Performance Measure DiIBl0Qccuui ittt e e e et e e e e e e aneeees 4-18
4.3.5.1 Notes before Using the Performance MEASUIEocuuieiiiiiii it 4-19

4.3.5.2 Performance Measure OPLIONSeiiiii it ee ettt e e e e et e e e e e e s e aaabereeeae e e s e annnnees 4-20

4.3.5.3 DMA PerfOrManCe TESEcuuuiieiiiiiie ittt ettt e e e snnee s 4-20

4.3.5.4 Direct Slave PerformanCe TeSt.o e 4-21

4.3.6 The Command-LiNe INtErfACE..........cciviiiie e 4-22
4.3.7 Working With Virtual AQArESSES......uuiieiiiiiiiieiie ettt e e e e s e e e e e e s e st e e e ae e e e e nnnnnees 4-22
4.3.8 CommaNd-Line VAriablescooiiiiiiiii e 4-23
PLX SDK AP REFEIENCE ... 5-1
5.1 PLX AP FUNCLONS ...ttt ettt etttk s bttt s bt e e sa ket e e st b et e e s b et e e aabb e e e e annn e e e e nnnneeas 5-1

PIXPCI_APIVEISION. ...ttt e e e oo e et e e e e e e e s bbb et e e e e e e e s bbb beeeea e e e e annsbeneeaaens 5-3

[N ool I O a1 o1 1= 2o T4 11 F= T 5-4

[N o I O a1 o3 1Y 0 L= - 5-6
[N ool I O a1 o 1Y 0 L= 1= S 5-8
PIXPci_CommONBUfEIPIOPEITIES ...t 5-10
PIXPCi_COMMONBUIEIMED ... ettt ettt e e e e e e e e e e e e e nnneees 5-12
PIXPCi_CommONBUFEIUNMAD ...cciiiiiiiiiiiii ettt e e e e e e e e 5-14
L D T TNV Tt O [1 = 5-16
PIXPCI_DEVICEOPENcoiiiiiiitiee ittt ettt e e e e ettt e e e e e e e aa bbb b e e e aa e e e e eanbbeaeeaaeeeaannnrees 5-17
L D T I TNV 1= T T 5-19
L N ot [TNV To =Y o | PR 5-21
PIXPCI_DEVICERESEL....ceiiiii ittt e e e s s e e e e e e e s s st eeaee e s s e nnanbeareeaeeeannnnrens 5-23
PIXPCi_DMaChannNeIOPENviiiiiee ettt e e e e e e s e e e e e e e s e s areeaeeesnnnnnrees 5-24
PIXPCi_DMaChanNEICIOSE.......uueiiieeii ittt s e e e e s e r e e e e s e s e e e e e e e annnneeees 5-25
PIXPCi_DMaGEIPIOPEITIES .. .uevvieiieee e e ittt e st e e e e s e e e e s e s e e e e e e s s snnreareeaeeesnnnnnrees 5-27
PIXPCi_DMAaSEIPIOPEITIES . ..uveiiieiieeiiiciitiiiee e e e e e e e s s r e e e e e s s e e e e e s s s s ereeaeeeannnneeees 5-29
L LT g = L 0] o1 1 5-31
L D LT I =T = 5-33
PIXPCi_DMATranSferBIOCKuuuuuiiiii e aeas s eaeeaaaaeaaanessannsnsnsnsnnnnnnns 5-35
PIXPci_DMaTransferUSErBUIEr........ ... i eeaesansnenansnnnnns 5-38
PIXPCI_DIVEIPIOPEITIES ...ttt e e e e e e e e e e raabb e e e e e e e e e e nnneees 5-41
PIXPCi_DriverSChedUIERESCANuuuiiiiii e aaaaeaaaeeeaaanansnnnrnsnnnnn 5-43
L N ot I T 1T V=T] T o SRR 5-44
N ot I =T o] £ 4] = €= TT=) PR 5-46
N ot I =T o] £ 4] d (o] o - PR 5-48
L N ol [=T o] (o 1O (ol = R 5-49
o N ol [=T o] (0] 41O (o1 0 oo F= L= PSR 5-51
PIXPci_EepromGetAddreSSWItthueiiiii e 5-53
PIXPci_EepromSetAddreSSWIdthoeeiiiiiiii e 5-55
PIXPci_EepromREadBYOMSEL......ccoi ittt 5-57
PIXPCi_EepromWIHEEBYOFFSELcoi i 5-58
PIXPci_EepromReadByOMfSE_16........cuuiiiiiiieieiiiiiiie et a e e 5-59
PIXPci_EepromWItEBYOFfSEt 16 ..ottt e e e e e 5-60
PIXPCi_GEtPOMPIOPEITIES . ..uiveiieeieee e e ettt e s e e e s e e r e e e e s e s e e e e e e e s annreaneeaeeesnannneees 5-61
o N ot [2o 1= 1 o £ PR 5-63
L D ot I P2 oY =1 £ [o SRS 5-65
L Dot [(o] =0 1 T=T- Vo PR 5-67

o D ot I (o1 =0 4 4T (= PSR 5-69

PIXPCI_INterruptDiSabIe..........ueiieiieee e 5-71

o D ot I Y (=T g U o] = g = o RS 5-72
L D ot I 1Y = T1 | o To D == Lo SRR 5-73
L D T = V1 L oT0 3T 1 = 5-74
PIXPCI_MH_GeIPTOPEITIES .. .ceeieeeeiee ettt ettt e et e e e e e e e e beae e e e e e e e neneeees 5-75
PIXPCI_MH_IMIQrat@P OISottt ettt e e e et e e e e e e e e eaabbeae e e e e e e e nnneees 5-77
L T I L] 1] ToF= [0 = Ty Vo = 5-79
PIXPCi_NOtificatiONREGISTEIFONcciiiiiiieie e a e e 5-81
PIXPCi_ NOTIfICAtIONSTALUSuuuiiiiiiiiiii e b e aaaeasasasaesasasssssnsssnsnsnsnnnnnnnnnnns 5-83
L Dot I N[] 1) o= 11 o] g AV V| RS 5-85
PIXPCL INE_ LULAGG ..ottt eee e ee et s et s et s et e st s e ees e et s et eseneeeenneeeon 5-87
PIXPCI_Nt_LULDISADIE ...t e e e e e e e s e er e e e e e e e nnneees 5-90
L N ot I L U 11 o] o= 1 =T PR 5-91
L N ot I L =0] (o | = o] oY= PR 5-92
PIXPCi_PCIBarSPACEREAMuveeiieeiiiiiiiiiiii e sttt e e s st e e e e s s s e e e e e e s e ae e e e e e e ennnnnnees 5-95
PIXPCi_PCIBArSPACEWWIITEeeeiiiieee ettt e e e et e e e e e e e e e aanbbeaeeaae e e e nnneees 5-97
PIXPCI_PCIBAIMAP -...teeiiiiiiiiiiieeie ettt et e e e e ettt e e e e e e e aanab e e e e e e e e e e e aanbbeaeeaaeeeaannneees 5-99
PIXPCi_PCIBAIrPIOPEITIES eieeeeiiee ittt ettt e e e e e bbb e e e e e e e e s e e e e e e e e e s e naneeees 5-101
PIXPCI_PCIBArUNMAD ... ittt e ettt e e e e e e e s bbb e e e e e e e e e snbbeaeeaaeeeaannneees 5-102
PIXPCi_PCIREQISIEIREAMeueiiiiieeiiiiee ettt e s e e e e e aneeeee 5-104
PIXPCI_PCIREGISIEIMVIITEttt e et e e e e e e e e e e e e e e s nneeees 5-106
PIXPCi_PCIREQIStEIREAUFASTccecci it e e e e e e e e e e e s nnnneees 5-108
PIXPCi_PCIREQISIEIVIITEFAST ... eeviieeiiiceiiiieei s e e e s e e e e e s s s e e e ae e e s e nnnneees 5-109
PIxPci_PciRegisterRead BYPasSOS........ccuiieiiiiiiiiiiiieeee e iiiiiiieee e e e s e ssineeesee e e s s snnnnaeesaeeesnnnnnnens 5-111
PIXPci_PCIRegiSterWrite_ BYPasSSOSuuuieieeiiiiiiiieiieee e e s esitieeee e e e s s ssineee e e e e e s s snnntnaneeaeeeannnnnnees 5-113
PIXPci_PerformanceCalCStatiStiCS.......uuuuuiireeeiiiiiieii e e e ssrtie e e e e s sseee e e e e e snrrare e e e e e s nnnnnees 5-115
PIXPcCi_PerformanCeGEICOUNLEIS.........uu ittt e e aaaraaar raaaraaasarareaanaraaansssnnnnnsnnnrnnes 5-117
PIxPci_PerformancelnitialiZEProperties.coo i 5-119
PIxPci_PerformanceMOonitorCONIOl.............uuuiiiiii e aeaneeeanennannaenne 5-121
PIXPci_PerformanCeRESEICOUNLELSuuuuiiiiiiiiii s aaaraaaaaeaaaasasansannnnnrnnes 5-123
PIXPci_PhysicalMemOryAIIOCALE.ueeiieiieeieiiee ettt e e e 5-125
PIXPCi_PhySICAIMEMOIYFTEEceiiiiiiiieeeeee ettt e e e e et e e e e e e e e anneee e 5-127
PIXPCi_PhySiCalMEMOIYMAPeveiieeiiiiiiieiiee e e e seettte e e e e e s st e e e e e e s st e e e e e e s s snnreaeeeaeeeannnnnnnes 5-129
PIXPcCi_PhysicalMemMOrYUNMAPcccurriiiereeeieiiiiieieeee e e sssieieeee e e e s s snntnneeeseeesssnnsnneesseeesnnnnnnens 5-131
PIXPCi_PIXREQISIEIREAMuueiiiiie e it e s e e e s e e e e e e s e e e e e e e e annbeaeeeaeeeeennnneees 5-133
PIXPCi_PIXREGISIEIVVIILE ...t ettt e e e e s r e e e e e s st e e e e e e e s snnrn e e e aeeesennnneees 5-135

PIXPcCi_PIXMappedREQISIEIREAMevieiieie e e i e e e e e e e e e e e e e e e e e nnnneees 5-137

PIXPCi_PIXMappedREGISIEIWIILE ... eeeieeeee e e e eeeeie e et e e e e e s e e e e e e s e s e e e e e e e s e nnnnnees 5-139

L N o VA o o | LT Uo [PR 5-141

L N ol IV 0 VAT (= PR 5-142

5.2 PLX API Data StrUCtUrES @N0 TYPES ...eueeiiiaeiiiitiiieeia e ettt et e e ettt e e e e e s aibb et e e e e e e s annbeseeeaeeeaannneees 5-143
5.2.1 StANArd DAt TYPES. . ceeieeiiiiitieitee e ettt e ettt e e e e e et et e e e e e e e e s bbb ae e e e e e e e e anbbeeeeaaeeeaaanneees 5-143
5.2.1.1 Code Portability MACIOS.ciiuiieiieie ettt e e e e e e e e e s abeneeeaeas 5-143
5.2.2 ENUMETALEA TYPES ..eeeiiiieeiiiiitie et e e e ettt e e e e e e e bbbt et e e e e e e et ettt e e e e e e e aaabebeeeaeessaannnbneeeaaeeeaannnnees 5-143
PLX _ACCESS _TYPE ...ttt ettt ettt sttt ettt e e be e st e e ebe e e meeante e ebe e sbeesaeesaeesnaeanneas 5-144
PLX_BAR_FLAG ... ettt ettt ettt sttt et e e bt e bt e eb e e ebe e emeeemeeebe e ebeesaeesaeesnneaneeas 5-145
PLX_API_MODE........oitiiiteeitt ettt ettt bbbt bttt be e eb e nbe e b e b nnne s 5-146
PLX_CHIP_FAMILY ...ttt ettt ettt b bttt b e nb et et nbnenane s 5-147
PLX_CHIP_MODE ... ciiitiiitieitieitt ettt bttt b bttt ettt nb e nbe e st nbne i 5-148
PLX_CREC_STATUS ..ttt ettt b bbbt it ettt nbe e st st e nanenine s 5-149
PLX_DMA_COMMAND ...ttt ettt bbbttt et sbe e nbe e st nbeenane b 5-150
PLX_DMA_DESCR_MODE.......ccttiitiiieite ittt ettt sbe bbb e 5-151
PLX_DMA_RING_DELAY_TIMEuttiittiiie ittt ettt ettt ettt e aseeaae e ste e saeesaeesneesnaeaneeas 5-152
PLX_DMA _ DIR .ttt ettt ettt et ettt sae e st st e et e e e bt e be e ebe e eb e e eneeenee e ebeeebeesbeesheeanneanneas 5-153
PLX_DMA _MAX_SRC_TSIZE ..ottt ettt ettt sttt sbe e sbeesaeesaeesnaeaneeas 5-154

PLX _EEPROM_PORT ...ttt ittt ettt sttt st ettt be et e e sbe e sbeeebeeameeaneeaabeesbeesaeesaeesnneanneas 5-155
PLX_EEPROM_STATUS ..ottt ettt sttt sttt et et e te e e me e et esbe e sbeesaeesaeesnneanneas 5-156

I o Y T 20] = LTS URPRROTRTR 5-157

PLX UNT _LUT_FLAG ..ottt ettt b ettt et b e nb e bbb 5-158
PLX_PERF_CIMD ..ottt ettt ettt sttt b bbbttt e sb e b st e nbn i 5-159

PLX P ORT _TYPE ...ttt ettt b bttt he ettt sb e nbe e st e nbnenine s 5-160
PLX_SPECIFIC_PORT_TYPE ...ttt ettt nbe e 5-161

P LR ST AT E ettt bbbt bt h e bbbt nrn e 5-162
PLX ST ATUS L.ttt ettt he e he e e a et e a e et e e bt e ke e ebeeeb e e emeeeneeeabeeebeesaeesaeesnneanneas 5-163

5.2.3 DAta SHUCIUIES.......uuiiiiiiie ittt e et r e e s s s st et e e e s s e e et e e e e e s s nnnne s 5-164
PLX_DEVICE_KEY ..ttt ettt ettt sttt ettt et e et esh e e emeeamee e abe e sbeesaeesaeesnneanneas 5-165

PLX _DEVICE _OBJIECT ... i itiiitie ittt ettt ettt et et be et e sbe s sbeeeteeameeaneeesbeesbeesaeesaeesnneannens 5-167
PLX_DMA PARAMS ...ttt ettt ettt ettt sttt ettt bt e bt e et e e ebe e emeeemee e abe e sbeesaeesaeesnneanneas 5-168
PLX_DMA _PROP ...ttt ettt ettt ettt e bt eeb et eae e e et e be e ebeesaeesaeesnneaneeas 5-169
PLX_DRIVER_PROP ...ttt ettt ettt sttt ettt nbe et nene e 5-173

PLX _INTERRUPT ...ttt ettt et b bbbt bt sb e nb e st nbnenine s 5-174
PLX_MULTI_HOST _PROP ...ttt ettt sttt nb e 5-177
PLX_MODE_PROP ...ttt ettt ettt b et sb ettt eb e sbe e st nbnenine s 5-178

PLX_NOTIFY _OBJIECT ..ottt ittt ettt et s e s e e e s e e e 5-179

PLX_PCI_BAR_PROP.......oveiveeteoeeeeeeeeeeeeeeeee e s eeseesseee e eseseseeseee s ee s se e s eseeee s ee s eeeseeseee 5-180

PLX_PERF_PROPooooooeoeeeeee oo ee e eeeee e s ee e 5-181
PLX_PERF_STATS oo eee e ee e se e ee e 5-182
PLX_PHYSICAL MEM ..o eeeeeeee e eeeeeee e s ee e es e 5-183
PLX_PORT_PROP ...ttt eeeeeeee e eeeeeee e eeeee e s e s ese e ee e es e ee e 5-184

PLX_VERSION ...t e s e e 5-185

1 General Information

1.1 About this Manual

This manual provides information about the functionality of the PLX SDK. The SDK may be used in conjunction
with any PLX Rapid Development Kit (RDK) or any custom design containing a PLX 8000, 9000, or 6000 series
chip. Users should consult this manual for PLX SDK installation and general information about the design
architecture.

1.2

PLX SDK Features

The SDK contains software for Windows & Linux host environments where the PLX chip is accessed across the
PCI/PCle bus. This package is provided for debug phase of hardware development and also for development of
custom applications:

Windows drivers & API with source code

Linux drivers & APl with source code supporting kernel 2.4 & 2.6

PLX Device Editor (PDE) debug utility for all PCI Express devices
PLXMon debug utility is to support all PLX 6000 & 9000 series devices.

Sample applications

1.3 Terminology

References to Visual C/C++ or Visual C++ refer to Microsoft Visual C/C++ 6.0.

Win32 references are used throughout this manual to mean any application that is compatible with the
Windows environment.

References to PCI Express may be denoted as either PCle or PEX.
References to Non-Transparency may be denoted as NT.

References to Application Programming Interface may be denoted as API.

11

2 Getting Started

2.1 Development Tools

Various tools were used to build the software included in the PLX SDK. There are many compatible alternative
tools available for the various build environments. Customers are free to use their own preferred sets of
compatible development tools; however, PLX has only verified the tools listed below and, as a result, cannot
support tools not listed here. The development tools used to develop the PLX SDK components include:

Windows Applications and API DLL:
Microsoft Visual C/C++ 6.0, Service Pack 6

Windows Driver Model (WDM) Device Drivers
Microsoft Windows Device Driver Kit (DDK) or Windows Driver Kit (WDK). 2003 Server WDK or higher is
required to build 64-bit versions of PLX drivers.

Linux Applications and API Library:
Standard Linux distribution, such as RedHat or Fedora, using GCC.

Linux Device Driver:

Standard Linux distribution, such as RedHat or Fedora with kernel source/development RPM installed
2.2 PLX SDK Version Compatibility
When using the PLX SDK, it is important that all components are of the same version, as follows:

e In Windows & Linux, the PLX device drivers (e.g. .sys files) and the PLX API library (e.g. PIxApi.dll)
versions must match. In other words, loading a driver built with SDK 5.0 and running an application,
which calls the API library from version 4.40, will result in erratic behavior.

¢ When building applications, it is important to use the C header files included in the installed PLX SDK
version. Applications built with older SDK versions must be re-built. In some case, there may be a
porting effort when upgrading to a newer SDK due to API changes.
2.3 PLX SDK Installation in Microsoft Windows

Before installing the SDK, any previously installed PLX SDK versions should be removed. Installation of
multiple SDK versions may result in erratic behavior due to file conflicts. Refer to section 2.3.2 for more details.

To install the PLX SDK Software package, simply run the SDK installation package and follow the prompts.
Note: For proper Windows installation, a user with “Administrator” rights must install the SDK in order to install
drivers.

2.4 PLX SDK Removal

Prior to installation of a new version of the PLX SDK, any previously installed versions should be uninstalled.
Many files change between SDK releases and since these files are used for development purposes, they may
be incompatible with a previous release. To remove a PLX SDK package, including device drivers, complete
the following:

1. Close any open applications

Open the Windows Control Panel

Select Add/Remove Programs icon in the Control Panel window
Choose the PLX SDK package from the item list

Click the Add/Remove... button

Note: For proper removal, a user with “Administrator” rights must remove the PLX SDK.

o > 0N

2-1

Warning: If any files have been modified in the original PLX SDK install directory, such as C source code files,
the uninstaller may delete them. Please be careful before uninstalling an SDK package. The SDK directory can
first be copied (not moved) to another safe location before removal.

2.5 |Installation of PLX Device Drivers in Windows

During SDK installation, the installation package will automatically create the necessary registry entries and
copy any files needed to load PLX device drivers.

2.5.1 PLX Plug and Play Device Driver Installation

The PLX Windows device drivers conform to the Microsoft Windows Driver Model (WDM). These drivers
support Plug 'n’ Play (PnP) and Power Management.

Since Windows is a Plug 'n’ Play (PnP) Operating Systems, the SDK installation package does not automatically
assign device drivers for PLX devices. The Windows PnP Manager is responsible for detecting devices and
prompting the user for the correct driver. To assign a driver for a device, Windows refers to an INF file. The INF
file provides instructions for Windows as to which driver files to install and which registry entries to insert.

To install a driver for a board containing a PLX device in PnP Windows, complete the following steps:
1. After installing the PLX SDK successfully, shut down the computer.
2. Insert the PLX RDK board or your custom board with a PLX device into a free PCI or PCle slot.

3. Reboot the computer. Windows should first detect the new hardware device with a “New Hardware
Found” message box. Acknowledge this message box.

4. Windows then displays the “Found New Hardware” Wizard, which will search for a suitable driver.

2.5.1.1 PLX Device Driver Installation

e Once the Found New Hardware Wizard starts, the following dialog is displayed: Select No, not this time.

Found Mew Hardware Wizard

Welcome to the Found New
Hardware Wizard

YWiindowes will search for current and updated zoftware by
loaking an your computer, on the hardware installation CO, or on
the Windows Update ‘Web zite [with pour permizsion].

Bead our privacy policy

Can "Windows connect o Windows Update bo search for
zoftware?

) s, this time only
) Y'es, now and every time | connect a device
%) Mo, nat this time

Click Mest to continue.

f et »][Cancel

2-2

e The Wizard will now attempt to find the .INF file. By default, PLX includes the PLX INF file in
<Sdk_Install_Dir>\Drivers, but it also places a copy in the Windows INF folder. The wizard should be able
to automatically locate the correct INF file. Select Install the software automatically option.

Found MNew Hardware Wizand

Thiz wizard helps wou ingtall software for;

FPLx 8532 PCl Express Switch [Mon-tranzparent]

\'} If your hardware came with an installation CD
=2 or floppy dizsk. insert it now.

YWhat da you want the wizard ta do??

(%) Install the software automatically [Fecommended)
(7 Install fram a list or specific location [Advanced)

Click Mest to continue,

< Back ” Mext = l[Cancel

o Windows will then scan through INF files to find a matching device driver. Since PLX drivers are not digitally
signed, Windows will prompt with the following dialog. Click Continue Anyway.

Hardware Installation

L] 'I_., The saoftware you are ingtalling for thiz hardware:
L]
PL 8532 PCl Express Switch [Mon-tranzparent]

haz not passed Windows Logo testing to wenfy itz compatibility
with "Windows P, [Tell me why this testing iz important. |

Continuing your installation of thiz software may impair
or destabilize the correct operation of your spstem
either immediately or in the future. Microsoft strongly
recommends that you stop thiz inztallation now and
contact the hardware vendor for software that has
pazsed Windows Logo testing.

| Continue sryway | | STOP Installation

2-3

e When the following dialog is displayed, the device driver installation is complete. Click the Finish button.

Found New Hardware Wizard

Completing the Found New
Hardware Wizard

The wizard haz finished instaling the software for:

@ PL 8532 PCl Expresz Switch [Man-tranzparent]

Click Finish to close the wizard.

o |If the device appears under Other devices, the installation was successful. Applications that use the PLX
API, such as PLXMon or the PDE, may now be used to access the device.

File Action Mjew Help

m & £ A

i

_‘5 Cormpuker
age Disk drives

-g Display adapters
s DVDCD-ROM drives
=) Floppy disk controllers
j} Floppy disk drives
i IDE ATASATAPT controllers

i Kevboards

Yy Mice and ather pointing devices

& Moanitars
HE hetwork, adapters
@ Other devices

@ Custom (OEM) PCI 9054 Board

o Ports (COM & LPT)
ﬂ Processors
@, sound, video and game controllers

Syskem devices
Universal Serial Bus conkrallers

]]] O O O O o N N

B o A e N

Note: If the Device/Vendor ID of the board is changed or the board is physically moved to a different PCI slot,
Windows will recognize it as a completely new device and the process must be repeated.

2.5.1.2 Modifying the PLX INF File for Use with Custom Device/Vendor IDs

When a new device is plugged into a system running Windows, the Windows Plug ‘n’ Play Manager will prompt
the user for driver files. Windows determines which files to install through information in an INF file. PLX
already provides an INF file (PIxSdk.inf), which contains setup information for all PLX RDKs and all PLX parts
with a default ID. The INF may be found in <Sdk_Dir>\Driver, but the install package also installs a copy under
<Windows_Dir>\Inf.

The recommended method for installing a device where the ID has been changed is to open the PLX INF file
and add an entry for the device with a custom ID. The procedure for this is documented inside the INF file itself,
which is a simple text file. Open the INF in a text editor, such as Notepad, and follow the instructions to add an
entry for the custom ID and then re-install the device. Windows will then automatically detect the device and
install the necessary driver files.

2.5.2 PLXPCI/PCle Service Driver

The PLX Service driver (PIxSvc) is installed automatically by the SDK installation package but may also be
installed manually. There are various methods to install and control the PLX Service driver, each documented
in the following sections.

2.5.2.1 Install Using Service Control Manager (SCM) API

An external Windows utility may be written to install/remove and control the PLX Service driver. This utilizes the
Microsoft Service functions, such as CreateService and OpenSCManager. The PLX SDK installation package
and PLX Driver Options Wizard use this method to install and control the PLX Service Driver. Refer to the
Microsoft on-line documentation for additional details.

2.5.2.2 Install Using Windows “sc.exe” Utility

Most versions of Windows include the utility “SC” to access the Service Control database. This may be used to
easily perform operations on services, including add/remove and start/stop. Type “sc” in a Command Prompt
window for complete usage instructions. Refer to Figure 2-1 for an example of basic service control functions.

To install the PLX Service Driver, perform the following:
1. Copy the correct version of PIxSvc.sys to the Windows System32\Drivers folder.
2. Issue the following command in a DOS prompt or batch file:

sc create PIxSvc binPath= System32\Drivers\PIxSvc.sys type= kernel start= auto error=ignore
DisplayName="PLX PCI/PCle Service Driver"

2-5

http://msdn.microsoft.com/en-us/library/ms685942(v=VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms682450(v=VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms684323(v=VS.85).aspx
http://www.microsoft.com/resources/documentation/windows/xp/all/proddocs/en-us/sc.mspx?mfr=true

Command Prompt ﬂﬂ
4]

F:%»sc create PlxSvc type= kernel start= auto error= ignore hinPath= System32“Drmm
ivers“Plx8vc.sys DisplayMame= "PLH PCIPCle Service Driver"
[8C] CreateService SUCCESE

F:%»>sc start PlxSuc

SERVICE_MAME: PlxSuc
TYPE
STATE

WIN32_EXRIT_CODE
SERVICE_EXIT_CODE
CHECKPOINT
WATT_HINT

PID

FLAGS

KERNEL_DRIVER

RUNNING

(STOPPABLE. NOT _PAUSABLE . IGNORES _SHUTDOWH»
(Bx@A>

CBx@d

F:%»sc stop PlxSvc

SERVICE_MAME: PlxSuc
TYPE
STATE

WIN32_EXRIT_CODE
SERVICE_EXIT_CODE
CHECKPOINT

WATT _HINT

F:%»>zc delete PlxSvc
[SC]1 DeleteService SUCCESS

Fos» -

KERHEL_DRIVER

STOPPED

CNOT_STOPPABLE,. NOT _PAUSABLE ., I GHORES _SHUTDOWM>
(Bx@A>

CBx@d

Figure 2-1: Sample 'SC' Commands

2.5.2.3 Install Manually via Registry and Reboot
To perform a manual installation, follow the steps below:

e Add the required driver registry entries
Double-click the PLX Service registry file (<Sdk_Install_Dir>\PIxSvc.reg) to install the required registry
entries. Double-clicking the file will automatically launch RegEdit and add the necessary entries.

e Copy the PLX Service driver to Windows
Copy the correct version (32-bit or 64-hbit) of the file PIxSvc.sys to <Win_Dir>\System32\Drivers.
PIxSvc.sys may be found in <Sdk_Install_Dir>\Driver\Source.PIxSvc.

e Copy the PLX APl library to Windows
Copy the PLX API DLL (e.g. PIxApi640.dll) to the Windows <Win_Dir>\System32 folder. This file is
located in <Sdk_Install_Dir>\PIxApi.

e Restart the system

2.5.2.4 Starting and Stopping the PLX Service Driver

Since the PLX PCI Service runs as a background task, it may be stopped and started dynamically. The steps
below demonstrate how to control the service. Additionally, the PLX Driver Options Wizard may be used to
start and stop the driver.

2.5.2.4.1 Use command-line utilities

e Use Microsoft ‘net’ utility bundled with Windows:
net start PIXSvc
net stop PIXSvc

2-6

e Use Microsoft “sc” utility bundled with Windows:
sc start PIxSvc
sc stop PIxSvc

2.5.2.4.2 Use Device Manager

e Open the Device Manager (My Computer Properties, Hardware tab) and display the hidden devices as
shown below.

Ll Device Managen |Z| |E| f@
File

Ackion | | Help

® Devices by bvpe
Devices by connection
Resources by bype
‘-’J Con Resources by conneckion
g Disk
BB show hidden devices
3
g EIII;E Cuskomize. ..
4 Floppy disk drives
i=%) IDE ATASATAPT controllers
e Kevboards
™ Mice and other poinking devices
g Manitors
B8 MNetwork adapters
@ Other devices
7 Ports (COM & LPT)
¥ Processors
E',:, Sound, wideo and game conkrollers

System devices
Universal Serial Bus controllers

IDispIays legacy di

i

O O O O O oy O O O O = O o O O O O = Y o O

2-7

e Under Non-Plug and Play Drivers, find the PLX PCI/PCle Service Driver entry and double-click it.

£ Device Manager |Z| |E| E'
File Action Wew Help

m S 20 8 Ba

+ § Manitars -
+-E8 Mebwork adapters
- \> Mon-Plug and Play Drivers

\> AFD Metworking Support Environment

\> awecho

\> Beep

\> dmbook

\> dmload

\> Fips

\> Gaeneric Packet Classifier
\> GErnuwa

< HTTP

\> IP Mebwark Address Translator
< IPSEC driver

\> ksecdd

\> mnmndd

\> modern

\> rnounkrngr

\> MOIS Svskern Driver

\> MDIS Usermode 10 Protocol

\> MOProy

\> MetBios over Topip

\> Pl W
\> PartMgr

\> Parydm

AFLY PCIPCIe Serv ' Dicabl

«» RDPCOD watle

\> RDPWD ninstall

< Remote Access Ao © Sean for hardware changes

< Remote Access IP ARF R

“eroperties [0

Opens property sheet for the ¢

e The following dialog will appear. The Start and Stop buttons control loading and unloading of the driver,

respectfully.

PLX PCI/PCle Service Driver Properties

General | Driver | Details

.\> PL= PCI/PCle Service Driver

Service name: PlsSwe

Digplay name: FL= PCI/PCle Semvice Driver

Current status

Statuz: Started | Stop
Startup
Type: Autamatic ﬂ

Diriver Details. .. |

ok][Cancel]

2.5.3 Modifying PLX Driver Options in the Registry

All Windows drivers have entries in the Registry, which are required by the OS. Additionally, there may be
driver-specific entries, which can be used to customize driver behavior. Some features of PLX drivers are
customizable through registry settings and are documented below. The registry entry is located in the path

specified below. Figure 2-2 demonstrates a typical entry.
HKLM\System\CurrentControlSet\Services\<DriverName>

2-9

& Registry Editor

File Edit View Favorites Help

(17 Plxa311 || MName Type Data
(11 Plx3030 (ab] (Default) REG_SZ (value not set)
(0 Phes0s0 ¥ CommonBuffersize REG_DWORD 0x00010000 (65536)
a Erru:urCu:untru:uI REG_DWORD 0x00000000 (0]
% :i:g:: [ab]magePath REG_EXPAND_SZ System32\Drivers Flx8054.sys
03 Phesve Start REG_DWORD 0x00000003 (3)
03 PreService B Type REG_DWORD 0x00000001 (1)
#1177 Prlicvanent M
L4 * L4 *

My Computer \HEEY _LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Pleo054

Figure 2-2 PLX Device Driver Registry Information

The registry entries are described in detail below. Note: Only advanced users with administrative rights should
modify entries in the registry. Please refer to Microsoft's documentation on modifying the registry.

Windows required entries:

¢ ErrorControl
Required by the operating system and should not be modified.

e Start
Required by the operating system and should not be modified.

e Type
Required by the operating system and should not be modified.

PLX-specific entries:

e CommonBufferSize
This value sets the size of the Common buffer, which the driver attempts to allocate for use by all
applications. This buffer is a non-paged contiguous buffer, so it can be used for DMA transfers. The
default value is set to 64KB. Users may increase this value if a larger buffer size is needed.

Note: Changing this entry does NOT guarantee allocation of a larger buffer. The device driver
makes a request to the operating system for a buffer with the size indicated by this registry entry. If
the request fails, however, usually due to unavailable system resources, the driver will decrement the
size and resubmit the request until the buffer allocation succeeds. The APl call
PIxPci_CommonBufferProperties() can be used to determine the common buffer information.

25.3.1 PLX Driver Options Wizard

The PLX SDK includes the PLX Driver Options Wizard application to manage all PLX driver settings. Using the
wizard avoids the need to manually modify the registry. The wizard may be used in all supported versions of
Windows. Details about each configuration option are displayed at the bottom whenever the item is selected.

After launching the wizard, select the desired driver and modify the options as needed. The updated settings will
take effect when the driver is reloaded, either manually or after a system reboot.

2-10

¢ PLX Driver Option Wizard

Select a PLX driver: | 8000-series NT PrP driver
2000 Dk Controller PrP driver
B000-zenies NT PP driver
3050/3052 PrP driver

3030 PP driver

3030 PrP driver

3054 PP driver

3056 PrP driver E it
9656 PP driver

28311 PrP driver

PL PCIAPCle service

L

~| r

Additional Information

The PL¥ DA device driver settingz were nat detected in the redistry. Thiz means the
driver iz not inztalled and, therefore, the optionz cannot be modified.

Reqistiy Key: HELMASpetemCurmentControlS ethServicesh PO ma

Figure 2-3 PLX Driver Options Wizard

2.6 Installation of PLX Device Drivers in Linux

The PLX SDK contains support for Linux environments. Documentation for the Linux support is not included this
manual; however, much of the Windows host-side architecture applies to the Linux Host-side support as-well.
Please refer to the PLX Linux Release Notes in the <Sdk_Install_Dir>\Documentation folder for using the PLX
SDK in Linux. The PLX Linux TAR package is located in <Sdk_Install_Dir>\Linux_Host.

2.7 Distribution of PLX Software

2.7.1 License Agreement

For OEM customers, who have written applications with PLX software and intend to ship it with their product,
please refer to the PLX Software Distribution License Agreement in the PLX SDK Release Notes. The License
Agreement is not reprinted in this manual. The agreement specifies which SDK components may be
redistributed to end users.

2-11

3 PLX Host-side Software

This section describes the PCI Host software components provided in the PCI SDK, which applies to Windows
and Linux.

3.1 SDK Directory Structure
Figure 3-2 shows the PLX SDK directory and top level sub-folders.

3-1

a | Phsdk
Bin
| Documentation
4 . Driver
» 1 Source.Plxe000_MT
Source Plx8000_DMA
Source. PIx8000_NT
Source.PlxQ000
Source.Plxsvc
4 | Eeprom_Images
Plx 5000
Plc_8000
Pl 9000

| Include

Linux_Haost

> . PhApi

| Samples
ApiTest
Dslave

| DSlave_BypassApi

> | DualCast
HotPlugDemo
LocalToPcilnt
MT_DmaTest
MT_LinkTest
MT_Sample
PerfMaonitor

> b PlXCm

» | PlxDma
PlxDmaPerf
PlxDmasglNospi
PleEep
PlxMotification
SampleAppGUI
SerdesEyeTest

i Shared

Figure 3-1. PLX SDK Directory Organization
Bin
Contains binary executables

Documentation
Contains the User’'s Manual, readme files and other SDK documentation

EEPROM Images
Contains sample binary EEPROM files for all PLX devices and RDKs

Include
Contains all the common include files used by the drivers and applications in the SDK

Linux_Host
Contains the PLX Linux support package

Driver
PLX Windows drivers source code

PIXApi
Contains the PLX API source code

Samples
Contains sample applications that demonstrate use of the PLX API

PLX SDK Architecture Overview

The PLX SDK has three main components, the Kernel drivers, User API and User Applications. Figure 3-2
demonstrates the various components and how they fit together. The SDK is provided to handle most of the
low-level functionality so users can concentrate on building their applications.

PEX User Application
(eg. Pex Device Editor GUI)

PEX API Library

User Space

Service Driver NT Mode Driver Kernel Space

\)%(

[T e

PEX Device — 1 PEX Device—2 PEX Device—n

(8532) (8114) 850 0r 8¢

Figure 3-2 PLX SDK Software Architecture

3-3

3.3 PLXAPI Library

The PLX API library is provided to communicate with the PLX device drivers. When an API function is called by
an application, the API library handles the call and translates it to an I1/O control message and sends it to the
driver. Once the driver completes the request, control returns to the APl and then back to the calling application.

The PLX API consists of a library of functions, from which multiple PLX chip-based PCI boards can be accessed
and used. The API covers all features of all PLX chips, such as DMA access, direct data transfers, and interrupt
handling.

The PLX API libraries in the Windows environment file are implemented as Dynamically Linked Libraries (DLL).
Applications linked with these libraries will attempt to load the DLL when started; therefore, the DLLs must be
found somewhere in the system path. DLLs are typically placed in the Windows system directory.

The PLX API library in the Linux environment file is implemented as a statically linked library, rather than
dynamically loaded. Applications will link with the API library during the build process and will, therefore, contain
API library code in the executable.

3.4 Device Drivers

The PLX SDK contains two types of Windows device drivers. The first type is a Windows service driver. The
service driver is used to access any PCI device in the system and also supports EEPROM access to PLX
devices running in Transparent Mode. The other category of device driver is a standard Plug ‘n’ Play device
driver. This driver is typically used for PLX devices running in Non-Transparent mode and also for all PLX 9000
devices.

A device driver is necessary for the PLX SDK software to access PLX PCI devices. Applications, such as
PLXMon, cannot access PCI devices without a device driver installed. The SDK includes drivers for all
supported PLX PCI chips.

The PLX device drivers contain the API implementation for the PLX chip they support and the basic functionality
required by all device drivers for the OS environment. The device driver accesses the PLX chip across the PCI
bus by using OS system calls. The driver is also responsible for handling PCI interrupts from the PLX chip.

Each PLX chip type has an associated driver. Device drivers are not associated with a specific board, but are
generic in design to be used for any board containing the specified PLX chip. A single driver is responsible for
all devices in the system containing the PLX chip the driver was written for. Each device driver communicates
with the PLX API on a one-to-one basis; there is no driver-to-driver communication.

3.5 PLX API and Multi-threading

Programming in a multi-tasking environment requires understanding of many issues that do not exist in a single-
threaded environment. These issues can be especially complex when they involve hardware device drivers. For
those customers who intend to use PLX software in a multi-tasking environment and use it with multiple
simultaneous applications, some additional work and caution may be required.

The PLX API libraries and drivers do not enforce synchronization between concurrent accesses to PLX chips. In
other words, the PLX drivers do not lock all resources of the PLX chip while they are in use. Only the DMA
channels are treated as a shared resource and may only be opened by one thread at a time. Each channel is
independent so each can be opened by different processes.

The reasons PLX drivers do not enforce synchronization on the whole:

e Each "feature" of the chip would have to be treated as a shared resource. This includes each BAR
space, each DMA channel, & the shared common buffer.

e The PLX API allows applications to map registers and BAR spaces directly into an application’s virtual
space for performance reasons. Once that happens, any accesses to the registers or space completely
bypass the PLX driver so synchronization cannot be enforced. In other words, there's nothing stopping
another process from manually writing to the DMA registers even if another process "owns" the channel.

e Synchronizing accesses to BAR spaces is not feasible. BAR space memory read/write is generally slow
in relative terms. Reads are typically only 2-4MB/s. If one application wishes to read 8MB from a
particular local bus location, the BAR resource must be locked for 2 seconds, which is very poor

3-4

programming practice. Locking is required because the remap register, for example, must be set to
access the desired local bus region. If another thread wishes to access another local bus region, it may
need to adjust the remap window, which will corrupt the 1st thread.

It is left to application designers to deal with overall synchronization if it's needed. Typically this can be done by
assigning mutually exclusive resources or using Inter-Process Communications (IPCs) provided by the OS to
coordinate accesses to the PLX chip. Although there are numerous techniques to deal with this issue, it is left to
the judgment of end-users to determine their specific requirements.

3.5.1 PLX Device Driver Directory Structure

The PLX drivers are designed to take advantage of common code; therefore many files are shared between all
PLX drivers. The following figure depicts the Windows device driver directory structure as found in the PLX
SDK installation.

4 PleSdk
Bin
Documentation
4 | Driver
Source Plx000_NT
Source. PIxS000_DMA
Source, PlxS000_NT
4 Source.PlxQ000
4 | Chp
8311
9020
9050
9054
9056
9030
9556
Source.PlxSve

Eeprom_Images

Figure 3-3 PLX Driver Directory Structure
The driver directories are described below:

e Driver\Source.PIx6000_NT
Contains source code for the PLX 6000 Non-transparent mode driver.

e Driver\Source.PIx8000_NT
Contains source code for the PLX 8000 Non-transparent mode driver.
e Driver\Source.PIx8000_DMA
Contains source code for the PLX 8000-series DMA driver.
e Driver\Source.PIx9000
Contains source code common to all PLX 9000 drivers.
o Driver\Source.PIx9000\Chip\<ChipType>
Contains PLX chip-specific source code used for PLX 9000 drivers.

e Driver\Source.PIxSvc
Contains source code for PLX Service driver.

3-5

3.5.2 Building Windows Device Drivers

To build a driver, the Windows WDK must first be installed. Follow the steps below to build the driver. The
WDK environment determines the version of the driver built; otherwise, the build process is identical for all
environments.

Note: Due to limitations in the build utility provided in the Windows WDK, the PLX-supplied batch file,
BuildDriver.bat, must be used to build a driver. The build utility does not easily support compiling of files in a
common directory; therefore, it is not used directly to build PLX drivers.

e Select and open the desired WDK environment (icons are installed by the WDK).

| WDK 7600.16385.1
| Build Environments
i Windows 7

B 364 Checked Build Environm
B8 ia54 Free Build Environment L
il #64 Checked Build Environm
B 64 Free Build Environment
Bl x35 Checked Build Environm
B 26 Free Build Environment

SHREEIE

3-6

Move to the PLX SDK driver directory. Use the BuildDriver script to build the drivers. BuildDriver.bat will

automatically perform the necessary steps to build the desired device driver. Some sample build
screenshots are provided below. Once the driver is built, the new driver file may be used in Windows.
Refer to the Windows WDK for additional information on building and debugging drivers.

ER Administrator Windows Win7 x64 Checked Build Environment {‘:' | =] |ﬂh‘

-

F:~DdksWinDDE~7680.16385.1> C:
C:%> CD “Plx“\PlxSdksDriver
C:SPlx~PlxSdks\Driver? BuildDriver. hat

PLH Windows driver build batch file
Copyright <c?» PLH Technology. Inc.

Usage: builddriver {PLX_Chip} [CleanOption]

PL¥_Chip = PL¥ MT-mode PnP driver

PLX DMA Controller PnP driver
PLX 72852 PnP driver

PLX PnP driver

PLX PnP driver

PLX PnPF driver

PLX 92856 PnFP driver

PLX 2656 PnFP driver

PLX 8311 PnFP driver

PLE 6254654876466 NT-mode PnP driver
PLX PCI-PCle Service driver

n
d

2856
2656
8311
6B88n
Swe

Build the driver
Remove intermediate build files
Remove all build files

CleanOption = {noneX
‘clean’
*cleanall’

C:sPlx~PlxSdk“Driver> BuildDriver 8888n_

3-7

ER Administrator: Windows Win7 x64 Checked Build Environment { — | =] |£h‘

m| »

=

HHAH

Hl I - : 0
B [Done

=
=

3.6 User-mode Applications

User-mode applications use the PLX API library to control any device with a PLX chip. For most situations, a
user-mode application using the PLX API is sufficient to perform the desired functionality. PLX drivers are
generic in design to minimize the need for driver customization. Typically, drivers are modified to take
advantage of specific OEM hardware on a device, or possibly to add functionality, such as additional processing
in the Interrupt Service Routine.

This section will explain some techniques for building user-mode applications and use of the API. The following
text refers to Microsoft Visual C/C++ 6.0, but customers are free to use any compatible developer tool of
preference.

3.6.1 PLX Sample Applications

Several sample applications, located in <Sdk_Install_Dir>\Samples, are included in the PLX SDK. These
demonstrate how an application can use the PLX API to perform various functions with PLX devices. The
included project files are for Microsoft Visual C/C++ 6.0.

3.6.2 Creating Windows PCI Host Applications

The first step in creating a Windows PCI Host application is to create a Microsoft Project File. A new project file
can be created or one of the sample projects can be opened and modified. Typically, a Win32 Console
application is used to create a project, but any C or C++ project, such as MFC AppWizard, is compatible with
the PLX API. Figure 3-4 demonstrates the new project dialog.

3-8

vew 2| x|

Filez Projects | Wiorkzpaces | Other Documents |

A1 ATL COM Appwizard Project name:

¢ | Cluster Resource Type "Wizard IMP-&-PF*

| CListom Apphafizard ;

=1Databaze Froject Logation:

T DS tudio Addkin Wizard |F:\bpplications'Mybpp o
e [SAP| Estenzion wizard
Makefile

#m 1T Activer Contrahwfizard
8] MFC &ppivfizard [dI]

M FC Appiwizard (exe)

¥ Cieate new workspace
£ fdd o curent workspace

[T Dependency of:
T4 Utility Project
] w/in32 &pplication | [
jWinSE Congale Application
%] '/in32 Dynamic-Link Library .
%] win22 Static Library :‘j’l’nmgz

| k. I Cancel

Figure 3-4 Visual C/C++ New Project Dialog

Once the project has been opened, source code can be written and inserted into the project. Before an

application can be built successfully, however, the steps below must be completed. Figure 3-6 demonstrates a
typical Visual C project that is configured for the PLX API.

3-9

3-10

Add the PLX SDK Include directory
This ensures that the development tools refer to and can find the correct version of the PLX C
header files. In Visual C/C++, for example, the directory is specified in the Options dialog, as shown
in Figure 3-5.

E ditar | Tabz | Debug | Cornmpatibility | Build | Directonies | EE

Elatform: Show directaries far;
'win3z | |Include files -l
Directaries: S S

O:MProgram Files\Microzoft Wizual Studio' W CSEWMCLUDE
O:%Program Files\Microzoft Wizual Studio'WCSEWMFCAMCLUDE

D:5Praogram Files\Microzoft Wizual Studic'WCSENWATLAMCLUDE
Ic:aPums dkMInclude ... I

k. | Cancel

Figure 3-5 Visual C/C++ Include Files Directory

Include “PIxApi.h”
This file must be included to provide prototypes for PLX functions and any PLX-specific data types.

Insert “PIxApi.lib” into the Project
This library file contains link information for the PIxApiXXX.dll file, where <XXX> is the SDK version
number, e.g. PIXApi700.dll. When the application is launched, the API DLL will automatically be
loaded by Windows. The library file is provided in the <Sdk_Install_Dir>\PIxApi\Release directory.

o SampleAppGUI - Microsoft Visual C++ - [SamplefippGUIDIg.cpp]

[¥] File Edit Wiew Insert Project Build

SRE—= =

Tools Window Help

B | Gy |BarMapHel

R

|SampletppGUL - | [win32 Debug

2l
Wworkspace 'SamplefppGUI": 1 projec
= SampleAppGUI files
=423 Source Files
¥] SampledppGUI cpp
SampledppGUlL e
SampleAppGUIDIg.cpp]
Stddkx cpp
+--[_7] Header Filas
+--[[7] Resource Files
Platypiso.lib

|

s

B8 Clazs... ‘ﬁl Flesou...‘ |E] FileWigw J_
Ready

Description: =

Samnple GUI application to demonstrate hov to use the 6350 de=i
Fevi=zion History:

01-01-07 PLY SDE +5.00

ok ok ok Kk % % ¥

"stdafxz h"
"SamplelAppEUI L
"SampleippGUIDlg R
"Plzdpi . h"

finclude
#include
Finclude
finclude

#ifdef _DEEUG
#define new DEBUG_NEUW
#und=f THIS_FILE

=tatic char THIS FILE[] = _ FILE ;
fendif
B
* Globals
1
CSamnpledippGUIDlg =:hl pMainDlg = HULL:
BEGIN_ MESSAGE_MAP (CSampleAppGUIDlg, CDialog)
SOLLAFE MSG MAP(CSanpledppGUIDlg)
COH_BN_CLICEED{IDOK, OnButtonSelect)
SOVLAFEMSGMAR
END_MESSAGE_MAP()
P
3
* Function -
4 »
Ln 22, Col 1

Figure 3-6 Typical Visual C/C++ Project

3-11

4 PLX Debug Utilities

4.1 PLX PEX Device Editor (PDE)

The PLX SDK includes the PEX Device Editor for working with PLX PCI Express devices. The following
subsections give a high level view of the main Debug and Performance Monitoring features built into the PDE
GUI utility.

From a high level the PDE GUI application supports the following features:
= Memory Mapped register access
= Config register access
= Search for registers based on address or description
= Eeprom editing and Programming directly from file
= Find differences between Eeprom and a bin file or 2 Eeprom bin files
= Lane Status Panel with Active lanes, Port types and lane widths
= |2C support to allow access to PLX device features from a different system through a USB to 12C bridge
= Register Table info from Data books accessible from PEX Device Editor GUI
= Save screen data to file, and vice-versa
= Basic Config space access to non-PLX PCI devices
= Online help from the PEX Device Editor GUI.
" PCI Device Capabilities support for Non-PLX devices
" Automated PCI Error Monitoring and Reporting
" Tree View of all PCI devices in the system
" Debug and Performance Monitoring for gen-2 & gen-3 devices:
= Serdes Eye Width
= Performance Monitor
= Packet Generator
= Probe Mode
The above features allow users to
e Configure the PLX devices to their specific needs.
e Demonstrate all major features with the help of user friendly GUI screens
e Helps in debugging & performance analysis on a live system
The following subsections will focus on the Debug and Performance monitoring features in detail. For addtional
details on how to use the GUI features, please refer to the Help option in the PDE.
4.1.1 Probe Mode
The Probe Mode feature can do the following:

e Allows users to select all signal combinations that are allowed by Debug Mode, through a user friendly
interface

e Supports both External and Internal Modes.

e Supports complex triggering options based on state transitions.

e Captured data can be saved to a file.

e Captured data from file can be displayed in GUI for analysis.

PEX Device Editor

File Wiew Tools Help

EEd el

DIFF FILE-TO-FILE - = | Browse FileD... - Browse Filel...

Dol e il PCI Config, Header 44021201~ Configure Probe Mode {8647-ARY | - %

DEYICE SELECTOR

Global | Gnavion/VCORE | Internal Probe Mode | Global Update Regs | Starion/VCORE Update Regs || Dutput |

FL¥ Devices
Probe Mode Current Settings
Der ¥Yen Rev Bus Fun Slt Mode ChipType
+ 8647 10B5 |ak |01 |00 |00 | PCIe 8647: AL Probe Dut & Selects Probe Dut B Selects Run

Loop forewver
Module Select Module Select THY B
R T

Port Select Port Select

simat serect [| [memerww][mesaum |

|

Sigmnal Select

DEYICE OPERATIONS

Iteration Count: 1 Status M=g: Run Complete

[E]PCTI/PCTIe Config-Registers

\f {MemoryMapped-Registers Probe & RAM Addr Probe Out @ ProbeB RAM Addr Probe Out B Cycle Count Increment Unit ~
L _
EEEPROH—Emmr {decimal)

148

E'jcanfn;ure Probe Mode 148 20000 20000 1023 1 us
vSerdes Eve Uidth 149 20000 149 20000 1023 1 us
150 20001 150 20001 982 1 us
|@¥|Performance Counters
151 20001 151 20001 1023 1 us
MWiExerciser
152 20000 1352 20000 5% 1 us
153 20000 133 20000 1023 1 us
154 20000 134 20000 1023 1 us
e 155 20000 155 20000 1023 1us
Click to Refresh Lane Status 136 20000 156 20000 1023 1us
151 20000 1517 20000 1023 1us
158 20000 158 20000 1023 1us
159 20000 159 20000 1023 1us
Tort 4 16 o
160 20000 160 20000 1023 1us
Tort & 16 o
161 20000 161 20000 1023 1us
162 20000 162 20000 1023 1 us
163 20000 163 20000 1023 1 us
164 20000 164 20000 1023 1 us
165 20001 165 20001 982 1 us
166 20001 166 20001 1023 1 us
167 20000 167 20000 5% 1 us =
-

o v

Devices Found | OFF-Line Mode

Ready REMOTE: 172,177,215, [PCI{e}] Device 1d: 8647 Yendor Id: 10BS Bus: 1 Function: 0 Slat: 0

B pLX PEX Device Editor

Ele Yiew Tools Help
[=RCH" I
DIFF FILE-TO-FILE - ~ | Browse Filed. ., ~ | Browse Fied...
Devices Fourd = PCI Config. Header {4021-203 /" Configure Probe Mode {8647-AA} | - X

DEVICE SELECTOR e ————————
Global | Station/VCORE | Internal Probe Mode | Global Update Regs | Scation/VCORE Update Regs | Dutput

PLX Devices
Internal Probe Mode Output Control Settings
Day | Uen HEw oo Wen G D ChipIype Usage Mint: Check the box to enable a feature Trigger Count
+ 8547 |10BS Ak (01 00 00 PCIe 6647: AL
2 i L]
+ 5622 | 1085 |22 |05 |oo |oo |ecte . Internal output probe mode [Interrupt on trigger —
1 __1 e
[Trigger on Itiple tr iti {leave it hecked to trigger on state 0 only)
Trigger on state 0 to state 1 Trigger on state 0 or state 1
Trigger on state 0 to state 1 to state 2 Trigger on state 0 or state 1 or state 2
Trigger on state 0 to state 1 Trigger on state 0 or state 1 or state 2 or state 3

Continuous trigger (probe data written to output register every cycle)

DEYICE OPERATIONS

[#]pCI/PCIe Config-Registers
Set Compare and Mask Registers

State 0 State 1

oot i e s T | [oener [cmes B
Miconfigure Probe Mode S s B U Va3
wseraes Eye Widen

[@¥Performance Counters State 2 State 3

s e n [comwer]| [cmmmer o Jempwer b]
Mask R Mask B 3FFFE Mask R 3FFFF Mask B 3FFFF

{#{MemoryHapped-Registers
PA4EEFRON-Edirtor

Data Latch Settings

LANE STATUS N . N - .
@ Latch data into output data probe register immediately on trigger

Click to Refresh Lane Status
© Wait following number of cycles before latching data after trigger is detected

Specify wait cycle count l:l {nanoseconds) (value to be divisble by 4)

[] vse data from Update Registers to latch data from a different source than the trigger

Goto the Update Registers Tab to set update registers

[] Latch data on every trigger occurence (uncheck it to latch data on first trigger occurence only)

Check to clear the trigger latch defined above

[Count trigger events [Exdernal probe trigger in enable
Trigger Count Type
@& Count nunmber of cycles that satisfy the trigger condition
O Count nunber of tramszitions to the trigger condition

et e

Ready REMOTE: 172,177,215, [PCHe}] Device Id: 8647 Vendor Id: 10BS Bus: 1 Function: 0 Slot: 0

Devices Found | OFF-Line Mode

4.1.2 Selecting Signal combinations for probe mode
There are 2 levels of signal selections that can be done with the probe mode.

Level one is at the Module level. There are 2 types of modules. The ones that are present in every Port/Station
combination (TIC, TEC, PHY, DLL etc) and the other type is the Core modules (Chime, 12C, EEPROM etc)
which are common for the whole chip. Every module can bring out 16 different combinations of Signals to the
two outputs Output-A and Output-B. You can select one particular signal combination from each module.

Once you select the appropriate signal combination from all the different modules it will turn out to be a lot more
than 36 which is the maximum number of signal that can be brought out at any given time.

In order to narrow the selections down to 18+18 there is the Level two selection screen where you can select
only 2 combinations out of all the selections that were done in level one.
4.1.3 External and Internal Modes

Probe mode allows the user to bring out all the selected signals to the probe pins for analysis with the help of a
logic analyzer. This is the External Probe Mode.

If the user wants to capture data for a longer period then the internal mode can be used. In the internal mode all
the data from the selected signal will be captured in the Debug RAM. The Debug RAM is 5376 bits deep and
with 36 bits we should be able to capture to a depth of 150.

4-3

The internal mode also allows users to set up various trigger options. These options will be done in more detalil
once we test the hardware and see what parts of it are working.
4.1.4 Capturing, Saving and displaying data

The data that is captured in the Debug RAM can be displayed in the GUI in a tabular form. This can be
improved later by displaying it in the shape of a waveform. The captured data can also be saved in a text file.
This file could have been sent to us from a customer who captured the data and saved it using the save feature.

Capture will be done at every clock or based on other trigger options selected.

4.1.5 Serdes Eye Width

The purpose of this feature is to allow users to tweak certain parameters of the PLX chip and get the best
Serdes Eye width. This can be done at a lane level of every station.

4.1.5.1 Serdes Eye for PLX Gen2 Devices

38 P PLX Davica Lditor
Bl Mo Todk o
SRR
DIFF FILE-TO-FILE - « Erowsn Flad. * BrowssFlel...
D Finad -9 Do TBGAT-RAL | L Mg Bgibars {BEAT-AAL At =
DEVIE SECTOR:
L Devicor <|| select motive Port » -
Bav Wen Bav Dus Fus 51t Mods CRIpType A N R
+ 8647 (10B5 KA 05 00 00 PCIe BE4T:AA Time in sscw ey
6rl1 1085 21 07 00 00 Forward ‘#11i:ED
Phy User Test Patters
* (0647 L0BS AL 0% U0 00 PCIe DEATIAA
futo Calibrate | I Click Lo Draw Eye
SerDes Eye Width
i = s = = — , | _— |
E ith 13
FIPCI/PCIe Contig-Regizters ~
{f MemoryNapped-Registers
FEEPROB-Editor 10 -+ : . i :]
AMConsigureProbe Bade
sxFerdesEyadidch
WiPerformanceCouncers
0.0 * =
LANE STATUS
ek to Refresh Lane Stabus
L 8 16 L
15 I i I i I i
I — e L t — }— +—t
Picoseconds
Save Mavelorm
Dereicers Fiwred
fivody Orawng Grigh, DME

The appropriate Serdes can be put in Digital Loop back mode and a user programmable test pattern can be
generated which will be sent out and received back. The received pattern will be compared with the expected
pattern and an error counter is updated.

This error count is an indirect indicator of the signal level. The software will infer the voltage based on the error
level. The user can also shift the Serdes clock phase in steps. At each step the signal quality can be checked
until the error is at the maximum value. This indicates that we have reached the end of the eye. Then the same
process is repeated by shifting the clock phase in the opposite direction to get to the other end of the eye. This
gives us the total width of the eye.

4-4

Software will do the following steps:

e Putthe Serdes in loop back mode

e Program the User Test Pattern and enable it.

e Shift the Serdes Clock Phase towards one direction in steps and check the error count after a few
seconds. If errors are zero, keep repeating until you hit the first non-zero error count. Then go back a
step and wait for a couple of minutes and check the error count. If you still get errors, go back further
and continue until there are no errors. This way we get a plot of the error vs Unit Interval.

e Repeat previous step again by shifting the clock phase in the other direction.

e Plot a graph of the inferred voltage vs. Clock Phase in Unit Intervals. Inferred voltage is got from the
error count.

4.15.2 Serdes Eye for PLX Gen3 Devices

&E pLx PEX Device Editor

Eile Wew Tools Help
Eisidial=H
DIFF FILE-TO-FILE < ~ Browse File0, ., - Browse Filel...
Dievices Found hilkis Syskem Tree View . Yiew SerDes Eye Pattern {8700-A1}] - X
DEVICE SELECTOR, Receiver Equalization oy
All Plx Devices - Select a Port | ‘ | |
Der %Ven Rev Bus 51t Fun Mode R SerDes Select ‘ || |
+ 5649 10BS Ak 0L 00 00 PCle [F] Check if lane iz reversed
- 8700 10BS a4 OE 00 |00 |PCTe Delay (cycles)
§700 105 AA OF 01 |00 |PCIe Voltage Increment 1 =
E
+ 8700 10B5 A& 10 00 00 PCIe 3
< 2 | Click to Draw Eye ‘ | Cancel 3
DEVICE OPERATIONS
[E]PcI/PCIe Config-Registers Iteration for Lane 0 Approx. run time 4 mins RBun Status- Serdes test complete.
Run_Result ~
L!jMEran:yMappEd—REgistErs
Ej.ﬂ.HB MemoryMapped-Interface SerDes Eye Width
G T IET e
EEEPROH_M“M . Mo errors Upto 10% errors . 10%-25% of errars 25%-50% errors
— A0%-T5% errors = Over 7T8% errors
h__OESErdES Eve Width 300 . |
MWIPLY GenMan L : : : : :]
250 Fooo "I" IMBBIHE 1ER L ~u||""_
LANE STATUS r | "] HIE
[_ “nulll |l|| || :
[hutomatically poll for lame status 00 Fooooi IIII A | | BTN
L : . : 1
Click to Refresh Lane Status " r : i antd I I i | I
& L : :
& L : Il ']
) SE0 L e RELY | § B
w || DO z e |tnaceiv] | IS . : | I I;I ' i 1
The = T : [}] H N 1
0 Upstream GEN-3 4 4 T : e
100 - : H i : I]
1 Dnstream | GEN-3 0 4 r : I i
z Dnstream | GEN-3 0 4 L : :]
50 + : u | II I :]
L : | | : 4
: ; '-nl'lllmll" I
> o & ; """II] .] . NI NE
T T T T T T T T
80 100 120 140 160 180 200 220 240 260 v

Devices Found | OFf-Linz Mods

Ready

For gen3 devices the serdes eye is much cleaner with both the width and height information being made
available to the user. The algorithm used is quite different due to additional features found in the newer Serdes
IP. The following algorithm is used to get the Serdes eye:

e enable eye scan feature

e enable comparator setting override

e enable eye scan error counter and wait time

e longer wait time means more accurate measurement
e wait for signal detect to go high

e wait 500ns~1us for CDR to lock

e loop (scan through the sampling points)

4-5

begin
X and Y axis of scan point
Set Lane eye delay value
set lane comparator offset override
load Y setting into comparator
wait 10ns
set AHB lane receiver equalization DFE comparator select override
set receiver equalization override latch
wait 10ns
set receiver equalization override latch
/Istart counting
set eye_scan_run =1'bl
//depending on the eye scan wait time
wait 200ns
/lread error
/Ireset counter
set eye_scan_run =1'b0
save eye scan setting and error count
end

Sample code on how to generate the Serdes eye is provided in the SDK <Samples\SerdesEyeTest> folder.

4.2 PLX GenMon

The PLX GenMon application supports two features of some PLX chips. These are the Packet Generator and
the Performance Monitor, which are available only on one some PLX devices. The GenMon application will
provide access to only those installed PLX chips that support the feature.

4.2.1 Performace Monitor

The goal of this feature is to provide statistical information taken from performance counters found in some PLX
switches. The following counters are available for every port:

TIC Ingress TLP Posted Header

TIC Ingress TLP Posted DW & TIC Ingress TLP Non-Posted DW
TIC Ingress TLP Completion Header &TIC Ingress Completion DW
TEC Ingress TLP Posted Header

TEC Egress TLP Posted DW & TEC Egress TLP Non-Posted DW
TEC Egress TLP Completion Header & TEC Egress Completion DW
DLLP Ingress & DLLP Egress

Based on theses, various performance parameters can be calculated. The PLX Performance Monitor provides
the following for each active port:

e Link Utilization Percentage
e Average Payload size
e Payload Byte Rate

4-6

PLX provides an API to setup and use the Performance Monitor. Sample code for utilizing this API is provided
in the PLX SDK Samples folder. Details of the PLX Performance Monitor API are provided in

section.

PLX Performance Monitor - B619 BA [b:00 s:00] (12C Mode)

Ingress:
Eqress:

Ingress:
Egress:

Port

0 Ingress
0 Egress
1 Ingress

Parts ko Graph
Ingress: [w#]0 [w]1 []2 []3
Egress:]

Clz [

Link se Tokal Bytes
0.21%: 527,44 KB
0,29%: 73246 KB
0.00%; 0B

Fayload Byte Fate

Tokal Rate

S27.44 KEJs
73246 KBJs
0EB/s

Legend: KB=1,000 ME=1,000,000 GE=1,000,000,000

Loq File Options

[]Enable Lagto File [] Use Start/Stop Separatar

[]include Faw Data [] Use Comma Separated (C5Y)
[Jinclude Calc Data [Sverwrite Existing File

PerfMon_8619_2010-07-07.lag (]

{(®) Log all Ports
Counk 70 () Select Portls)

IIpdate Inkerval | 1000ms

Payload Tokal Bytes Pawload Rate | Payload fwgfTLP

06 0 B/fs 0.00 B
06 0 B/fs 0.00 B
0B 0 Bfs 0.00 B

Yorerage Payload per TLF Time

| Restark | [Reset Graphs] [Close

4.2.2 Packet Generator

Figure 4-1 PLX Performance Monitor

The Packet generator feature of PLX switches may be used to generate PCl compliant TLP packets. The
various TLP parameters may be setup through the simple GUI.

PLX Packet Generator

Packet Generator Device ko Use: Petformance Manikar TLP Flags PL¥ Buffer Far TransFers
D = Digest
' ' “ Address III
|(12C) 9619 BA [0:00 5:00] v | o
. R = Relazed Order Si I:I
12 Devices Cipen Monitar N = No Snoop 28
Commands:
Mum Command Destination | Type Flags Delay Data Length Payload | Data
1 Memory Write (32-bit) PL¥ Buffer + offset 00h - 15 clk. 16 bytes 558B122F . more (12E) add TLP
2 Memory Read (32-bit) PCI: 01230000 15¢clk ReglZadbytes - none-
3 Mon-Fatal Error -- - nane - add Loop
4 Message widata Set: Slok Pawer Limit 20 clk. 00000060
Madify
Duplicate
(%) Mo Loop
O H Loop
() 5% Loop
Mave Down
Cnly Display Cmds Load File. . l [55ve As...]
PLY Reg Acess e rog nritesy. L Start [Help] I |

Figure 4-2 PLX Packet Generator

Translation Layer, Packet (TLP)

TLP Tvpe

Memory Wirite (32-bit)

Mermary Wrike (32-hit)

() Static RoutiMessage widata

PCI Address
i) Auto-Route ko PLY, BuFfer®
(%) Auto-Route to Device™

8619 1065 [b:00 5:00 F:00]

Delay before Execution

|15 v| |Cln:n:k5|{4ns]| V|

PCIEAR Offset (H)

v
TLP Craka
Pavload Size (bytes) Pavload
Crevice 10 | 128 b |
I:I [raka Generation
{(*) Random
() Incremental
() Pattern
—
zenerate Daka
TLP Flags
TLP Digest [relaxed Crdering
L] TLP Poisoned [] Mo Snoop Add l [Cancel

Figure 4-3 TLP Setup Options

4.3 PLXMon

The PLXMon debug utility is a powerful tool, which provides easy-to-use GUI screens for read/write of PLX chip
registers, access to local bus devices, download of local software to RAM, programming of FLASH devices, and
EEPROM access.

4.3.1 PLXMon Access Modes

PLXMon accesses the PLX chip in one of two ways: through the PCI bus or, if BEM compatible code is running
on the local-side, through a serial cable connection. Figure 4-4 shows the PLX communication modes.

PLXMon ¢ --—-—-—-—-— 1

PLX Host API

PLX Driver

Communication

{)

U L

Serial
Communication PLX ,PCl
Chip

r
1
1
1
1
1
|
1
1
1
1
| PCI Bus
1
1
1
1
1
1
1
1
1
1
|

Figure 4-4 PLXMon Communications Modes

4.3.1.1 PClMode

In PCI mode, all accesses to the PLX chip are performed directly through the PCI bus, via the SDK APl and PLX
device driver. If a PLX driver is not installed/loaded, PClI mode will be unavailable. In PCI mode, the upper
pane in PLXMon is disabled. The lower pane is an interpreter that accepts commands to access registers and
memory.

S=Es

File Command Registers Help
!l@lﬁl%lﬁl’?ﬁl Establish Serial Connection |
e B M e #
Gl
=
i
<3| |
*help [
Help iz available for the folloving commands: =
dl dw db el =W eb
? r 1l 1w 1b wars
ol aw oh vET reg Dol
clear guit
For more information, type 'HELP <command:'.
¥
||
| =
Using direct arcess through PCI |ctive Pane: Lower |Current Made: PCI | .z

Figure 4-5 PLXMon in PCI Mode

4.3.1.2 EEPROM File Edit Mode

If a PLX device is not detected in the system, PLXMon displays a dialog (Figure 4-6), which provides two
options: Enter EEPROM File Edit mode or attempt a connection to enter Serial mode.

The EEPROM edit mode is provided for those who need to create or modify EEPROM files, which will be used
with an 1/O programmer. In this mode, since no PLX devices are physically present in the system, PLXMon
cannot program the EEPROM device directly.

4-10

Select an Option x|

= EEPROM Fil= Edit
Select chip bupe

I 90586 - I Edit " alues

™ Eztablish Serial Connection with Device

i

Ok Pork: caM1 =
Baud Fate; 38400 i
[iata Bits: 8

Barity: Maone

Stop Bits: 1

JAJL

Flowy Contral. | Hone

Cantect

|

Figure 4-6: EEPROM Edit Mode

4.3.1.3 Serial Mode

In Serial Mode, PLXMon establishes a serial connection with a device. In this mode, the software executing on
the local CPU (PLX BEM) accepts and carries out commands from PLXMon to perform necessary tasks. While
connected, the upper pane of PLXMon provides a terminal interfaces, similar to other serial terminal applications,
such as HyperTerminal. The lower pane is an interpreter that accepts commands to access registers and
memory. It is important to note that in Serial mode, the local CPU handles commands entered in the lower pane,
so memory and registers are accessed from the local CPU’s point of view. In Serial mode, the command ‘dl
100000 will read from the local address location 1MB. Conversely, in PCI mode, only virtual addresses are
allowed, so the same command will most likely result in an invalid address.

4-11

Eile Command FRegiskers Help

|@| |%|ﬁ| || Disconnect from Device |

G "M & #

FFEFFFFEFFPEFE LLLLIL
FFFFFFFFFFEFET LILIIL
FFEFFEFE FFFFFF 1LILLL
FFEFFE FPEFFFFF LLLLLL
FFFFFPFFFFPPEFFFE LLLILLL
FFFFFFFFFEFFFET LIILILL
FFFEFE IILIIL
FFFFFFE LLILLTLILLLITLLLLL
FFFFFFE LILILLLILILILLIL

ation Board
I'ujlljgf_.,." . II'u:: .

PLE Command-line Monitor application

Ready Active Pane: Upper Current Mode: Serial

Figure 4-7: PLXMon in Serial Mode

4.3.2 PLXMon Toolbar

File Command Regiskters Help

!|@|ﬁ|%|ﬁ ’,?‘i| i Establish Serial Connection |

RGP MG #

Figure 4-8: PLXMon Toolbar

The PLXMon toolbar (Figure 4-8) provides multiple options, which are described below:

e Select a Device .E;.I
View all PLX devices found and select one to work with. Only devices, for which a PLX driver is
loaded, will be available.

4-12

Download to device %.l
Opens the download dialog, which allows downloading of RAM images and programming of the
FLASH ROM.

View all PCIl devices EI

Open a dialog, which displays all PCI devices in the system. Selecting one displays all PCI registers
of the device

Reset device Eg!

In PCI mode, resets a device by using the Software Reset feature of PLX chips. In Serial Mode,
issues a reset command to the local CPU.

Memory Access EI

Opens the memory access dialog.

Performance Measure Dialog A
In PCI mode for PLX 9000-series devices, provides a software measure for DMA and Direct Slave
transfers. Refer to the Performance Measure Dialog, section 4.3.5.

Connect to device Establish Serial Connection |

Attempt a serial connection to the device. If the local software implements the BEM protocol,
PLXMon will establish a connection.
% EEFROM

View Register Groups]%12 LCk RrR h@ !f

Open dialogs for the various register groups and EEPROM. The PLX chip type determines available
groups.

4.3.3 Working with PLXMon Dialogs

4.3.3.1 Register Dialogs

The register dialogs in PLXMon are very simple to use. Users simply enter values, in Hexadecimal format, and
PLXMon will update the value in the chip. For some registers with numerous bit-fields, PLXMon provides

additional detail screens, which can be selected with the details button - j Figure 4-9 demonstrates a typical
register dialog.
Tips on working with register dialogs:

e All values are in Hexadecimal format

e The register dialogs are available in both Serial and PCI modes. In Serial mode, PLXMon sends
commands to the local CPU to perform register accesses. In PClI mode, PLXMon calls the PLX Host
API to access registers.

e The register offsets displayed are dependent upon the mode of operation. In Serial mode, the offsets
are from the local CPU’s point of view. Refer to the PLX chip data book for more information regarding
offsets.

¢ In the register dialogs, PLXMon will update a register value as soon as focus shifts from the field (i.e.
the TAB key or clicking on a different field with the mouse).

4-13

Local Configuration Registers

Spaces & Expanzon ROM Direct Master

Space 0 Range (00 | FFOO0000 ﬂua ME DM Range (1C)| FFOODO0O 16 ME
Space 0 Remap (04] | 00000001 W Enabled | | DM Mem Local Base [20)| 50000000

Exp ROM Rangs (10)| 00000000 O bytes DM I/0 Local Base [24]| 40000000
ExpROM Remap [14)| 00000010 PCl Remap (28] | 0o0oo003 j
Sp O/Exp ROM Desc (18) | FB030043 -5 PCI 1/0 Config (2c) | 00000000 |
Space 1 Rangs [FO] | FFOOOOOD ﬂua ME Dual sddr Cycle [FCJ| 00000000
Space 1 Remap (F4] Im [v Enabled A056/9656 arly

Space 1 Desciptor (F8) | DDDD043 j PC Aubiter Control (100) | 00000000
Oiter PCI Abort Address (104)| 00000000
WPD Protection/Endian Desc [0C] | 00305500 j

Mode/DMA Arbitration (02 | 01200000 j Refresh |

Figure 4-9: Typical PLXMon Register Dialog

4.3.3.2 EEPROM Dialogs

The EEPROM dialogs in PLXMon behave very similar to the register dialog, with a few exceptions. Additionally,
the EEPROM dialogs provide options to save/load values to/from files. Figure 4-10 demonstrates a typical
EEPROM dialog.

EEPROM Dialog Differences from Register Dialogs:

e Displayed offsets are from the EEPROM base (default), but offsets of the target register in the chip can
be selected, as well.
e Values are not written to the EEPROM device until the Write button is selected.

e Values can be loaded from or saved to a file. When working with EEPROM files, PLXMon will only load
or save enough values to fill the PLX chip’s portion of the EEPROM. Additional values are discarded.

4-14

9656 EEPROM Values =3

PCI Configuration Regizters

Local Configuration Registers

Space 0 Range [14] Im j
Space 0 Remap 18] Im
Expanzion BOM Range [24] lm
Expanzion BOM Remap [23] lm
Space I/E=p ROM Descriptor [2C] Im j
Space 1 Range (48] Iw j
Space 1 Remap [4C] lm
Space 1 Dezcriptar [50] lm j

Mode/DMA Arbitration (1C]| 01200000 j

Dizplay Offzets from: ¢ Seral EEPROM Base
" PL¥ Chip Reqgister Base

DeviceMendor ID [00] | 9ECZ10B5 Class Code/Rew [04] | DES000BA Hot Swap Chil

Subspstem 1D [44)| I65610B5 Max Lat/lnt Pin & Line [05) | 00000100 PM Capabilities [EE]l a00z420 j

P Chel#Status

WPD Boundan/Endian Desc

Direct Master -» PCl Range

Direct kMaster Memon Local Base Addr
Direct Master 170 Local Base Addr

Direct Master - PCl Memory Remap
Direct bMaster -» PCI /0 PCI Configuration
b zilbow 0

P ilbro 1

PCI Arbiter Control

Refresh Write

(54) | 0000acoE |
(0] | 00000000 j

(20) | 00305500 |
(30]| FFO0OO0O
(34]| 50000000
(38]| 40000000
(3c)| 00000003 -
(40)| 00000000 |
(0C)| 00000000
(10]| 0oooooon
(58] | 00000000

| Load File |

Save Az |

Figure 4-10: Typical EEPROM Dialog

4.3.3.3 Memory Access Dialog

Selecting the memory access button will open the dialog shown in Figure 4-11. The memory dialog allows
reading of blocks of memory from the local bus or from the DMA buffer, as well as the ability to fill memory, as
shown in Figure 4-12. For more control over memory accesses, use the db, dw, dlI, eb, ew and el commands.
Note that in PCI mode, virtual addresses are used. Refer to Section O for more information.

4-15

Memory Dizsplay == |

Offzet from bemomny Spaces and Buffer Accesz Type
50 | 0071 00000 (ﬁ' S0 51 52 53 O DMA buf (ﬁ' 32bit O 16RO 2-Bit

S30EADOD: 12345678 ADCDUG76 AGAGLAGA 12345670
A30EADI0: ABCDO9S76 AGAGGAGA 12345678 ABCDIATE Read Block
S30EADZ0. AGAGCAGA 12345678 ABCDI876 AGAGGAGA =
S30EAD3O: 12345678 ABCD9S76 AGCACCAGA 12345678
A30EAD40: ABCD9876 AGACGAGA 12345678 ABCDIATH
930EA0G0: AGAGGAGA 12345678 ABCDI876 AGAGGAGA Next Block
S30EADGO: 12345678 ABCDIS76 AGACGASA 12345678
A30EAD70: ABCD9876 AGAGGASA 12345678 ABCDIATE
930EADS0. 00000000 00000000 0O00000OD 00000000 ‘wiite Block
830EA090: 00000000 00000000 00000000 00000000
230EADAD: 00000000 00000000 0O0O000OD 00000000
930EADED: 00000000 00000000 000000OD 00000000
830EADCO: 00000000 00000000 000000OD 00000000
930EAODDOD: 00000000 00000000 000000OD 00000000
S30EAODED: 00000000 00000000 00000000 00000000
A30EAODFO: 00000000 00000000 000000OD 00000000

iy

Cloze

_ G|

Figure 4-11: Memory Access Dialog

Memory Fill Options |

= Fill with random walues

= Fill with incremental walues

Start W alue ID
Increment IU

 Fill with Pattern
Patter |345E§?E ABCD93TE ARARRARS,

Fill zize [in bytes) I an
Cancel |

Figure 4-12: Memory Fill Dialog

4.3.4 Specifying PLX Chip Type for Unknown Devices

If the Device/Vendor ID of a PCl 6000 series bridge is modified from its default, PLX software may fail to
properly identify the device as a PLX chip. In this case, PLXMon will not be able to properly display all of the PCI
registers and the EEPROM contents. PLX drivers rely on known Device/Vendor ID combinations to detect PLX
PCI 6000 and 8111 devices. As a result, the IDs are hard-coded into the driver source code. A customer that
changes an ID will, therefore, need to modify the driver source and rebuild it. PLX software, however, provides
an option to manually override the chip type in the event that it is not detected properly. This can be performed
in PLXMon in the “Select a PCI Device” dialog.

4-16

Simply select a device and then select the option to manually set the chip type. Figure 7-13 shows how to
manually select a chip type.

r_

LIE
a0
a0
a0
a0
a0
a0
a0
a0

= 00
oo
a0
i

Slak
i
01
04
04
04
04
04
oo
0E
0F
10
i

Fn
i
i
i
01
0z
03
04
i
1]
i
i
i

DevID | YenlID
0605 1106
ae05 1106
0636 1106
0571 1106
an3a 1108
anaa 1106
a0a7 1106
a050 10B7
Q052 2388
nnzz 388
1860 10B5
4742 1002
Select

PL=

6150
3054

Cancel

Few

EE
4B

Type
Host bridge device

PCl-to-PCI bridge device

|54 bridge device
IDE contraller

I1SE controller [Univerzal Host]
I5EB contraller [Univerzal Host]

Host bridge devic
Ethermet controlle Update PLX Chip Type

FCl-to-PCI bridge
PCl-to-PCI bridge
Other bridge devid
WEA-compatible d|

Set Chip Type |

W arning
Setting the PL¥ chip to an inwalid or
incorrect type may result in eratic
behavior and/or system crashes.

Current Chip Type:

Select Mew Chip Type: |5350 -

<Unknowns

OF. |

Figure 4-13 Manually Setting the PLX Chip Type

5154 A
E156 i
B254

E520
E540 v

After the selection has been made, PLXMon will treat the device as the user-selected type, as can be seen in
Figure 7-14. Before setting the PLX chip type, it is important to note the following:

e No error checking is performed when setting the PLX chip type. If a PLX chip is selected that does not
match the installed hardware, the PLXMon and/or the system may behave erratically.

e Once the chip type is selected, the PLX driver will attempt to automatically detect the PLX revision. If
this is not detected, the revision will default to the value in the PCI revision ID register.

e Modification of the PLX chip type is not permanent. It will remain in effect as long as the PLX driver is
loaded and not re-started. For a permanent setting, it is recommended that the PLX PCI Service driver
is modified and rebuilt to properly detect the custom ID.

e This option may only be used with PLX PCI 6000 series and 8111 devices.

4-17

Select a PCI Device

Busz | Slat | Fn | DevID | YenlD | FPL= | Rev | Type

] L] I | I 5 1106 - - Haszt bridge device
I 1 N T == 1106 - - PCl+o-PCl bridge device
oo o4 00 OBEE 1106 - - |54 bridge device
oo o4 M 0= 11086 - - IDE cantraller
] 04 02 3038 1106 - - ISB contraller [Univerzal Host]
] 04 03 3038 1106 - - ISE contraller [Univerzal Host]
] n4 04 3057 1106 - - Hozt bridge device
oo 4o 0o 39050 1067 - - Ethernet controller
g B350 A4 PClto-PCl bridge device
oo oF 00 ooE2 B150 BB PCl-to-PCI bridge device
oo 10 00 18e0 1085 9054 AB Other bridge device
m (] | N i 1002 - - WiEA-compatible dizplay contr...

| Select | Cancel Set Chip Tupe

Figure 4-14 Completed PLX Chip Type Override

4.3.5 Performance Measure Dialog

PLXMon includes a performance measure dialog, which provides a software measure of data transfer
performance. The dialog supports DMA and Direct Slave transfers, with multiple options for each. This section
describes the details of how to use the dialog. Figure 4-15 shows a snapshot of the dialog.

4-18

PLX Performance Measure @

PCIBAR o Uze BAR D »
Offzet into BAR Q000oaoo
Channel Ilze b ethod Aooess Size
OPLaPl O 8bit & 32-bit
(%) Direct () 16hit O B4-bit
Global Options
Transfer Local Burst
(%) Read fram Device (%) Dizabled
(0 wirite to Device 04 Lwf
Byte Count | 00000100 O Infirite
= Statiztics
= Test Completed = Murn ¥fers | 756,148,513
Total Transfers: 7E6,148.513
Total Data : 182,55 GB Total Data | 18286 GEB
Total Time : 49.00 zeconds
Overall Fiate © 3.73GE/s CurRate | 3.73GB/s
"""""""""""" Elapzed Time
Fieady to start test... 3 00k 00 503

Time

() Direct Slave # Host CPU

Start]

[Cloze]

Figure 4-15 Performance Measure Dialog

4.3.5.1 Notes before Using the Performance Measure

Before using the performance dialog, it is important to be

aware of the following imitations and notes:

The Performance Measure is a simple software measurement of performance. The transfer rate is

calculated by dividing the total number of bytes transferred by the total elapsed time. As a result,
software overhead is a factor in the measure, although the Performance Measure is very efficient and

includes very little overhead.

4-19

The transfer rates provided by the Performance Measure should be treated as relative numbers rather
than absolute values. The intention is to start with some base configuration, tweak some options and/or
chip settings, then re-run the test to determine if performance has improved and repeat to achieve the
optimal configuration.

The Performance Measure does not validate the addresses used to transfer data to/from. This includes
the PCI and local addresses for DMA and the local address for Direct Slave. It is left to the user to
ensure that sufficient memory is provided for the transfer.

The Performance Measure does not perform any data error checking. It is assumed that hardware is
working properly.

When selecting to use the PLX API to transfer data, it is important to note that there is a significant
overhead with doing so. The API sends and receives messages from the PLX driver, which performs the
actual transfer. If data transfer sizes are relatively small, the API overhead will be a significant impact to
performance. As data transfer sizes get larger, the APl overhead becomes less significant.

The Performance Measure cannot guarantee burst transactions. Software has no means to force burst
transactions. All software can do is enable burst in the hardware and, if conditions are right, the
hardware will initiate burst transactions.

Other than the options specified, the Performance Measure will leave chip settings intact. It is assumed
that the chip is properly configured to access the intended devices. For example, if PClI BAR 2 on a
9054 will be used to access an 8-bit device, it is assumed that the Space 0 Bus Region Descriptor is
configured properly and that the Space 0 Remap register is set to properly access the desired device.

4.3.5.2 Performance Measure Options

The performance measure provides numerous options to perform different type of transfers in different
configurations. The individual options are explained below..

4.3.5.3 DMA Performance Test

When the DMA test is selected, the Performance Measure will perform DMA transfers to or from the specified
addresses. The test continuously repeats the same DMA transfer until it is halted

The items below provide details about the individual DMA options. When the Performance Measure is initially
opened and DMA is available, it will provide the DMA Common Buffer properties, which are provided by the PLX
driver. This is the same information obtained with PIxPciCommonBufferProperties.

Note

4-20

: DMA is available only to PLX devices that include a DMA engine, including the 9080, 9054, 9056, 9656, &
8311.

Local Address This determines the starting 32-bit local address where data is transferred to/from. This
value is placed directly into the Local address register of the DMA engine.

PCI Address This determines the starting 32-bit PCI physical address where data is transferred to/from.
This address, for example, may be the PLX DMA Common Buffer PCl address or an address taken
from the PCI BAR of another PCI device, such as an Ethernet controller. This value is placed directly
into the PCI address register of the DMA engine.

Channel This determines which DMA channel the Performance Measure will use.

Use This determines whether DMA completion is detected by waiting for the interrupt or polling the DMA
done bit. In general, polling results in better transfer rates due to less overhead, but the CPU is highly
utilized, so the end user system performance suffers.

Transfer This determines which direction the DMA engine will transfer data.
Byte Count This is the number of bytes transferred during each test iteration.

Bursting This option determines whether DMA busting is enabled in the hardware. Note that the
devices that the DMA engine transfers to/from must support the selected type of burst transaction.

4.3.5.4 Direct Slave Performance Test

When the Direct Slave test is selected, the Performance Measure will use the Host CPU to transfer data to/from
a PLX device through one of the PCI BAR spaces. The test will repeat continuously until it is halted. Figure 4-16
depicts a completed Direct Slave test and the reported results.

PLX Performance Measure P§|

" DMA * Direct Slave / Host CPU

FCIBAR tolUse |BARZ -
Offzet into BAR 00100000

b ethod Aocess Size
" PL &P 7 8-hit & 32-hit
* Direct G-kt

i
O

Global Dphions
Transfer Bursting
" Read fram Device " Dizabled

* wiite to Device O YR

Byte Count | 00010000 " Infinite

Statisticz
MHum #fers 10,704

PLx Driver w4.30 F
Hoszt Direct Slave: Running. ..

= Test Completed = Total Data | £ES.00 ME

Total Transfers: 10,704

TotalData : 669.00 MB Buirfkls | s lers
Total Time : 41.85 seconds Elapsed Time
Overall Rate : 1632 MB/: "

00k 00 425

Start | Cloze

Figure 4-16 Sample Direct Slave Performance Test

The items below provide details about the individual Direct Slave options.

PCI BAR to Use This determines which PCI BAR space to use for the transfer. The PCI BAR must be a
valid PCI memory space that is enabled on the PLX device. I/O type spaces are not supported. It is
assumed that the PCI space is properly configured to access the desired local device. This includes the
remap and bus region descriptors.

Offset into PCI BAR This value determines the starting offset into the PCI BAR where the Performance
Measure will transfer data.

Method This option determines whether the PLX API is used to transfer data or a direct access is
performed. The PLX APl method will use the functions PIxBuslopRead and PIxBuslopWrite, whereas,
the direct method will obtain a virtual address for the PCI BAR with PIxPciBarMap, then use that
address to directly access the PCI space. The direct method effectively bypasses the PLX API.

Access Size This option determines how data is accessed, whether it is 8-bit, 16-bit, or 32-bit. This
option should not be confused with the “Bus Width” of the Bus Region Descriptor for a space. The Bus
Width is used to specify the port-size of the connected local device, for example, a 16-bit flash device.
The Access Size determines the type of cycle issued by the Host CPU.

Transfer This determines whether the Host CPU reads from or writes to the PCl BAR.
Byte Count The number of bytes transferred during each test iteration.

4-21

e Bursting This option determines whether Direct Slave busting is enabled in the Bus Region descriptor
for the PCI space. This option does not guarantee that burst transactions will occur, since software is
not able to force bursting. In a standard PC, for example, the Host Bridge does not allow burst reads
from PCI devices to the Host CPU, resulting in typically poor burst read performance. Note that the
devices that data will be transferred to/from must support the selected type of burst transaction.

4.3.6 The Command-Line Interface

In the lower pane of PLXMon, a command-line interface is provided, as show in Figure 4-17. The list of
available command is show in Table 4-1.

. -

Help i= awailable for the following commands:

dl dw db el 2 eb
? T il iw ib vars
ol o ob wer reg Pcl

clear guit

For more information. tvype 'HELFP <command: ' .

o o

Ready |active Pane: Lower [Current Mode: PCT ¢

Figure 4-17: Command-line Interface

Command Description
db, dw, dI Read memory using Byte (8-bit), Word (16-bit), Longword (32-bit)
eb, ew, el Write to memory using Byte (8-bit), Word (16-bit), Longword (32-bit)
ib, iw, il Read from I/O port using Byte (8-bit), Word (16-bit), Longword (32-bit)

ob, ow, ol Write to 1/0 port using Byte (8-bit), Word (16-bit), Longword (32-bit)

pci Read/Write to a PCI register of the PLX chip

reg Read/Write to a local register of the PLX chip

vars Display PLXMon variables. See Section 4.3.8

ver Display version information

clear Clear the command-line pane

quit Exits PLXMon

Table 4-1: PLXMon Command-line Commands

4.3.7 Working with Virtual Addresses

In PCI mode, PLXMon executes as an application and, therefore, must use virtual addresses to access memory.
A PCI BAR address, for example, cannot be referenced directly. As a result, PLXMon relies on PLX drivers to
provide a virtual mapping for all memory spaces that may be accessed. This includes any valid PCI BAR
memory spaces and the DMA buffer allocated by the driver.

Note: Virtual addresses are not used for I/O ports, only for memory regions. Although the driver performs the
actual I/O access, the referenced port address is the actual address found in the PCI BAR register. 1/O regions
are not mapped into virtual space.

4-22

4.3.8 Command-Line Variables

PLXMon creates some variables to aid users with dealing with virtual addresses. Figure 4-18 demonstrates the
vars command in PLXMon, which lists the default variables and the memory region they represent. Variables
can be used with the d(b,w,l) or e(b,w,l) commands.

Note: Accessing memory with these variables results in a direct memory access from PLXMon. The PLX driver
just provides the initial virtual mapping, but is completely bypassed during memory accesses.

File Command Registers Help

!|@|ﬁ|%|ﬁ ”;Jﬁ| Establish Serial Connection |

R/ P M e #

] >
srars A

Virtual FPhy=ical =

Variable Addres=s Addres=s Description —
Fl= aaoDaoonn —_— Fl= regi=zter address
=0 anDannnn —_ Space 0 address
=1 a1Dao0nn - Space 1 addre=s=
=2 Qooooonn —_ Space 2 address
=3 agooooonn - Space 3 addres=s
HBEuf nop7oooo 0183D00o LMA =cratch buffer (64 Kbh)

»el =0+100 1002beef

b

*»dl =0+10

QOD90100: 1002BEEF 47216lEF 20247059 7B29544A2 | . #H.Gla. spY{OT.
QoDa0110:; S5EFYe90 7EO0OleeDF 3DZ231CeF SA334831D0 T owi~.f . =#.0Z3H.
aoD901z20: 1A2DSC40 0A300D17 6Z2AET9BI 15376920 . —/@. 0. bEwy: 71
0oD90130: A17C25D4 737811BA SBEA1F39 7D7A0059 al|x.=x.M[..9}=z.Y
QoD90140: 1C492280 6ABAOG9E 0OGAEIEFS 2395687F . I".5..1.8:. #1h.
QOD90150: 14Fee39F sAR770FS 7308384D 1FFS34C9 | c.jgp.=.8M. . 4.
000D30160: 7CSALI72E 27087746 A1B73A476 2BSEGR?74 |Z..' . w.a. :wv+[gt
QOD90170: 463F724F 4FBY21E1 7EAF?716 075D3840 F?PrQ0. | ™~ .]8@
¥

Ready Active Pane: Lower Current Maode: PiCT

Figure 4-18: PLXMon Variables

4-23

5 PLX SDK API Reference

This section provides the details of all PLX API functions.

5.1 PLX API Functions
API Function Name Description
PIxPci_ApiVersion Get the PLX API library version information
PIxPci_ChipTypeGet Get the PLX chip type and revision

PIxPci_ChipTypeSet

Set the PLX chip type

PIxPci

CommonBufferProperties

Returns the properties of the PLX driver reserved buffer

PIxPci_CommonBufferMap

Maps the common buffer to user space

PIxPci

CommonBufferUnmap

Unmaps the common buffer from user space

PIxPci_DeviceClose

Release a device

PIxPci

DeviceFind

Search for a device

PIxPci

DeviceFindEx

Search for a device with advanced options (e.g. I2C)

PIxPci_DeviceReset

Reset a PLX device

PIxPci

DeviceOpen

Select a device

PIxPci_DmaChannelOpen

Opens & initializes a DMA channel

PIxPci_DmaChannelClose Release a DMA channel

PIxPci_DmaGetProperties Gets the current properties of a DMA channel
PIxPci_DmaSetProperties Sets the properties of a DMA channel

PIxPci_DmaControl Control a DMA channel

PIxPci_DmaStatus Get current status of a DMA channel
PIxPci_DmaTransferBlock Transfers a data buffer using block DMA
PIxPci_DmaTransferUserBuffer Transfers a user-mode buffer using a DMA channel
PIxPci_DriverProperties Get PLX driver properties

PIxPci_DriverScheduleRescan Informs PLX Service driver to rebuild its internal device list
PIxPci_DriverVersion Get the PLX driver version information
PIxPci_EepromPresent Determine if an EEPROM is present on a PCI device
PIxPci_EepromProbe Probes for the physical presence of an EEPROM
PIxPci_EepromCrcGet Get the CRC value of the EEPROM

PIxPci EepromCrcUpdate Update the CRC value of the EEPROM

PIxPci_ EepromGetAddressWidth Get the current EEPROM byte addressing width
PIxPci_EepromSetAddressWidth Manually sets the EEPROM byte addressing width

PIxPci_ EepromReadByOffset Read a 32-bit value from the EEPROM at a specified offset
PIxPci_EepromWriteByOffset Write a 32-bit value to the EEPROM at a specified offset

PIxPci_|

EepromReadByOffset 16

Read a 16-bit value from the EEPROM at a specified offset

PIxPci_EepromWriteByOffset 16 Write a 16-bit value to the EEPROM at a specified offset
PIxPci_GetPortProperties Get the port properties of the selected device
PIxPci_I2cGetPorts Gets the installed I°C USB devices and their availability
PIxPci_I2cVersion Gets I°C version information

PIxPci_loPortRead Reads one or more values from an 1/O port
PIxPci_loPortWrite Writes one or more values to an 1/O port
PIxPci_InterruptDisable Disables specific interrupts of the PLX chip
PIxPci_InterruptEnable Enables specific interrupts of the PLX chip
PIxPci_NotificationCancel Cancels and interrupt notification object

PIxPci_|

NotificationRegisterFor

Registers for interrupt notification

5-1

API Function Name Description
PIxPci_NotificationStatus Returns the status of the interrupt notification object
PIxPci_NotificationWait Wait for an interrupt notification event
PIxPci_Nt LutAdd Add an entry to the NT Requester ID LUT
PIxPci Nt LutDisable Disable an entry in the NT Requester ID LUT
PIxPci_Nt LutProperties Return the properties of an entry in the NT Requester ID LUT
PIxPci_Nt RegldProbe Determines the Host PCle ReqID when accessing the NT port
PIxPci_ PciBarSpaceRead Reads a block of data from the specified PCI BAR space
PIxPci_PciBarSpaceWrite Writes a block of data to the specified PCI BAR space
PIxPci_PciBarMap Maps a PCI BAR space to user virtual space
PIxPci_PciBarProperties Returns the properties of a PCl BAR space
PIxPci_PciBarUnmap Unmaps a PCI BAR space from user virtual space
PIxPci_PciRegisterRead Read a PCI configuration register of a PCI device
PIxPci_PciRegisterWrite Write to a PCI configuration register of a PCI device
PIxPci_PciRegisterReadFast Reads a PCI register from the selected device
PIxPci_PciRegisterWriteFast Writes to a PCI register on the selected device
PIxPci_PciRegisterRead BypassOS Reads a PCI register by bypassing the OS services
PIxPci_PciRegisterWrite BypassOS Writes to a PCI register by bypassing the OS services
PIxPci_PerformanceCalcStatistics Calculates port performance statistics
PIxPci_PerformanceGetCounters Reads the performance counters from a device
PIxPci_PerformancelnitializeProperties Intialize the PLX performance object
PIxPci_PerformanceMonitorControl Controls the PLX chip’s perfomance monitor
PIxPci_PerformanceResetCounters Resets the PLX chips’s performance counters
PIxPci_PhysicalMemoryAllocate Allocate Physical memory for the selected device
PIxPci_PhysicalMemoryFree Free the allocated Physical memory for the selected device
PIxPci_PhysicalMemoryMap Map the Physical memory to a Virtual address
PIxPci_PhysicalMemoryUnmap Unmap Physical memory to the Virtual Address
PIxPci_PIxRegisterRead Reads a PLX-specific register from the selected device
PIxPci_PIxRegisterWrite Writes to a PLX-specific register on the selected device
PIxPci_PIxMappedRegisterRead Reads a Memory mapped register from the selected device
PIxPci_PIxMappedRegisterWrite Writes to a Memory mapped register on the selected device
PIxPci_ VpdRead Uses the VPD feature to read VPD data
PIxPci VpdWrite Uses the VPD feature to write VPD data

PIxPci_ApiVersion

Syntax:

PLX_STATUS
PIxPci_ApiVersion(
U8 *pVersionMajor,
U8 *pVersionMinor,
U8 *pVersionRevision

)
PLX Chip Support:
N/A

Description:

Returns the SDK API version information

Parameters:

pVersionMajor
A pointer to an 8-bit buffer to contain the Major version number

pVersionMinor
A pointer to an 8-bit buffer to contain the Minor version number

pVersionRevision
A pointer to an 8-bit buffer to contain the Revision version number

Return Codes:

Code Description

PLX_STATUS OK The function returned successfully

PLX STATUS NULL PARAM One or more parameters is NULL

Usage:

U8 VerMajor;
U8 VerMinor;
U8 VerRev;

PIxPci_ApiVersion(
&VerMajor,
&VerMinor,
&VerRev

);

Cons_printf(
“PLX SDK API v%d.%d%d\n”",
VerMajor,
VerMinor,
VerRev

s

5-3

PIxPci_ChipGetPortMask

Syntax:

PLX_STATUS
PIxPci_ChipGetPortMask(
Ui PIxChip,
U8 PIxRevision,
U64 *pPortMask

)
PLX Chip Support:
All PLX 8000 devices

Description:

Returns a bit-wise port mask for the supplied PLX chip. The mask provides possible port numbers & types that
the chip supports, including NT, DMA, etc.

Parameters:

PIxChip
The PLX chip type to return a mask for

PIxRevision
The PLX chip revision to return a mask for

pPortMask
A pointer to 64-bit storage that will contain the port mask. Refer to PLX_FLAG_PORT for special ports.

Return Codes:

Code Description
PLX_STATUS OK The function returned successfully
PLX STATUS NULL PARAM One or more parameters is NULL
PLX STATUS UNSUPPORTED The supplied chip type isn’t supported

Notes:

The mask returned includes possible ports supported by the chip as a 1:1 relationship (i.e. Bit 0=Port 0, Bit 1=
Port 1, etc.).

Special ports are denoted by PLX-specified bit locations. Use the PLX-supplied definitions found in
PLX_FLAG_PORT to check for these ports.

Usage:
ue4

PortMask;

// Get supported ports
PIxPci_ChipGetPortMask(

for

0x8619, // 8619 BA
OxBA,
&PortMask

)
(i=0; i<64; i++)

if (PortMask & (1 << PLX_FLAG_PORT_NT_LINK_0))
// NT Link port

else if (PortMask & (1 << PLX_FLAG_PORT_NT_VIRTUAL_0))
// NT Virtual port

else if (PortMask & (1 << PLX_FLAG_PORT_NT_DS P2P))
// NT Downstream P2P (NT Parent DS port)

else if (PortMask & (1 << PLX _FLAG PORT_DMA 0))
// DMA Function

else if ((i <= PLX_FLAG_PORT_MAX) && (PortMask & (1 << i))
// Port “i” is standard transparent port

else
// Unknown/unsupported port

PIxPci_ChipTypeGet

Syntax:

PLX_STATUS
PIxPci_ChipTypeGet(
PLX_DEVICE_OBJECT *pDevice,

ui6 *pChipType,
us *pRevision
)

PLX Chip Support:
All PLX devices

Description:

Returns the PLX chip type and revision if possible.

Parameters:

pDevice
Pointer to an open device

pChipType
Pointer to a 16-bit buffer to contain the PLX chip type

pRevision
Pointer to an 8-bit value to contain the revision

Return Codes:

Code Description
PLX_STATUS OK The function returned successfully
PLX STATUS NULL PARAM One or more parameters is NULL
PLX STATUS INVALID OBJECT | The device object is not a valid PLX device

Notes:

The chip type is returned as a hex number matching the chip number. For example, 0x6466 = 6466. For some
PLX chips, different revisions are indistinguishable from each other. In the case, the revision will be the latest
version.

If the PCI device is not a PLX chip or is not identified properly by the driver, a value of O will be returned for the
chip type and revision.

5-6

Usage:

us Revision;
ule ChipType;
PLX_STATUS rc;

rc =
PIxPci_ChipTypeGet(
pDevice,
&ChipType,
&Revision
)
if (rc = PLX_STATUS_OK)
{
// Error
}
else
{
Cons_printf(
" Chip type: %04X\n"
Revision : %02X\n"",
ChipType, Revision
}

PIxPci_ChipTypeSet

Syntax:

PLX_STATUS
PIxPci_ChipTypeSet(
PLX_DEVICE_OBJECT *pDevice,

ui6 ChipType,
us Revision
);

PLX Chip Support:
All PLX devices

Description:

Sets the PLX chip type and revision to force a specific identification.

Parameters:

pDevice
Pointer to an open device

ChipType
The desired PLX chip type, in Hex, or 0 for <Unknown>. Available chip types are 8532, 8524, 8114, etc.

Revision
The desired revision ID. If the value is OxFF, the default chip revision will be used, which is usually taken
directly from the PCI Revision ID register.

Return Codes:

Code Description

PLX_STATUS OK The function returned successfully

PLX STATUS INVALID OBJECT | The device object is not a valid PLX device

The function is not supported by the installed driver (i.e. the device is in Non-Transparent

PLX_STATUS_UNSUPPORTED
- - mode)

PLX STATUS INVALID DATA The ChipType parameter was invalid or not a supported type

Notes:

The chip type should be a hex number matching the chip number. For example, 0x6466 = 6466. A value of 0
may be passed to clear the chip type.

When modifying the Device/Vendor ID of a PLX PCI-to-PCI bridge, it is recommended that the PLX driver be
modified to properly identify the device. PIxPci_ChipTypeSet is recommended for temporary use only for debug
purposes.

Warning: This option is typically used only when a PLX PCI-to-PClI bridge Device/Vendor ID is modified and the
PLX PCI Service driver is not able to properly identify the device. Setting the chip type will force the PLX driver,
after it is already loaded, to treat the device as a specific PLX chip and enable chip-specific features, such as
EEPROM access. Setting the chip type to an incorrect or invalid setting may result in erratic behavior system
crashes.

5-8

Usage:

PLX_STATUS rc;

//
rc

N

//

M

//

Force the chip tpye & revision

PIxPci_ChipTypeSet(
pDevice,
0x6520,

OxCA

):
(rc '= PLX_STATUS_OK)

// Error

// 6520 device
// Revision CA

Force the chip tpye, but use default revision

PIxPci_ChipTypeSet(
pDevice,
0x6152,

(us)-1
);

(rc '= PLX_STATUS_OK)

// Error

Clear the cuurent type to configure device as “Non-PLX”

PIxPci_ChipTypeSet(
pDevice,
0,
0
)

(rc != PLX_STATUS_OK)

// Error

// 6152 device
// Use default revision

// Clear chip type
// Clear revision

5-9

PIxPci_CommonBufferProperties

Syntax:

PLX_STATUS

PIxPci_CommonBufferProperties(
PLX_DEVICE_OBJECT *pDevice,
PLX_PHYSICAL_MEM *pMemorylInfo

);
PLX Chip Support:
All PLX devices

Description:

Returns the common buffer properties.

Parameters:

pDevice
Pointer to an open device

pMemorylinfo
A pointer to a PLX_PHYSICAL_MEM structure which will contain information about the common buffer

Return Codes:

Code Description
PLX_STATUS OK The function returned successfully and at least one event ocurred
PLX STATUS NULL PARAM One or more parameters is NULL
PLX STATUS INVALID OBJECT | The device object is not valid

Notes:

This function will only return properties of the common buffer. It will not provide a virtual address for the buffer.
Use PIxPci_CommonBufferMap to get a virtual address.

PLX drivers allocate a common buffer for use by applications. The buffer size requested is determined by a
PLX registry entry (refer to the PLX driver registry options in this manual). The driver will attempt to allocate the
buffer, but the operating system determines the success of the attempt based upon available system resources.
PLX drivers will re-issue the request for a smaller-sized buffer until the call succeeds.

The common buffer is guaranteed to be physically contiguous and page-locked in memory so that it may be used for
operations such as DMA. PLX drivers do not use the common buffer for any functionality. Its use is reserved for
applications.

Coordination and management of access to the buffer between multiple processes or threads is left to applications.
Care must be taken to avoid shared memory issues.

5-10

Usage:

PLX_STATUS rc;
PLX_PHYSICAL_MEM Bufferinfo;

// Get the common buffer information

rc =
PIxPci_CommonBufferProperties(
pDevice,
&Bufferinfo
)
if (rc = ApiSucess)
{

// Error — Unable to get common buffer properties

}

Cons_printf(
“Common buffer information:\n”
“ Bus Physical Addr: %08Ix\n”
“ CPU Physical Addr: %08Ix\n”
“ Size . %d bytes\n”,
BufferInfo.PhysicalAddr,
BufferiInfo.CpuPhysical,
BufferInfo.Size

);

5-11

PIxPci_CommonBufferMap

Syntax:

PLX_STATUS

PIxPci_CommonBufferMap(
PLX_DEVICE_OBJECT *pDevice,
VOID **pVa

);
PLX Chip Support:
All PLX devices

Description:

Maps the common buffer into user virtual space and return the base virtual address.

Parameters:

pDevice
Pointer to an open device

pVa
A pointer to a buffer to hold the virtual address

Return Codes:

Code Description
PLX_STATUS OK The function returned successfully and at least one event ocurred
PLX_STATUS NULL_PARAM One or more parameters is NULL
PLX STATUS INVALID OBJECT The device object is not valid
PLX_STATUS_INVALID_ADDR Buffer address is invalid
PLX STATUS INSUFFICIENT RES Insufficient resources for perform a mapping of the buffer
PLX STATUS FAILED Buffer was not allocated properly

Notes:

Mapping of the common buffer into user virtual space may fail due to insufficient Page-Table Enties (PTES).
The larger the buffer size, the greater the number of PTEs required to map it into user space.

The buffer should be unmapped before calling PIxPci_DeviceClose to close the device. The virtual address will
cease to be valid after closing the device or after unmapping the buffer. Refer to PIxPci_CommonBufferUnmap.

5-12

Usage:

us value;
VOID *pBuffer;
PLX_STATUS rc;

PLX_PHYSICAL_MEM Bufferinfo;

// Get the common buffer information
rc =
PIxPci_CommonBufferProperties(
pDevice,
&Bufferinfo

);
if (rc = ApiSucess)

// Error — Unable to get common buffer properties

3
// Map the buffer into user space
rc =
PIxPci_CommonBufferMap(
pDevice,
&pBuffer
)

if (rc = ApiSucess)

// Error — Unable to map common buffer to user virtual space

}

// Write 32-bit value to buffer
(U32) ((U8*)pBuffer + 0x100) = 0x12345;

// Read 8-bit value from buffer
value = *(U8*) ((U8*)pBuffer + 0x54);

5-13

PIxPci_CommonBufferUnmap

Syntax:

PLX_STATUS

PIxPci_CommonBufferUnmap(
PLX_DEVICE_OBJECT *pDevice,
VOID **pVa

);
PLX Chip Support:
All PLX devices

Description:

Unmaps the common buffer from user virtual space.

Parameters:

pDevice
Pointer to an open device

pVa
The virtual address of the common buffer originally obtained from PIxPci_CommonBufferMap

Return Codes:

Code Description
PLX_STATUS OK The function returned successfully and at least one event ocurred
PLX STATUS NULL PARAM One or more parameters is NULL
PLX STATUS INVALID OBJECT | The device object is not valid
PLX _STATUS INVALID ADDR Virtual address is invalid or buffer was not allocated properly
PLX STATUS FAILED The buffer to unmap is not valid

Notes:

It is important to unmap the common buffer when it is no longer needed to release mapping resources back to
the system. The buffer should be un-mapped before calling PIxPci_DeviceClose to close the device. The
virtual address will cease to be valid after closing the device or after un-mapping the buffer.

5-14

Usage:

VOID *pBuffer;
PLX_STATUS rc;
PLX_PHYSICAL_MEM Bufferinfo;

// Get the common buffer information

rc =
PIxPci_CommonBufferProperties(
pDevice,
&Bufferinfo
)
if (rc = ApiSucess)
{
// Error — Unable to get common buffer properties
3
// Map the buffer into user space
rc =
PIxPci_CommonBufferMap(
pDevice,
&pBuffer
)
if (rc = ApiSucess)
{
// Error — Unable to map common buffer to user virtual space
}
//
// Use the common buffer as needed
//
// Unmap the buffer from user space
rc =
PIxPci_CommonBufferUnmap(
pDevice,
&pBuffer
);

if (rc = ApiSucess)

// Error — Unable to unmap common buffer from user virtual space

5-15

PIxPci_DeviceClose

Syntax:

PLX_STATUS
PIxPci_DeviceClose(
PLX_DEVICE_OBJECT *pDevice

R
PLX Chip Support:

All devices

Description:

Releases a PLX device object previously opened with PIxPci_DeviceOpen().

Parameters:

pDevice
Pointer to an open device

Return Codes:

Code Description
PLX_STATUS OK The function returned successfully
PLX STATUS NULL PARAM One or more parameters is NULL
PLX STATUS INVALID OBJECT | The device objectis not a valid PLX device or has not been opened

Usage:
PLX_STATUS rc;

// Release the open PLX device
rc =
PIxPci_DeviceClose(
pDevice

);
if (rc 1= PLX_STATUS_OK)

// ERROR — Unable to release PLX device

5-16

PIxPci_DeviceOpen

Syntax:

PLX_STATUS

PIxPci_DeviceOpen(
PLX_DEVICE_KEY *pKey,
PLX_DEVICE_OBJECT *pDevice

R
PLX Chip Support:

All devices

Description:
Selects a specific PCI device for later use with PLX API calls. The device is selected based on the criteria in
PLX_DEVICE_KEY.

Parameters:

pKey
Pointer to a PLX_DEVICE_KEY structure which contains one or more search criteria.

pDevice
Pointer to a PLX_DEVICE_OBJECT structure which will describe the selected PCI device.

Return Codes:

Code Description
PLX_STATUS OK The function returned successfully
PLX STATUS NULL PARAM One or more parameters is NULL
PLX STATUS NO DRIVER A valid PLX driver is not loaded in the system

PLX_STATUS_ INVALID OBJECT | The device object is invalid or the key does not match an installed device

PLX STATUS VER MISMATCH The PLX driver version does not match the API library version

ApiObjectAlreadyAllocated The device object is already open or in use

Notes:

Use PIxPci_DeviceFind to query the driver for installed PCI devices and fill in the PLX_DEVICE_KEY
information.

If the function returns PLX_STATUS_OK, any missing key information will be filled in.

5-17

Usage:

PLX_STATUS rc;
PLX_DEVICE_KEY DeviceKey;
PLX_DEVICE_OBJECT Device;

// Clear key structure to select first device
memset(&DeviceKey, PCI_FIELD IGNORE, sizeof(PLX DEVICE_KEY));

// Open device

rc =
PIxPci_DeviceOpen(
&DeviceKey,
&Device
)
if (rc !'= PLX_STATUS_OK)
{
// Error
}
else
{

Cons_printf(
"Selected: %04x %04x [b:%02x s:%02x F:%02x]\n"",
DeviceKey.Deviceld, DeviceKey.Vendorld,
DeviceKey.bus, DeviceKey.slot, DeviceKey.function

);

5-18

PIxPci_DeviceFind

Syntax:

PLX_STATUS
PIxPci_DeviceFind(
PLX_DEVICE_KEY *pKey,
ul6 DeviceNumber

R
PLX Chip Support:

All devices

Description:

Locates a specific PCle device and fills in the corresponding device key information.

Parameters:

pKey
Pointer to a PLX_DEVICE_KEY structure containing the search criteria

DeviceNumber
The 0-based index of the device number to select. Refer to Notes section below for details.

Return Codes:

Code Description
PLX_STATUS OK The function returned successfully
PLX STATUS NULL PARAM One or more parameters is NULL
PLX STATUS NO DRIVER A valid PLX driver is not loaded in the system
PLX_STATUS INVALID OBJECT | The key does not match an installed device

Notes:

The fields in the PLX _DEVICE_KEY structure will be used to locate a device. If a field is set to
PCI_FIELD_IGNORE, then it is ignored in the comparison. If a device matches the criteria, all ignored fields in
the key will be filled in with their respective value.

Not all fields of the PLX_DEVICE_KEY will be used for filtering. Only standard PCI identifier fields (Device ID,
Vendor ID, Subsystem ID, PCI revision) & PCI physical location (domain, bus, slot, function) are referred to.
Other fields in the key are set internally by the PLX API or respective device driver & not used for device
selection.

The DeviceNumber parameter is an index that specifies which device to select, where ‘0’ is the first device. If
multiple devices match the criteria, the DeviceNumber specifies which device to select.

5-19

Usage:

5-20

PLX_STATUS rc;
PLX_DEVICE_KEY DeviceKey;

// Clear key structure to find First device
memset(&DeviceKey, PCI_FIELD IGNORE, sizeof(PLX_DEVICE_KEY));

rc =
PIxPci_DeviceFind(
&DeviceKey,
0 // Select 1st device matching criteria

)
if (rc 1= PLX_STATUS_OK)

// ERROR — Unable to locate matching device
}

// Search for the third device matching a specific Vendor 1D
memset(&DeviceKey, PCI_FIELD_IGNORE, sizeof(PLX_DEVICE_KEY));

// Specify Vendor ID

DeviceKey.Vendorld = 0x10b5; // PLX Vendor 1D
rc =
PIxPci_DeviceFind(
&DeviceKey,
2 // Select 3rd device matching criteria
):

if (rc 1= PLX_STATUS_OK)

// ERROR — Unable to locate matching device

PIxPci_DeviceFindEx

Syntax:

PLX_STATUS
PIxPci_DeviceFindEx(
PLX_DEVICE_KEY *pKey,
ui6 DeviceNumber,
PLX_API_MODE ApiMode,
PLX_MODE_PROP *pModeProp,
us DeviceNumber

):
PLX Chip Support:

All devices

Description:

This function is similar to PIxPci_DeviceFind() but also supports finding a device using methods other than
PCI/PCI Express, such as I°C.

Parameters:

pKey
Pointer to a PLX_DEVICE_KEY structure containing the search criteria

DeviceNumber
The 0-based index of the device number to select. Refer to Notes section below for details.

ApiMode
Specifies the PLX_API_MODE to use to search for a device. If ApiMode is PLX_API_MODE_PCI, this
function behaves identical to PIxPci_DeviceFind().

pModeProp
Contains the properties used for detecting a device. The items used in the structure depend upon the
value of the ApiMode parameter. For example, if ApiMode is PLX_API_MODE_I2C_AARDVARK, then
only the 12¢ union parameters in the structure are used.

Return Codes:

Code Description
PLX_STATUS OK The function returned successfully
PLX STATUS NULL PARAM One or more parameters is NULL

For PCI mode, a valid PLX driver is not loaded in the system

PLX_STATUS_NO_DRIVER For I°C mode, the Aardvark USB device does not exist or driver is not installed

PLX STATUS INVALID OBJECT | The key does not match an installed device

PLX STATUS UNSUPPORTED Attempt to select TCP connection which is not yet supported

Notes:

The fields in the PLX DEVICE_KEY structure will be used to locate a device. If a field is set to
PCI_FIELD_IGNORE, then it is ignored in the comparison. If a device matches the criteria, all ignored fields in
the key will be filled in with their respective value.

Not all fields of the PLX_DEVICE_KEY will be used for filtering. Only standard PCI identifier fields (Device ID,
Vendor ID, Subsystem ID, PCI revision) & PCI physical location (domain, bus, slot, function) are referred to.

5-21

Other fields in the key are set internally by the PLX API or respective device driver & not used for device
selection.

The DeviceNumber parameter is an index that specifies which device to select, where ‘0’ is the first device. If
multiple devices match the criteria, the DeviceNumber specifies which device to select.

For I°C, if the 12c.SlaveAddr field is -1 (FFFFh), the API will auto-probe all possible PLX 1°C addresses to detect
a chip (e.g. 58->5Fh, 68->6Fh, etc).

At this time, the only I°C device supported is the TotalPhase Aardvark USB I°C /SPI tool. Other I°C devices may
be suEJported in future versions of the SDK. The Aardvark USB driver must be loaded for the PLX API to work
over I°C.

Connections over TCP/IP are not yet supported in the PLX API. This may be supported in a future version of
the SDK.

Usage:

PLX_STATUS rc;
PLX_MODE_PROP ModeProp;
PLX_DEVICE_KEY DeviceKey;

// Clear key structure to find First device
memset(&DeviceKey, PCI_FIELD IGNORE, sizeof(PLX_DEVICE_KEY));

// Set 12C properties

ModeProp.12c.12cPort = 0O; // Use the First 12C USB device
ModeProp.12c.SlaveAddr = -1; // Auto-probe for PLX chip
ModeProp.12c.ClockRate = 100; // Set 12C clock rate in KHz

// Find first 12C PLX device/port

rc =
PIxPci_DeviceFindEx(
&DeviceKey,
0 // Select 1st device matching criteria
PLX_API_MODE_12C_AARDVARK, // Connect over 12C
&ModeProp
)
if (rc = PLX_STATUS_OK)
{

// ERROR — Unable to locate matching device
}

5-22

PIxPci_DeviceReset

Syntax:

PLX_STATUS
PIxPci_DeviceReset(
PLX_DEVICE_OBJECT *pDevice

);

PLX Chip Support:
All PLX 9000 & 8311 devices

Description:

Resets the selected PLX device

Parameters:

pDevice
Pointer to an open PCI device

Return Codes:

Code

Description

PLX_STATUS OK The function returned successfully

PLX_STATUS UNSUPPORTED | Reset of the selected device is not supported

Usage:
PLX_DEVICE_OBJECT Device;

// lIssue reset to PLX device

PIxPci_DeviceReset(
pDevice

);

5-23

PIxPci_DmaChannelOpen

Syntax:

PLX_STATUS
PIxPci_DmaChannelOpen(
PLX_DEVICE_OBJECT *pDevice,

us channel,
PLX_DMA_PROP *pDmaProp
);

PLX Chip Support:
9054, 9056, 9080, 9656, 8311, & 8000 DMA

Description:

Opens and initializes a DMA channel to prepare for later transfers. Starting with SDK 6.10, it is recommended
to set the pDmaProp parameter to NULL and use other PLX APIs to retrieve and update DMA properties. Refer
to PIxPci_DmaGetProperties & PIxPci_DmaSetProperties.

Parameters:

pDevice
Pointer to an open device

channel
The number of the DMA channel to open

pDmaProp
Pointer to a structure containing the properties to use for initializing the DMA channel. If this NULL, the
DMA properties will not be modified.

Return Codes:

Code Description
PLX_STATUS_OK The function returned successfully
PLX_STATUS_NULL_PARAM One or more parameters is NULL
PLX STATUS INVALID OBJECT The device object is not valid
PLX STATUS LOW_ POWER The PLX device is in a power state that is lower than required for this function
PLX STATUS INVALID ADDR The DMA channel is not supported by the PLX chip
PLX STATUS INVALID ACCESS | The DMA channel is in use by another process

Usage:

// Open the DMA channel
PIxPci_DmaChannelOpen(

pDevice,

o, // Channel 0

NULL // Do not modify current DMA properties
)

5-24

PIxPci_DmaChannelClose

Syntax:

PLX_STATUS

PIxPci_DmaChannelClose(
PLX_DEVICE_OBJECT *pDevice,
us channel

R
PLX Chip Support:
9054, 9056, 9080, 9656, 8311, & 8000 DMA

Description:

Closes a previously opened DMA channel

Parameters:

pDevice
Pointer to an open PCI device

channel
The DMA channel number to close

Return Codes:

Code Description
PLX_STATUS_OK The function returned successfully
PLX_STATUS_NULL_PARAM One or more parameters is NULL
PLX STATUS INVALID OBJECT The device object is not valid
PLX_STATUS_LOW_POWER The PLX device is in a power state that is lower than required for this function
PLX_STATUS_INVALID_ADDR The DMA channel is not supported by the PLX chip
PLX_STATUS_INVALID_ACCESS | The DMA channel was not previously opened by the caller
PLX_STATUS_IN_PROGRESS A DMA transfer is in progress
PLX_STATUS_PAUSED The DMA channel is paused
PLX STATUS IN USE The DMA channel is open but owned by another calling thread or process

Notes:

The DMA channel cannot be closed by this function if a DMA transfer is currently in-progress. The DMA status
is read directly from the DMA status register of the PLX chip. Note that a “crashed” DMA engine reports DMA in-
progress. A software reset of the PLX chip may be required in this case. DMA “crashes” are typically a result of
invalid addresses provided to the DMA channel. For PLX 9000 series devices, refer to PIxPci_DeviceReset.

5-25

Usage:
PLX_STATUS rc;

rc =
PIxPci_DmaBlockChannelClose(
pDevice,
1 // Channel 1
)
if (rc = PLX_STATUS_OK)
{
// Reset the device if a DMA is in-progress
ifT (rc == PLX_STATUS_IN_PROGRESS)
{
PIxPci_DeviceReset(
pDevice
);
// Attempt to close again
PIxPci_DmaChannelClose(
pDevice,
1
);
}
}

5-26

PIxPci_DmaGetProperties

Syntax:

PLX_STATUS
PIxPci_DmaGetProperties(
PLX_DEVICE_OBJECT *pDevice,

us channel,
PLX_DMA_PROP *pDmaProp
);

PLX Chip Support:
9054, 9056, 9080, 9656, 8311, & 8000 DMA

Description:

Returns the current DMA properties for a DMA channel

Parameters:

pDevice
Pointer to an open device

channel
The DMA channel number to access

pDmaProp
Pointer to a structure that will contain the DMA properties

Return Codes:

Code Description
PLX_STATUS_OK The function returned successfully
PLX_STATUS_NULL_PARAM One or more parameters is NULL
PLX STATUS INVALID OBJECT The device object is not valid
PLX_STATUS LOW_POWER The PLX device is in a power state that is lower than required for this function
PLX STATUS INVALID ADDR The DMA channel is not supported by the PLX chip
PLX STATUS INVALID ACCESS | The DMA channel was not previously opened by the caller

Notes:

A DMA channel must first be opened by the caller with PIxPci_DmaChannelOpen before this function can be
called.

5-27

Usage:
PLX_DMA_PROP DmaProp;

// Get current DMA properties
PIxPci_DmaGetProperties(
pDevice,
o0, // DMA channel 0O
&DmaProp

);

// Modify desired properties based on chip type
if ((PIXChip & OxFFO0) == 0x8600) || (PIxChip & OxFF00) == 0x8700))

{
// Use relaxed ordering for data read requests
DmaProp.RelOrderDataReadReq = 1;
// Support 128B read request TLPs
DmaProp.MaxSrcXferSize = PLX DMA MAX SRC_TSIZE_128B;
3
else
{
// Enable READY# input and burst of 4 DWORDS
DmaProp.Readylnput = 1;
DmaProp.Burst =1;
DmaProp.Burstinfinite = 0;
3

// Update DMA with new properties
PIxPci_DmaSetProperties(
pDevice,
0, // DMA channel O
&DmaProp

s

5-28

PIxPci_DmaSetProperties

Syntax:
PLX_STATUS

PIxPci_DmaSetProperties(

PLX_DEVICE_OBJECT *pDevice,

us channel,
PLX_DMA_PROP *pDmaProp
);

PLX Chip Support:

9054, 9056, 9080, 9656, 8311, & 8000 DMA

Description:

Updates the DMA properties for a DMA channel

Parameters:

pDevice

Pointer to an open device

channel

The DMA channel number to access

pDmaProp

Pointer to a structure containing the DMA properties

Return Codes:

Code

Description

PLX_STATUS_OK

The function returned successfully

PLX_STATUS_NULL_PARAM

One or more parameters is NULL

PLX_STATUS_INVALID_OBJECT

The device object is not valid

PLX_STATUS _LOW POWER

The PLX device is in a power state that is lower than required for this function

PLX_STATUS_INVALID_ADDR

The DMA channel is not supported by the PLX chip

PLX_STATUS_INVALID ACCESS

The DMA channel was not previously opened by the caller

PLX STATUS IN USE

The DMA channel is open but owned by another calling thread or process

Notes:

A DMA channel must first be opened by the caller with PIxPci_DmaChannelOpen before this function can be

called.

5-29

Usage:
PLX_DMA_PROP DmaProp;

// Fill in current DMA properties
PIxPci_DmaGetProperties(
pDevice,
o0, // DMA channel 0O
&DmaProp

);

// Modify desired properties based on chip type
if ((PIXChip & OxFFO0) == 0x8600)]| (PIxChip & OxFF00) == 0x8700))

{
// Use relaxed ordering for data read requests
DmaProp.RelOrderDataReadReq = 1;
// Support 128B read request TLPs
DmaProp.MaxSrcXferSize = PLX DMA MAX SRC_TSIZE_128B;
3
else
{
// Enable READY# input and burst of 4 DWORDS
DmaProp.Readylnput = 1;
DmaProp.Burst =1;
DmaProp.Burstinfinite = 0;
3

// Update DMA with new properties
PIxPci_DmaSetProperties(
pDevice,
0, // DMA channel 0O
&DmaProp

);

5-30

PIxPci_DmacControl

Syntax:

PLX_STATUS
PIxPci_DmaControl (
PLX_DEVICE_OBJECT *pDevice,

us channel,
PLX_DMA_COMMAND command
);

PLX Chip Support:
9054, 9056, 9080, 9656, 8311, & 8000 DMA

Description:
Controls the DMA engine for a given DMA channel.

Parameters:

pDevice
Pointer to an open device

channel
The DMA channel number to control

command
The action to perform on the DMA channel. Refer to PLX_DMA_COMMAND for the list of valid DMA
commands.

Return Codes:

Code Description
PLX_STATUS OK The function returned successfully
PLX STATUS NULL PARAM One or more parameters is NULL
PLX STATUS INVALID OBJECT The device object is not valid
PLX STATUS LOW_ POWER The PLX device is in a power state that is lower than required for this function
PLX_STATUS_INVALID_ADDR The DMA channel is not supported by this PLX chip
PLX _STATUS INVALID ACCESS | The DMA channel was not previously opened by the caller
PLX _STATUS IN PROGRESS If attempting to resume a DMA channel that is not in a paused state.
PLX_STATUS INVALID DATA An invalid or unsupported DMA command
PLX STATUS IN USE The DMA channel is open but owned by another calling thread or process

Notes:

A DMA channel must first be opened by the caller with PIxPci_DmaChannelOpen before this function can be
called.

5-31

Usage:

PLX_STATUS rc;
PLX_DMA_PARAMS DmaParams;

// Start a DMA transfer
PIxPci_DmaTransferBlock(

pDevice,
0, // Channel 0
&DmaParams,
0 // Don’t wait for DMA completion
);
// Pause the DMA channel
rc =
PIxPci_DmaControl (
pDevice,
0, // Channel 0
DmaPause // Pause the current transfer
);
if (rc = PLX_STATUS _0OK)
{
// ERROR — Unable to pause DMA transfer
¥
// Resume the DMA channel
rc =
PIxPci_DmaControl (
pDevice,
0, // Channel O
DmaResume // Resume the transfer
);

if (rc 1= PLX_STATUS_OK)

// ERROR — Unable to resume DMA transfer

5-32

PIxPci_DmaStatus

Syntax:

PLX_STATUS

PIxPci_DmaStatus(
PLX_DEVICE_OBJECT *pDevice,
us channel

R
PLX Chip Support:
9054, 9056, 9080, 9656, 8311, & 8000 DMA

Description:

Returns the status of the specified DMA channel.

Parameters:

pDevice
Pointer to an open device

channel
The DMA channel number to check status of

Return Codes:

Code Description
PLX STATUS INVALID OBJECT | The device object is not valid
PLX STATUS INVALID ADDR The DMA channel is not supported by this PLX chip
PLX_STATUS COMPLETE The DMA channel is done/ready
PLX STATUS PAUSED The DMA channel is paused
PLX _STATUS IN PROGRESS A DMA transfer is currently in-progress
PLX STATUS IN USE The DMA channel is open but owned by another calling thread or process

5-33

Usage:

PLX_STATUS rc;
PLX_DMA_PARAMS DmaParams;

// Start a DMA transfer
PIxPci_DmaTransferBlock(

pDevice,
0, // Channel 0O
&DmaParams,
0 // Don’t wait for DMA completion
)
// Poll until DMA completes
do
{
rc =
PIxPci_DmaStatus(
pDevice,
o, // Channel 0
)

}
while (rc == PLX_STATUS_IN_PROGRESS);

5-34

PIxPci_DmaTransferBlock

Syntax:
PLX_STATUS

PIxPci_DmaTransferBlock(

PLX_DEVICE_OBJECT *pDevice,

us channel,
PLX_DMA_PARAMS *pDmaParams,
ue4 Timeout_ms
);

PLX Chip Support:

9054, 9056, 9080*, 9656, 8311, & 8000 DMA

Description:

Starts a Block DMA transfer for a given DMA channel.

Parameters:

pDevice

Pointer to an open device

channel

The open DMA channel number to use for the transfer

pDmaParams

A pointer to a structure containing the DMA transfer parameters

Timeout_ms

Specifies the timeout, in milliseconds, for the function to wait for DMA completion.

If 0, the API returns immediately after starting the DMA transfer and does not wait for its completion.
To have the function wait indefinitely for DMA completion, use the value PLX_TIMEOUT _INFINITE.

Return Codes:

Code

Description

PLX_STATUS_OK

The function returned successfully

PLX_STATUS_NULL_PARAM

One or more parameters is NULL

PLX_STATUS_INVALID_OBJECT

The device object is not valid

PLX_STATUS _LOW POWER

The PLX device is in a power state that is lower than required for this function

PLX_STATUS_INVALID_ADDR

The DMA channel is not supported by the PLX chip

PLX_STATUS_INVALID ACCESS

The DMA channel was not previously opened by the caller

PLX_STATUS_IN_PROGRESS

A DMA transfer is currently in-progress

PLX_STATUS_TIMEOUT

No interrupt was received to signal DMA completion

PLX_STATUS_UNSUPPORTED

The device does not support DMA or 64-bit DMA is required but not supported (9080)

PLX STATUS IN USE

The DMA channel is open but owned by another calling thread or process

Notes:

Block DMA transfers are useful with contiguous host buffers described by a PCI address. The DMA channel
requires a valid PCI physical addresses, not user or virtual address. Virtual addresses are those returned by

5-35

malloc(), for example, or a static buffer in an application. The physical address of the Common buffer provided
by PLX drivers (refer to PIxPci_CommonBufferProperties), for example, is a valid DMA buffer.

By default, the DMA done interrupt is automatically enabled when this function is called. It may be disabled by
setting the bignoreBlockint field of PLX_DMA_PARAMS. In this case, the DMA interrupt is disabled and will not
trigger the PLX driver's Interrupt Service Routine (ISR). This also means DMA done notification events
registered with PIxPci_NotificationRegisterFor will not signal when the DMA has completed.

The PLX_DMA_PARAMS structure contains members whose meanings may differ or even be ignored

depending on the DMA transfer type selected by the calling function.

PLX_DMA_PARAMS:

Structure Element Description
UserVa Ignored.
AddrSource (8000 DMA) Source PCI address
AddrDest (8000 DMA) Destination PCI address
PciAddr (9000 DMA) The PCI address to transfer to/from. 64-bit is supported
LocalAddr (9000 DMA) The Local address for the transfer
ByteCount The number of bytes to transfer.
Direction (8000 DMA) Iglnore.d. AddrSource & AddrDest fields inherently imply transfer direction
(9000 DMA) Direction of the transfer. Refer to PLX DMA DIR
bConstAddrSrc (8000 DMA) Keeps the source address constant
bConstAddrDest (8000 DMA) Keeps the destination address constant

bForceFlush

(8000 DMA) DMA engine will issue a Zero-length TLP to flush final writes.

blgnoreBlockint

Will disable the DMA done interrupt. API DMA done natification will timeout in this case.

5-36

Usage:

PLX_DMA PARAMS DmaParams;
PLX_PHYSICAL_MEM PciBuffer;

// Get Common buffer information
PIxPci_CommonBufferProperties(
pDevice,
&PciBuffer

)
memset(&DmaParams, 0, sizeof(PLX_DMA PARAMS));

// Fill in DMA transfer parameters
DmaParams.TransferCount = 0x1000;

it (pDevObj->Key.PIxChipFamily == PLX_FAMILY_BRIDGE_P2L)

{
// 9000/8311 DMA
DmaParams.PciAddr = PciBuffer.PhysicalAddr;
DmaParams.LocalAddr = 0xO0;
DmaParams.Direction = PLX_DMA_LOC_TO_PCI;
}
else
// 8000 DMA
DmaParams.AddrSource = PciBuffer.PhysicalAddr;
DmaParams.AddrDest = PciBuffer.PhysicalAddr + 0x5000;
}
rc =
PIxPci_DmaTransferBlock(
pDevice,
0, // Channel O
&DmaParams, // DMA transfer parameters
(3 * 1000) // Specify time to wait for DMA completion
);
if (rc !'= PLX_STATUS_OK)
{
if (rc == PLX_STATUS_TIMEOUT)
// Timed out waiting for DMA completion
else
// ERROR - Unable to perform DMA transfer
3

5-37

PIxPci_DmaTransferUserBuffer

Syntax:

PLX_STATUS
PIxPci_DmaTransferUserBuffer(
PLX_DEVICE_OBJECT *pDevice,

us channel,
PLX_DMA_PARAMS *pDmaParams,
ue4 Timeout_ms
);

PLX Chip Support:
9054, 9056, 9080, 9656, 8311, & 8000 DMA

* On some versions of Windows (e.g. 2003 Server) or system with more than 4GB of RAM, the physical address
of some user mode buffer pages may require 64-bit addressing. If this is detected, the PLX driver will
automatically use features in the PLX chip to access these pages. For legacy PCI DMA chips, PCI dual-
addressing is enabled. For newer PCI Express switch DMA, extended descriptors are used as needed. Dual-
addressing is not supported on the PLX 9080 device; therefore, the API will return an error if 64-bit is required
with this device.

Description:

Transfers a user-supplied buffer using the DMA channel. SGL mode of the DMA channel is used, but this is
transparent to the application. The function works as follows:

— The PLX driver takes the provided user-mode buffer and page-locks it into memory.

— The buffer is typically scattered throughout memory in non-contiguous pages. As a result, the driver
then determines the physical address of each page of memory of the buffer and creates an SGL
descriptor for each page. The descriptors are placed into an internal driver allocated buffer.

— The DMA channel is programmed to start at the first descriptor.
— After DMA transfer completion, an interrupt will occur and the driver will then perform all cleanup tasks.

Parameters:

pDevice
Pointer to an open device

channel
The open DMA channel number to use for the transfer

pDmaParams
A pointer to a structure containing the DMA transfer parameters

Timeout_ms
Specifies the timeout, in milliseconds, for the function to wait for DMA completion.

If 0, the API returns immediately after starting the DMA transfer and does not wait for its completion.
To have the function wait indefinitely for DMA completion, use the value PLX_TIMEOUT_INFINITE.

5-38

Return Codes:

Code

Description

PLX_STATUS_OK

The function returned successfully

PLX_STATUS _NULL_PARAM

One or more parameters is NULL

PLX_STATUS_INVALID OBJECT

The device object is not valid

PLX_STATUS_LOW_POWER

The PLX device is in a power state that is lower than required for this function

PLX_STATUS_INVALID ADDR

The DMA channel is not supported by the PLX chip

PLX_STATUS_INVALID_ACCESS

The DMA channel was not previously opened by the caller

PLX_STATUS_IN_PROGRESS

The DMA transfer is currently in-progress

PLX_STATUS_TIMEOUT

No interrupt was received to signal DMA completion

PLX STATUS_PAGE_GET ERROR

The driver was unable to obtain the page list for the user- mode buffer

PLX_STATUS_PAGE_LOCK_ERROR

The driver was unable to page lock the user-mode buffer

PLX_STATUS_INSUFFICIENT_RES

The driver was unable to allocate an internal buffer to store SGL descriptors

PLX STATUS IN USE

The DMA channel is open but owned by another calling thread or process

Notes:

The driver will always enable the DMA channel interrupt when this function is used. This is required so the
driver can perform cleanup routines, such as unlock the buffer and release descriptors, after the transfer has

completed.

The PLX_DMA_PARAMS structure contains members whose meanings may differ or even be ignored
depending on the DMA transfer type selected by the calling function.

PLX_DMA_PARAMS:

Structure Element Description
UserVa Virtual address of the user-mode buffer to transfer
AddrSource Ignored
AddrDest Ignored
PciAddr (9000 DMA) Ignored . o
(8000 DMA) Specifies the PCI address to transfer to/from, depending upon Direction
LocalAddr (9000 DMA) The Local address for the transfer
ByteCount The number of bytes to transfer
Direction Direction of the transfer. Refer to PLX DMA DIR
bConstAddrSrc (8000 DMA) Keeps the source address constant
bConstAddrDest (8000 DMA) Keeps the destination address constant
bForceFlush (8000 DMA) DMA engine will issue a Zero-length TLP to flush final writes.
blgnoreBlockint Ignored. PLX driver always enables DMA done interrupt to cleanup SGL

5-39

Usage:

us *pBuffer;
PLX_DMA PARAMS DmaParams;

// Allocate a 500k buffer
pBuffer = malloc(500 * 1024);

// Clear DMA parameters
memset(DmaParams, 0, sizeof(PLX_DMA_PARAMS));

// Setup DMA parameters (9000 DMA)
DmaParams.UserVa = (PLX_UINT_PTR)pBuffer;
DmaParams.ByteCount = (500 * 1024);

it (pDevObj->Key.PIxChipFamily == PLX_FAMILY_BRIDGE_P2L)
// 9000/8311 DMA

DmaParams.LocalAddr
DmaParams.Direction

0x0;
PLX_DMA LOC_TO_PCI;

}
else
// 8000 DMA
DmaParams.PciAddr = O0x1F000000;
DmaParams.Direction = PLX_DMA_PCI_TO_USER;
}
rc =
PIxPci_DmaTransferUserBuffer(
pDevice,
0, // Channel 0O
&DmaParams, // DMA transfer parameters
(3 * 1000) // Specify time to wait for DMA completion
)

if (rc 1= PLX_STATUS_OK)

if (rc == PLX_STATUS_TIMEOUT)
// Timed out waiting for DMA completion
else

// ERROR - Unable to perform DMA transfer

5-40

PIxPci_DriverProperties

Syntax:

PLX_STATUS

PIxPci_DriverProperties(
PLX_DEVICE_OBJECT *pDevice,
PLX_DRIVER_PROP *pDriverProp

R
PLX Chip Support:

All devices

Description:

Returns properties of the PLX driver in use for the selected device

Parameters:

pDevice
Pointer to an open device

pDriverProp
A pointer to PLX_DRIVER_PROP structure that will contain the driver properties

Return Codes:

Code Description
PLX_STATUS OK The function returned successfully
PLX STATUS NULL PARAM One or more parameters is NULL
PLX STATUS INVALID OBJECT | The device object is not valid

5-41

Usage:

PLX_STATUS rc;
PLX_DRIVER_PROP DriverProp;
PLX_DEVICE_OBJECT Device;

// Determine if Service or PnP driver in use

rc =
PIxPci_DriverProperties(
&Device,
&DriverProp
)
if (rc == PLX_STATUS_OK)
{
Cons_printf(
“Driver Properties:\n
“ Version :© %d.%02d\n”
“ Name > %s\n”
“ Full Name: %s\n”,
DriverProp Version,
DriverProp.Name,
DriverProp.Ful IName
)
if (DriverProp.blsServiceDriver)
{
Cons_printf(“Using PLX Service driver\n”,);
}
else
{
Cons_printf(“Using PLX PnP driver\n”,);
¥
Cons_printf(
“PCle Located at Ox%gX\n”,
DriverProp.AcpiPcieEcam
)
¥

5-42

PIxPci_DriverScheduleRescan

Syntax:

PLX_STATUS
PIxPci_DriverScheduleRescan(
PLX_DEVICE_OBJECT *pDevice

R
Note: This function has not yet been implemented in the PLX SDK. This documentation is left here for a
future SDK version when it is implemented. This function and its parameters are subject to change.
PLX Chip Support:

Any device when selected via the PLX PCI/PCle Service driver

Description:

Makes a request to the PLX PCI Service driver to rescan the PCI/PCle bus and rebuild its internal device list.
Since the Service driver is not informed of Plug ‘n’ Play events (e.g. device additional/removal or resource
changes), its internal list of detected devices could contain erroneous information.

Once the driver receives the request, it will perform the operation when all connections to it have been closed.

Parameters:

pDevice
Pointer to an open device

Return Codes:

Code Description
PLX _STATUS OK The function returned successfully
PLX _STATUS NULL_PARAM One or more parameters is NULL

PLX_STATUS_ INVALID OBJECT | The device object is not valid

PLX STATUS UNSUPPORTED The function was called with a device that is not accessed via the Service driver

Usage:
PLX_STATUS status;

// Inform the service driver to rebuild its internal list

status =
PIxPci_DriverScheduleRescan(
pDevice
)

// Close device to allow driver to rescan
PIxPci_DeviceClose(
pDevice

s

5-43

PIxPci_DriverVersion

Syntax:

PLX_STATUS
PIxPci_DriverVersion(
PLX_DEVICE_OBJECT *pDevice,
us *pVersionMajor,
us *pVersionMinor,
us *pVersionRevision

)
PLX Chip Support:

All devices

Description:

Returns the PLX driver version information

Parameters:

pDevice
Pointer to an open device

pVersionMajor

A pointer to an 8-bit buffer to contain the Major version number

pVersionMinor

A pointer to an 8-hit buffer to contain the Minor version number

pVersionRevision

A pointer to an 8-hit buffer to contain the Revision version number

Return Codes:

Code Description
PLX_STATUS OK The function returned successfully
PLX STATUS NULL PARAM One or more parameters is NULL
PLX STATUS INVALID OBJECT | The device object is not valid

5-44

Usage:

us DriverMajor;
us DriverMinor;
us DriverRevision;

PLX_STATUS rc;

rc =
PIxPci_DriverVersion(
pDevice,
&DriverMajor,
&DriverMinor,
&DriverRevision

)
if (rc 1= PLX_STATUS_OK)

// ERROR — Unable to get Driver version information

¥

else

{ _

Cons_printf(

"PLX Driver Version = %d.%d%d\n"",
DriverMajor, DriverMinor, DriverRevision
):

}

5-45

PIxPci_EepromPresent

Syntax:

PLX_EEPROM_STATUS
PIxPci_EepromPresent(

PLX_DEVICE_OBJECT *pDevice,
PLX_STATUS *pStatus

);

PLX Chip Support:
All PLX devices

Description:

Returns the state of the EEPROM as reported by the PLX device.

Parameters:

pDevice

Pointer to an open device

pStatus

Pointer to a PLX_STATUS variable to hold the status. (May be NULL)

Return Codes:

If the function is successful, it will return a PLX_EEPROM_STATUS code.

If the PLX_STATUS variable is not NULL, one of the following values is returned:

Code

Description

PLX_STATUS_OK

The function returned successfully

PLX_STATUS NULL PARAM

One or more parameters is NULL

PLX_STATUS_INVALID_OBJECT

The device object is not a valid PLX device or has not been opened

PLX _STATUS UNSUPPORTED

EEPROM access to device is not supported

Notes:

The EEPROM status is read directly from the PLX status register. The status is generally only valid at the time
The status may not reflect the true status of the EEPROM after reset.
Modifications of EEPROM values, including the CRC, are not reflected in the chip’s EEPROM status until the

of power up or after a reset.

next reset when the EEPROM contents are loaded.

5-46

Usage:

PLX_STATUS rc;
PLX_EEPROM_STATUS EepStatus;

// Check if EEPROM present
EepStatus =
PIxPci_EepromPresent(
pDevice,
&rc

);

if (rc == PLX_STATUS_0OK)
{
switch (EepStatus)
{
case PLX _EEPROM_STATUS_NONE:
// No EEPROM Present
break;

case PLX_EEPROM_STATUS_ VALID:
// EEPROM present with valid data
break;

case PLX _EEPROM_STATUS_ INVALID_ DATA:

case PLX _EEPROM_STATUS BLANK:

case PLX EEPROM_STATUS CRC_ERROR:
// Present but invalid data, CRC error, or blank
break;

5-47

PIxPci_EepromProbe

Syntax:

BOOLEAN

PIxPci_EepromProbe (
PLX_DEVICE_OBJECT *pDevice,
PLX_STATUS *pStatus

);
PLX Chip Support:
All PLX devices

Description:

Manually probes for the presence of an EEPROM. The API does this by writing to a specific EEPROM location
and then reading it back to verify the write operation.

Parameters:

pDevice
Pointer to an open device

pStatus
Pointer to a PLX_STATUS variable to hold the status. (May be NULL)

Return Codes:

Code Description
PLX_STATUS OK The function returned successfully
PLX STATUS NULL PARAM One or more parameters is NULL
PLX STATUS INVALID OBJECT | The device objectis not a valid PLX device or has not been opened
PLX_STATUS TIMEOUT The PLX EEPROM controller is busy and not accepting new commands
PLX STATUS UNSUPPORTED EEPROM access to device is not supported

Usage:

BOOLEAN bEepromPresent;
PLX_STATUS rc;

bEepromPresent =
PIxPci_EepromProbe (
pDevice,
&rc

);
if (rc == PLX_STATUS_OK)
ifT (bEepromPresent)
// Programmed EEPROM exists

else
// EEPROM does not exist

5-48

PIxPci_EepromCrcGet

Syntax:

BOOLEAN
PIxPci_EepromCrcGet(
PLX_DEVICE_OBJECT *pDevice,

u32 *pCrc,
us *pCrcStatus
)

PLX Chip Support:
All PLX 8000 devices with an EEPROM CRC feature

Description:

Reads the current CRC value from the EEPROM. The status of the CRC as reported by the PLX chip is
returned.

Parameters:

pDevice
Pointer to an open device

pCrc
Pointer to a 32-bit buffer to contain the current CRC

pCrcStatus
Pointer to an 8-bit buffer to store the CRC status as reported by the PLX chip. The possible status codes
are in PLX_CRC_STATUS.

Return Codes:

Code Description
PLX_STATUS OK The function returned successfully
PLX STATUS NULL PARAM One or more parameters is NULL
PLX STATUS INVALID OBJECT | The device objectis not a valid PLX device or has not been opened
PLX_STATUS TIMEOUT The PLX EEPROM controller is busy and not accepting new commands
PLX STATUS UNSUPPORTED EEPROM access to device is not supported

Notes:

Note that the CRC status is simply the status as reported by the PLX chip. This status may not be consistent
with the EEPROM CRC if the EEPROM has been updated. The status of the CRC in the PLX chip is updated
only upon power up when the PLX chip loads values from the EEPROM.

5-49

Usage:

U8 CrcStatus;
U32 Crc;

// Get current EEPROM CRC
PIxPci_EepromCrcGet(
pDevice,
&Crc,
&CrcStatus

);

Cons_printf(
"CRC=%08x Status=%s)\n",
Crc,

(CrcStatus == PLX_CRC_VALID) ? "valid" : "Invalid"

);

5-50

PIxPci_EepromCrcUpdate

Syntax:

BOOLEAN
PIxPci_EepromCrcUpdate(
PLX_DEVICE_OBJECT *pDevice,

us2 *pCrc,
BOOLEAN bUpdateEeprom
)

PLX Chip Support:
All PLX 8000 devices with a CRC feature

Description:

Reads the current EEPROM contents and calculates an updated CRC. If requested, this function can update
the CRC stored in the EEPROM.

Parameters:

pDevice
Pointer to an open device

pCrc
Pointer to a 32-bit buffer to contain the newly calculated CRC

bUpdateEeprom
If TRUE, the function will update the CRC in the EEPROM. If FALSE, it will not modify the EEPROM
contents.

Return Codes:

Code Description
PLX_STATUS OK The function returned successfully
PLX STATUS NULL PARAM One or more parameters is NULL
PLX STATUS INVALID OBJECT | The device objectis not a valid PLX device or has not been opened
PLX_STATUS TIMEOUT The PLX EEPROM controller is busy and not accepting new commands
PLX STATUS UNSUPPORTED EEPROM access to device is not supported

5-51

Usage:

5-52

us CrcStatus;
u32 Crc;
u32 CrcNew;

// Get current EEPROM CRC
PIxPci_EepromCrcGet(
pDevice,
&Crc,
&CrcStatus

);

// Calculate new CRC
PIxPci_EepromCrcUpdate(

pDevice,
&CrcNew,
FALSE // Don"t update EEPROM
);
if (Crc == CrcNew)
{
Cons_printf("'CRC in EEPROM is valid\n™);
}
else
{ _ _ _
Cons_printF(""CRCs do not match, CRC in EEPROM not valid\n');
// Calculate new CRC
PIxPci_EepromCrcUpdate(
pDevice,
&CrcNew,
TRUE // Update CRC in EEPROM
)
Cons_printf(""Updated CRC in EEPROM to valid value\n');
¥

PIxPci_EepromGetAddressWidth

Syntax:
PLX_STATUS

PIxPci_EepromGetAddressWidth(
PLX_DEVICE_OBJECT *pDevice,
us *pWidth

);

PLX Chip Support:
8111, 8112, & 8000 devices

Description:

Return the current EEPROM byte-addressing width.

Parameters:

pDevice
Pointer to an open device

pWidth

Pointer the a byte that will contain the EEPROM byte-address width. Valid values are 1,2,3. If a value of
0 is returned, the PLX chip’s internal EEPROM controller did not identify the EEPROM byte-addressing

during power-up.

Return Codes:

Code

Description

PLX_STATUS_OK

The function returned successfully

PLX_STATUS NULL PARAM

One or more parameters is NULL

PLX_STATUS_INVALID_OBJECT

The device object is not a valid PLX device or has not been opened

PLX _STATUS UNSUPPORTED

Device does not support EEPROM address width

Notes:

During power up, PLX chips attempt to load values from an EEPROM if present. During this sequence, the PLX
chip also attempts to automatically determine the EEPROM byte addressing. If an EEPROM is not present, is
blank, or if the first byte in the EEPROM is not a valid signature (5Ah), the EEPROM controller will not be able to
identify the byte-addressing. The EEPROM controller usually defaults to a 1B byte-address width. This function

will return ‘0’ in this case.

If the EEPROM part doesn’'t match the detected address width, software will not be able to properly access the
EEPROM. On newer PLX chips, use PIxPci_EepromSetAddressWidth to override the setting to program blank

or undetected EEPROMSs.

5-53

Usage:

us width;
PLX_STATUS status;

// Get current EEPROM width from device

status =
PIxPci_EepromGetAddressWidth(
pDevice,
&width
)

if (status == PLX_STATUS_UNSUPPORTED)

// Error - Device doesn’t support EEPROM width
return status;

}
if (width == 0)
{
// EEPROM width not detected, set it manually
status =
PIxPci_EepromSetAddressWidth(
pDevice,
2 // Use 2-byte addressing
}:
if (status !'= PLX_STATUS_OK)
// Error — Unable to override address width
return status;
¥
¥

// EEPROM can now be properly accessed
PIxPci_EepromWriteByOffset(

pDevice,

0x0,

0x0000005A ;

);

5-54

PIxPci_EepromSetAddressWidth

Syntax:

PLX_STATUS

PIxPci_EepromSetAddressWidth(
PLX_DEVICE_OBJECT *pDevice,
us width

)
PLX Chip Support:
8111, 8112, & 8000 devices that support EEPROM address width override

Description:
Sets the EEPROM addressing width

Parameters:

pDevice
Pointer to an open device

width
The byte addressing to be used for EEPROM accesses. Width must by 1, 2, or 3.

Return Codes:

Code Description
PLX_STATUS OK The function returned successfully
PLX STATUS NULL PARAM One or more parameters is NULL

PLX STATUS INVALID OBJECT | The device objectis not a valid PLX device or has not been opened

PLX_STATUS UNSUPPORTED Device does not support EEPROM address width override

PLX STATUS INVALID DATA The EEPROM width is not valid

Notes:

Note that this setting only remains persistent as long as the PLX driver is loaded. If it is unloaded or the system

is restarted, this API call must be called again.

5-55

Usage:

us width;
PLX_STATUS status;

// Get current EEPROM width from device
status =
PIxPci_EepromGetAddressWidth(
pDevice,
&width

);

if (status == PLX_STATUS_UNSUPPORTED)

{
// Error - Device doesn’t support EEPROM width
return status;

}
if (width == 0)
{
// EEPROM width not detected, set it manually
status =
PIxPci_EepromSetAddressWidth(
pDevice,
2 // Use 2-byte addressing
}:
if (status '= PLX_STATUS_OK)
// Error — Unable to override address width
return status;
}
}

// EEPROM can now be properly accessed
PIxPci_EepromWriteByOffset(

pDevice,

0x0,

0x0000005A;

);

5-56

PIxPci_EepromReadByOffset

Syntax:

PLX_STATUS
PIxPci_EepromReadByOffset(
PLX_DEVICE_OBJECT *pDevice,

u32 offset,
u3s2 *pValue
);

PLX Chip Support:
All PLX devices

Description:

Reads a 32-bit value from a specified offset from the configuration EEPROM connected to the PLX chip

Parameters:

pDevice
Pointer to an open device

offset
The EEPROM offset of the location to read. (Must be aligned on a 32-bit boundary)

pValue
Pointer to a 32-bit buffer to contain the EEPROM value

Return Codes:

Code Description
PLX_STATUS OK The function returned successfully
PLX STATUS NULL PARAM One or more parameters is NULL

PLX STATUS INVALID OBJECT | The device objectis not a valid PLX device or has not been opened

PLX STATUS UNSUPPORTED EEPROM access to device is not supported

PLX STATUS TIMEOUT The PLX EEPROM controller is busy and not accepting new commands

PLX STATUS INVALID OFFSET | Offset not aligned on 32-bit boundary

Usage:

u32 EepromData;
PLX_STATUS status;

// Read the Subsystem Device ID of the 9054

status =
PIxPci_EepromReadByOffset(
pDevice,
0x44, // Subsystem Device ID EEPROM offset
&EepromData
);

if (status != PLX_STATUS_OK)
// ERROR — Unable to read EEPROM

5-57

PIxPci_EepromWriteByOffset

Syntax:
PLX_STATUS

PIxPci_EepromWriteByOffset(
PLX_DEVICE_OBJECT *pDevice,

u3s2
u3s2

);

PLX Chip Support:
All PLX devices

Description:

offset,
value

Writes a 32-bit value to a specified offset of the EEPROM connected to the PLX chip

Parameters:

pDevice

Pointer to an open device

offset

The EEPROM offset of the location to write. (Must be aligned on a 32-bit boundary)

value
The 32-bit value to write

Return Codes:

Code

Description

PLX_STATUS_OK

The function returned successfully

PLX_STATUS NULL PARAM

One or more parameters is NULL

PLX_STATUS_INVALID_OBJECT

The device object is not a valid PLX device or has not been opened

PLX_STATUS_UNSUPPORTED

EEPROM access to device is not supported

PLX_STATUS_TIMEOUT

The PLX EEPROM controller is busy and not accepting new commands

PLX STATUS INVALID OFFSET

Offset not aligned on 32-bit boundary

Usage:
PLX_STATUS status;

// Write to the Subsystem Device ID of the 9054

status =

PIxPci_EepromWriteByOffset(

pDevice,
Ox44,
0x524510B5

);

// Subsystem Device ID EEPROM offset

if (status != PLX_STATUS_OK)
// ERROR — Unable to write to EEPROM

5-58

PIxPci_EepromReadByOffset_16

Syntax:

PLX_STATUS
PIxPci_EepromReadByOffset 16(
PLX_DEVICE_OBJECT *pDevice,

u32 offset,
ui6 *pValue
);

PLX Chip Support:
All PLX devices

Description:

Reads a 16-bit value from a specified offset from the configuration EEPROM connected to the PLX chip

Parameters:

pDevice
Pointer to an open device

offset
The EEPROM offset of the location to read. (Must be aligned on a 16-bit boundary)

pValue
Pointer to a 16-bit buffer to contain the EEPROM value

Return Codes:

Code Description
PLX_STATUS OK The function returned successfully
PLX STATUS NULL PARAM One or more parameters is NULL

PLX STATUS INVALID OBJECT | The device objectis not a valid PLX device or has not been opened

PLX STATUS UNSUPPORTED EEPROM access to device is not supported

PLX STATUS TIMEOUT The PLX EEPROM controller is busy and not accepting new commands

PLX STATUS INVALID OFFSET | Offset not aligned on 16-bit boundary

Usage:

ule EepromData;
PLX_STATUS status;

// Read the Subsystem Device ID of the 6540

status =
PIxPci_EepromReadByOffset 16(
pDevice,
0x26, // Subsystem Device ID EEPROM offset
&EepromData
);

if (status != PLX_STATUS_OK)
// ERROR — Unable to read EEPROM

5-59

PIxPci_EepromWriteByOffset 16

Syntax:
PLX_STATUS

PIxPci_EepromWriteByOffset_16(
PLX_DEVICE_OBJECT *pDevice,

u32 offset,
ule value
);

PLX Chip Support:
All PLX devices

Description:

Writes a 16-bit value to a specified offset of the EEPROM connected to the PLX chip

Parameters:

pDevice

Pointer to an open device

offset

The EEPROM offset of the location to write. (Must be aligned on a 16-bit boundary)

value
The 16-bit value to write

Return Codes:

Code

Description

PLX_STATUS_OK

The function returned successfully

PLX_STATUS NULL PARAM

One or more parameters is NULL

PLX_STATUS_INVALID_OBJECT

The device object is not a valid PLX device or has not been opened

PLX_STATUS_UNSUPPORTED

EEPROM access to device is not supported

PLX_STATUS_TIMEOUT

The PLX EEPROM controller is busy and not accepting new commands

PLX STATUS INVALID OFFSET

Offset not aligned on 16-bit boundary

Usage:
PLX_STATUS status;

// Write to the Subsystem Device ID of the 9054

PIxPci_EepromWriteByOffset 16(

// Subsystem Device ID EEPROM offset

// ERROR — Unable to write to EEPROM

status =
pDevice,
0x44,
0x5245
);
if (status '= PLX_STATUS_OK)
{
}

5-60

PIxPci_GetPortProperties

Syntax:

PLX_STATUS

PIxPci_GetPortProperties(
PLX_DEVICE_OBJECT *pDevice,
PLX_PORT_PROP *pPortProp

R
PLX Chip Support:

All devices

Description:

Returns properties of the PLX driver in use for the selected device

Parameters:

pDevice
Pointer to an open device

pPortProp

A pointer to PLX_PORT_PROP structure that will contain the port properties

Return Codes:

Code Description
PLX_STATUS OK The function returned successfully
PLX STATUS NULL PARAM One or more parameters is NULL
PLX STATUS INVALID OBJECT | The device object is not valid

Usage:
PLX_PORT_PROP PortProp;

PIxPci_GetPortProperties(
pDevice,
&PortProp

);

Cons_printf("'Port Type : %02d ™, PortProp.PortType)

switch (PortProp.PortType)
{

case PLX_PORT_ENDPOINT: // PLX_PORT_NON_TRANS

Cons_printf(""(Endpoint or NT port)\n');
break;

case PLX_PORT_UPSTREAM:
Cons_printf(""(Upstream)\n');
break;

case PLX_PORT_DOWNSTREAM:

5-61

5-62

Cons_printf(""(Downstream)\n');
break;

case PLX_PORT_LEGACY_ENDPOINT:
Cons_printF(""(Endpoint)\n');
break;

case PLX_PORT_ROOT_PORT:
Cons_printf(""(Root Port)\n");
break;

case PLX_PORT_PCIE_TO_PCIl_BRIDGE:
Cons_printf(""(PCle-to-PCIl Bridge)\n™);
break;

case PLX_PORT_PCI_TO_PCIE_BRIDGE:
Cons_printf(""(PCI-to-PCle Bridge)\n™);
break;

case PLX_PORT_ROOT_ENDPOINT:
Cons_printf(*"(Root Complex Endpoint)\n');
break;

case PLX_PORT_ROOT_EVENT_COLL:
Cons_printf(""(Root Complex Event Collector)\n');
break;

case PLX_PORT_UNKNOWN:

default:
Cons_printf(*""(Unknown?)\n");
break;

Cons_printF(""Port Number: %02d\n", PortProp.PortNumber);
Cons_printf(""Max Payload: %02d\n"', PortProp.MaxPayloadSize);
Cons_printf('Link Width : %d\n", PortProp.LinkWidth);

PIxPci_l2cGetPorts

Syntax:

PLX_STATUS

PIxPci_l2cGetPorts(
PLX_API_MODE ApiMode,
u32 *pl2cPorts

R
PLX Chip Support:

All devices

Description:

Returns the I°C ports detected in the system and their availability.

Parameters:

ApiMode
Specifies the PLX_API_MODE to use. At this time, only PLX_API_MODE_I2C_AARDVARK is supported.

pl2cPorts
A 32-bit value containing information about the 1°C ports in the system. Bits [15:0] denote whether the
specific port is in the system and bits [31:16] denote whether the port is in-use.

Return Codes:

Code Description
PLX_STATUS OK The function returned successfully
PLX STATUS NULL PARAM One or more parameters is NULL
PLX STATUS INVALID ACCESS | The ApiMode parameter is not PLX_API_MODE_|2C_AARDVARK
PLX_STATUS NO DRIVER The Aardvark USB device does not exist or driver is not installed

5-63

Usage:
us i;
u32 12cPorts;
PLX_STATUS status;

// Get available 12C ports
status =
PIxPci_l12cGetPorts(
PLX_API_MODE_12C_AARDVARK,
&l2cPorts

)
if ((status != PLX_STATUS OK) |] (12cPorts == 0))

// No 12C ports detected

}
else
// Parse through active ports
for (i = 0; i < 16; i++)
{
// Check if port is active
if (12cPorts & (1 << 1))
{
// Port exists in the system
// Check if port is in-use
if ((12cPorts >> 16) & (1 << 1))
// Port is in use by another application
}
}
¥
}

5-64

PIxPci_l2cVersion

Syntax:

PLX_STATUS
PIxPci_l2cVersion (

ule 12cPort,
PLX_VERSION *pVersion

R
PLX Chip Support:

All devices

Description:

Returns the version information for a specific I°Cc port.

Parameters:

I2cPort
Specifies the 1°C port.

pVersion

A pointer to a.PLX_VERSION structure that will contain version information.

Return Codes:

Code

Description

PLX_STATUS_OK

The function returned successfully

PLX_STATUS NULL PARAM

One or more parameters is NULL

PLX_STATUS_INVALID_ACCESS

The ApiMode parameter is not PLX_API_MODE_I2C_AARDVARK

PLX STATUS NO DRIVER

The Aardvark USB device does not exist or driver is not installed

5-65

Usage:

PLX_STATUS status;
PLX_VERSION I2cVersion;

// Get 12C version

status =
PIxPci_l2cVersion(
0, // 12C USB device
&l2cVersion
);

if (status !'= PLX_STATUS_OK)

// Error — Unable to get 12C version information

}
else
{
Cons_printf(
“12C Version Info:\n”
“ API:v%01d.%02d SW:v%01d.%02d FW:v%01d.%02d HW:v%01d.%02d\n”’,
(12c.ApiLibrary >> 8), l12c.ApiLibrary & OxFF,
(12c.Software >> 8), l2c.Software & OxFF,
(12c.Firmware >> 8), l2c.Firmware & OxFF,
(12c.Hardware >> 8), l2c.Hardware & OxFF,
// Verify required versions
if (12c.SwRegByFw < 12c.Software)
Cons_printf(“Error: 12C SW ver is not compatible with FW version\n”);
if (12c.FwRegBySw < 12c.Firmware)
Cons_printf(“Error: 12C FW ver is not compatible with SW version\n”);
if (12c.ApiRegBySw < 12c.ApiLibrary)
Cons_printf(“Error: 12C APl ver is not compatible with SW version\n™);
¥

5-66

PIxPci_loPortRead

Syntax:

PLX_STATUS
PIxPci_loPortRead(

PLX_DEVICE_OBJECT *pDevice,

u64 port,
VOID *pBuffer,
u32 ByteCount,
PLX_ACCESS_TYPE AccessType
)

PLX Chip Support:

All devices

Description:

Reads one or more values from an 1/O port.

Parameters:

pDevice

Pointer to an open device

port

The 1/O port address to read from. Must be a multiple of the AccessType.

pBuffer

A pointer to a buffer that will contain the data read from the I/O port

ByteCount

The number of bytes to read from the 1/O port. Must be a multiple of the AccessType.

AccessType

Determines the size of each unit of data accessed: 8, 16, or 32-bit.

Return Codes:

Code

Description

PLX_STATUS_OK

The function returned successfully

PLX_STATUS_INVALID OBJECT

The device object is not a valid PLX device or has not been opened

PLX_STATUS_NULL_PARAM

One or more parameters is NULL

PLX_STATUS_INVALID_ADDR

The I/O port is not aligned on a boundary that is a multiple of the AccessType.

PLX_STATUS_INVALID ACCESS

An invalid or unsupported PLX_ACCESS_TYPE parameter

PLX_STATUS_INVALID_SIZE

The region to access is not a valid 1/O port or the 1/O port is not aligned on a boundary
that is a multiple of the AccessType.

5-67

Usage:

5-68

us MyBuffer[0x100];
PLX_STATUS rc;

// Read from an 1/0 port

rc =
PIxPci_loPortRead(

pDevice,
200h, // Specify 1/0 port base
&MyBuffer, // Buffer to place data into
0x100, // Number of bytes to read
BitSizeS8 // Perform 8-bit reads
);

if (rc !'= PLX_STATUS_OK)

// ERROR - Unable to read from 1/0 port

PIxPci_loPortWrite

Syntax:

PLX_STATUS
PIxPci_loPortWrite(

PLX_DEVICE_OBJECT *pDevice,

u64 port,
VOID *pBuffer,
u32 ByteCount,
PLX_ACCESS_TYPE AccessType
)

PLX Chip Support:

All devices

Description:

Writes one or more values to an I/O port.

Parameters:

pDevice

Pointer to an open device

port

The 1/O port address to write to. Must be aligned on an AccessType boundary.

pBuffer

A pointer to a buffer that contains the data to write to the I/O port

ByteCount

The number of bytes to write to the I/O port. Must be a multiple of the AccessType.

AccessType

Determines the size of each unit of data accessed: 8, 16, or 32-bit.

Return Codes:

Code

Description

PLX_STATUS_OK

The function returned successfully

PLX_STATUS_INVALID OBJECT

The device object is not a valid PLX device or has not been opened

PLX_STATUS_NULL_PARAM

One or more parameters is NULL

PLX_STATUS_INVALID_ADDR

The I/O port is not aligned on a boundary that is a multiple of the AccessType.

PLX_STATUS_INVALID ACCESS

An invalid or unsupported PLX_ACCESS_TYPE parameter

PLX_STATUS_INVALID_SIZE

The region to access is not a valid I/O port or the 1/O port is not aligned on a
boundary that is a multiple of the AccessType.

5-69

Usage:

us MyBuffer[0x100];
PLX_STATUS rc;

// Read from an 1/0 port

rc =
PIxPci_loPortWrite(

pDevice,
200h, // Specify 1/0 port base
&MyBuffer, // Buffer that contains write data
0x100, // Number of bytes to write
BitSizel6 // Perform 16-bit writes
);

if (rc !'= PLX_STATUS_OK)

// ERROR - Unable to write to 1/0 port

5-70

PIxPci_InterruptDisable

Syntax:

PLX_STATUS

PIxPci_InterruptDisable(
PLX_DEVICE_OBJECT *pDevice,
PLX_INTERRUPT *pPIxIntr

R
PLX Chip Support:
All PLX 9000 devices, 8311, 8000 DMA, 6000 NT, & 8000 NT

Description:
Disables PLX-specific interrupt(s)

Parameters:

pDevice
Pointer to an open device

pPIxIntr
A pointer to the interrupt structure specifying the interrupts to disable

Return Codes:

Code Description
PLX_STATUS OK The function returned successfully
PLX STATUS NULL PARAM One or more parameters is NULL
PLX STATUS INVALID OBJECT | The device objectis not a valid PLX device or has not been opened
PLX STATUS LOW POWER The PLX device is in a power state that is lower than required for this function

Usage:

PLX_STATUS rc;
PLX_INTERRUPT PIXIntr;

// Clear interrupt structure
memset(&PIxIntr, 0, sizeof(PLX_ INTERRUPT));

// Set interrupts to disable
PIxIntr.LocalToPci_1 1; // Generic Local-to-PCl int (LINT#)
PIxIntr._.DmaChannel_O 1; // PCI DMA Channel 0

rc =
PIxPci_InterruptDisable(
pDevice,
&PIxIntr
);

if (rc !'= PLX_STATUS_OK)
// ERROR - Unable to disable interrupts

5-71

PIxPci_InterruptEnable

Syntax:

PLX_STATUS

PIxPci_InterruptEnable(
PLX_DEVICE_OBJECT *pDevice,
PLX_INTERRUPT *pPIxIntr

R
PLX Chip Support:
All PLX 9000 devices, 8311, 8000 DMA, 6000 NT, & 8000 NT

Description:
Enables PLX-specific interrupt(s)

Parameters:

pDevice
Pointer to an open device

pPIxIntr
A pointer to the interrupt structure specifying the interrupts to enable

Return Codes:

Code Description
PLX_STATUS OK The function returned successfully
PLX STATUS NULL PARAM One or more parameters is NULL
PLX STATUS INVALID OBJECT | The device objectis not a valid PLX device or has not been opened
PLX STATUS LOW POWER The PLX device is in a power state that is lower than required for this function

Usage:

PLX_STATUS rc;
PLX_INTERRUPT PIXIntr;

// Clear interrupt structure
memset(&PIxIntr, 0, sizeof(PLX_ INTERRUPT));

// Set interrupts to enable
PIxIntr.LocalToPci_1 1; // Generic Local-to-PCl int (LINT#)
PIxIntr._.DmaChannel_O 1; // PCl DMA Channel O

rc =
PIxPci_InterruptEnable(
pDevice,
&PIXIntr
)

if (rc !'= PLX_STATUS_OK)
// ERROR - Unable to enable interrupts

5-72

PIxPci_MailboxRead

Syntax:

u32
PIxPci_Mai IboxRead(

PLX_DEVICE_OBJECT *
U16

PLX_STATUS *
):

PLX Chip Support:

pDevice,
mai lbox,
pStatus

All PLX 9000 devices, 8311, & 8000 NT

Description:

Returns the value of the specified mailbox/scratchpad register.

Parameters:

pDevice

Pointer to an open device

mailbox
The specified mailbox to

pStatus
Pointer to a PLX_STATU

Return Codes:

read

S variable to contain the status. (May be NULL)

Code

Description

PLX_STATUS_OK

The function returned successfully

PLX_STATUS NULL PARAM

One or more parameters is NULL

PLX_STATUS_INVALID_OBJECT

The device object is not a valid PLX device or has not been opened

PLX_STATUS_UNSUPPORTED

The function is not supported by the driver/device

PLX STATUS INVALID DATA

The specified mailbox is invalid for the selected device

Usage:
U32 MB_ Value;

// Read MB
MB_Value =
PIxPci_Mai lboxR
pDevice,
4,
NULL
)

ead(

// Mailbox 4

5-73

PIxPci_MailboxWrite

Syntax:

PLX_STATUS
PIxPci_MailboxWrite(

PLX_DEVICE_OBJECT *pDevice,

ule mai lbox,
u32 value
);

PLX Chip Support:

All PLX 9000 devices, 8311, & 8000 NT

Description:

Writes a value to the specified mailbox/scratchpad register.

Parameters:

pDevice
Pointer to an open device

mailbox

The specified mailbox to write

value
The 32-bit value to write

Return Codes:

Code

Description

PLX_STATUS_OK

The function returned successfully

PLX_STATUS NULL PARAM

One or more parameters is NULL

PLX_STATUS_INVALID_OBJECT

The device object is not a valid PLX device or has not been opened

PLX_STATUS_UNSUPPORTED

The function is not supported by the driver/device

PLX STATUS INVALID DATA

The specified mailbox is invalid for the selected device

Usage:

#define MSG_READY 0x1234ABCD

// Post ready to other side

PIxPci_MailboxWrite(
pDevice,

4 // Mailbox 4

MSG_READY
)

5-74

PIxPci_MH_GetProperties

Syntax:

PLX_STATUS
PIxPci_MH_GetProperties(
PLX DEVICE_OBJECT *pDevice,
PLX_MULTI_HOST_PROP *pMHProp

R
PLX Chip Support:

PLX 8000 virtual switches that support multi-host feature

Description:

Returns the current properties of a PLX switch capable of supporting multi-host.

Parameters:

pDevice
Pointer to an open device

pMHProp
A pointer to a PLX_MULTI_HOST_PROP structure that will contain the device’s properties.

Return Codes:

Code Description
PLX_STATUS OK The function returned successfully
PLX_STATUS NULL PARAM One or more parameters is NULL

PLX STATUS INVALID OBJECT | The device object is not a valid PLX device or has not been opened

Selected device does not support multi-host capabilities or device is not the
management port in Virtual Switch mode

PLX_STATUS_UNSUPPORTED

5-75

Usage:

5-76

PLX_STATUS rc;
PLX_MULTI_HOST_PROP MHProp;

// Query MH switch properties

rc

PIxPci_MH_GetProperties(
pDevice,
&MHProp

);

if (rc 1= PLX_STATUS_OK)

else

{

// Error — Unable to obtain MH switch properties

// Display properties
it (MHProp.SwitchMode == PLX_CHIP_MODE_STANDARD)
Cons_printf(“Switch is iIn standard single-host mode\n’);

if (MHProp.SwitchMode == PLX_CHIP_MODE_VIRT_SW)

{
if (MHProp.blsMgmtPort == FALSE)

// Device properties only available through mgmt port
Cons_printf(
“Switch mode is multi-host but port not management\n

);

}

else

{

Cons_printf(

“Properties:\n”
“ Mode Multi-host\n”

“ Curr Mgmt Port %d (%s)\n”’

Backup Mgmt Port %d (%s)\n”’

“ Active VS port mask: %08X\n”’,

MHProp .MgmtPortNumActive,

(MHProp.bMgmtPortActiveEn) ? “Enabled” : “Disabled”,

MHProp .MgmtPortNumRedundant,

(MHProp.bMgmtPortRedundantEn) ? “Enabled” : “Disabled”,

MHProp.VS_EnabledMask

);

PIxPci_MH_MigratePorts

Syntax:

PLX_STATUS
PIxPci_MH_MigratePorts(
PLX_DEVICE_OBJECT *pDevice,

ulé6 VS_Source,
ule VS Dest,
u32 DsPortMask,
BOOLEAN bResetSrc
);

PLX Chip Support:
PLX 8000 virtual switches that support multi-host feature

Description:

Migrates one or more downstream ports from one virtual switch host to another.

Parameters:

pDevice
Pointer to an open device

VS_Source
The virtual host to remove downstream port(s) from.

VS Dest
The virtual host that will be assigned the downstream port(s).

DsPortMask
A mask of the downstream port(s) to move. Each bit position corresponds to a port number. One or more
ports may be specified but must be downstream type.

bResetSrc
Flag to specify whether to reset the source virtual switch.

Return Codes:

Code Description
PLX_STATUS OK The function returned successfully
PLX_STATUS NULL PARAM One or more parameters is NULL

PLX STATUS INVALID OBJECT | The device object is not a valid PLX device or has not been opened

Selected device does not support multi-host capabilities or device is not the

PLX_STATUS_UNSUPPORTED management port in Virtual Switch mode

5-77

Usage:
// Move ports 2 & 5 from VS1 to VS4

status =
PIxPci_MH_MigratePorts(
pDevice,
1, // Source port
4, // Destination port
1A <<5 | 1<< 2, // DS ports 2 & 5
FALSE // Do not reset source port
)

if (status == PLX_STATUS_OK)
// Moved ports
else
// Error — Unable to move port

5-78

PIxPci_NotificationCancel

Syntax:
PLX_STATUS

PIxPci_NotificationCancel(

PLX_DEVICE_OBJECT *pDevice,
PLX_NOTIFY_OBJECT *pEvent

R
PLX Chip Support:

All PLX 9000 devices, 8311, 8000 DMA, 6000 NT, & 8000 NT

Description:

Cancels a notification object previously registered with PIxPci_NotificationRegisterFor.

Parameters:

pDevice
Pointer to an open device

pEvent

A pointer to a PLX notification object previously registered with PIxPci_NotificationRegisterFor.

Return Codes:

Code

Description

PLX_STATUS_OK

The function returned successfully

PLX_STATUS NULL PARAM

One or more parameters is NULL

PLX_STATUS_INVALID_OBJECT

The device object is not a valid PLX device or has not been opened

PLX_STATUS_INVALID ACCESS

The PLX driver was unable to reference the event handle

PLX_STATUS_INSUFFICIENT_RES

Insufficient resources to create the naotification object

PLX STATUS FAILED

The notification object is not valid or not registered

Usage:
PLX_INTERRUPT IntSources;
PLX_STATUS rc;

PLX_NOTIFY_OBJECT Event;

// Clear interrupt sources
memset(&IntSources, 0, sizeof(PLX_INTERRUPT));

5-79

// Register for interrupt notification
IntSources.Doorbell (1 << 16) | OxF; // Doorbells 16, & 0-3

IntSources.Message_0O =1;
IntSources.ResetDeassert = 1;
IntSources.PmeDeassert =1;
IntSources.GPI0_4_5 =1;
IntSources.GPI10_14 15 =1;
rc =
PIxPci_NotificationRegisterFor(
pDevice,
&IntSources,
&Event
)
if (rc = PLX_STATUS_OK)
{
// ERROR — Unable to register interrupt notification
3
// Wait for the interrupt
rc =
PIxPci_NotificationWait(
pDevice,
&Event,
10 * 1000 // 10 second timeout
)
switch (rc)
{
case PLX_STATUS_OK:
// Interrupt occurred
break;
case PLX_STATUS_TIMEOUT:
// ERROR - Timeout waiting for Interrupt Event
break;
case PLX_STATUS_CANCELED:
// ERROR — Event not registered for wait
break;
}
// Cancel interrupt notification
rc =
PIxPci_NotificationCancel(
pDevice,
&Event
)

if (rc 1= PLX_STATUS_OK)

// ERROR — Unable to cancel interrupt notification

5-80

PIxPci_NotificationRegisterFor

Syntax:

PLX_STATUS
PIxPci_NotificationRegisterFor(
PLX_DEVICE_OBJECT *pDevice,

PLX_INTERRUPT *pPIxIntr,
PLX_NOTIFY_OBJECT *pEvent
):

PLX Chip Support:
All PLX 9000 devices, 8311, 8000 DMA, 6000 NT, & 8000 NT

Description:

Registers a notification object with the PLX driver for the specified interrupt(s). It is used in conjunction with
PIxPci_NotificationWait.

Parameters:

pDevice
Pointer to an open device

pPIxIntr
A pointer to a structure containing the sources of interrupts that the application would like to be notified of.
An event will occur if ANY one of the registered interrupts occurs.

pEvent
A pointer to a PLX natification object that can be used with PIxPci_NotificationWait.

Return Codes:

Code Description
PLX_STATUS OK The function returned successfully
PLX_STATUS INVALID OBJECT The device object is not a valid PLX device or has not been opened
PLX STATUS NULL PARAM One or more parameters is NULL
PLX STATUS INSUFFICIENT RES Not enough memory to allocate a new event handle

Notes:

This function does not actually enable interrupt(s). It only registers for interrupt notification with the PLX driver.
To enable an interrupt(s), refer to PIxPci_InterruptEnable.

Once the registration is complete, the event will continue to signal until it is cancelled. There is no need to
continuously re-register for notification.

WARNING: For users porting applications written with PCI SDK 4.2 or older, note that you only need to call this
function one time for each interrupt registration. In SDK 4.2 and older, the PIxIntrAttach API call required
constant re-registration. This limitation no longer applies starting with SDK 4.3. If you continuously call
PIxPci_NotificationRegisterFor, the registrations will remain persistent in an internal PLX driver list and consume
system resources, possibly resulting in an unstable system.

5-81

Usage:

PLX_STATUS rc;
PLX_INTERRUPT IntSources;
PLX_NOTIFY_OBJECT Event;

// Clear interrupt sources
memset(&IntSources, 0, sizeofF(PLX_INTERRUPT));

// Register for doorbell interrupts 1, 3, & 24
IntSources.Doorbell = (1 << 24) | (1 << 3) | (1 << 1);

// Also register for DMA channel 1
IntSources.DmaChannel_1;

rc =
PIxPci_NotificationRegisterFor(
pDevice,
&IntSources,
&Event

):
if (rc = PLX_STATUS_OK)

// ERROR — Unable to register interrupt notification

3
// Wait for interrupt
rc =
PIxPci_NotificationWait(
pDevice,
&Event,
PLX_TIMEOUT _INFINITE // Wait forever
)
switch (rc)
{
case PLX_STATUS_OK:
// Interrupt triggered
break;
case PLX_STATUS_TIMEOUT:
// ERROR - Timeout waiting for interrupts
break;
case PLX_STATUS_CANCELED:
case PLX_STATUS_FAILED:
default:
// ERROR - Failed while waiting for interrupt
break;
}

5-82

PIxPci_NotificationStatus

Syntax:

PLX_STATUS

PIxPci_NotificationStatus(
PLX_DEVICE_OBJECT *pDevice,
PLX_NOTIFY_OBJECT *pEvent,
PLX_INTERRUPT *pPIxIntr

)
PLX Chip Support:
All PLX 9000 devices, 8311, 8000 DMA, 6000 NT, & 8000 NT

Description:

Returns which interrupt(s) caused the provided notification event to trigger.

Parameters:

pDevice
Pointer to an open device

pEvent
A pointer to a PLX notification object previously registered with PIxPci_NotificationRegisterFor.

pPIxIntr
A pointer to a PLX_INTERRUPT structure that will contain all triggered interrupts that caused the
notification event to become signaled.

Return Codes:

Code Description
PLX_STATUS OK The function returned successfully
PLX_STATUS INVALID OBJECT The device object is not a valid PLX device or has not been opened
PLX STATUS NULL PARAM One or more parameters is NULL
PLX STATUS INSUFFICIENT RES Not enough memory to allocate a new event handle

Notes:

This function will set the flag for all interrupts that have caused a notification event since the last query. In other
words, if two different interrupts occurred, the status will indicate two different interrupts. There is no way to
determine if the same interrupt triggered multiple times since the last query.

5-83

Usage:

PLX_INTERRUPT IntSources;
PLX_STATUS rc;
PLX_NOTIFY_OBJECT Event;

// Clear interrupt sources
memset(&IntSources, 0, sizeof(PLX_INTERRUPT));

// Wait for interrupt on previously registered event
rc =
PIxPci_NotificationWait(
pDevice,
&Event,
10 * 1000 // 10 second timeout

);

if (rc 1= PLX_STATUS_OK)
{

}

// Determine which interrupt occurred
rc =
PIxPci_NotificationStatus(
pDevice,
&NotifyObject,
&IntSources

);

if (rc == PLX_STATUS_OK)
{

// ERROR — Interrupt wait failed

Cons_printf("Triggered interrupt(s):');

if (IntSources.Doorbell)
Cons_Printf("" <Doorbell>");

it (IntSources.DmaChannel_0)
Cons_Printf("" <DMA 0>");

if (IntSources.GP10_14 15)
Cons_Printf(*"" <GPI0_14 15>");

if (IntSources.LocalToPci_1)
Cons_Printf("" <L-to-P 1>");

Cons_Printf(*''\n"");

5-84

PIxPci_NotificationWait

Syntax:

PLX_STATUS

PIxPci_NotificationWait(
PLX_DEVICE_OBJECT *pDevice,
PLX_NOTIFY_OBJECT *pEvent,
ue4 Timeout_ms

)
PLX Chip Support:
All PLX 9000 devices, 8311, 8000 DMA, 6000 NT, & 8000 NT

Description:

Wait for a specific interrupt(s) associated with a PLX notification object to occur or until the timeout is reached.

Parameters:

pDevice
Pointer to an open device

pEvent
A pointer to a PLX notification object previously registered with PIxPci_NotificationRegisterFor.

Timeout_ms
The desired time to wait, in milliseconds, for the event to occur. To wait forever, use the pre-defined value
PLX_TIMEOUT _INFINITE.

Return Codes:

Code Description
PLX_STATUS OK The function returned successfully and at least one event ocurred
PLX STATUS NULL PARAM One or more parameters is NULL
PLX_STATUS_lNVAljD OBJECT | The device object is not a valid PLX device or has not been opened
PLX STATUS FAILED The natification object is not valid or not registered
PLX STATUS TIMEOUT Reached timeout waiting for event
PLX STATUS CANCELED Wait event was cancelled

5-85

Usage:

PLX_STATUS rc;
PLX_INTERRUPT IntSources;
PLX_NOTIFY_OBJECT Event;

// Clear interrupt sources
memset(&IntSources, 0, sizeof(PLX_INTERRUPT));

// Register for interrupt notification
IntSources.DmaChannel 0 = 1;

rc =
PIxPci_NotificationRegisterFor(
pDevice,
&IntSources,
&Event

)
if (rc 1= PLX_STATUS_OK)

// ERROR — Unable to register interrupt notification
¥

// Wait for the interrupt
rc =
PIxPci_NotificationWait(
pDevice,
&Event,
10 * 1000 // 10 second timeout

);

switch (rc)
{
case PLX_STATUS_OK:
// Interrupt occurred
break;

case PLX_STATUS_TIMEOUT:
// ERROR - Timeout waiting for Interrupt Event
break;

case PLX_STATUS_CANCELED:

// ERROR — Event not registered for wait
break;

5-86

PIxPci_Nt_LutAdd

Syntax:

PLX_STATUS
PIxPci_Nt_LutAdd(

PLX_DEVICE_OBJECT *pDevice,
uie *pLutlindex,

uie Reqgld
us2 flags

);

PLX Chip Support:
PLX 8000 NT

Description:

Adds a PCle Requester ID entry to the PLX NT port Look-Up Table (LUT)

Parameters:

pDevice
Pointer to an open device

pLutindex

(May be NULL) A pointer to a variable containing the desired LUT index. If setto -1 (FFFF), the index will
be auto-determined by the driver.
On output and if not NULL, will contain the LUT index used.

Reqld

The Requester ID to add. The format of the ID is standard PCle format found in TLPs:

15 8 7

3 2 0

| Bus Num | Device/Slot Num | Function Num]

flags

One or more flags to set in the entry. Referto PLX_NT_LUT_FLAG.

Return Codes:

Code

Description

PLX_STATUS OK

The function returned successfully

PLX_STATUS_NULL PARAM

One or more parameters is NULL

PLX_STATUS_INVALID_OBJECT

The device object is not a valid PLX device or has not been opened

PLX_STATUS_UNSUPPORTED

The selected device is not being accessed through the PLX NT driver

PLX_STATUS INVALID_DATA

The specified LUT index was outside the range of possible values

PLX STATUS INSUFFICIENT RES

No available LUT entry was available to use

5-87

Usage:

5-88

// Probe for write ReqlD
if (PIxPci_Nt_ReqgldProbe(
&Device,
FALSE, // Probe for writes
&Reqgld_Write
) == FALSE)
{

¥

else

{

Cons_printF(""ERROR: Unable to probe ReqlD\n");

Cons_printf(

"Write ReqlD=%04X [b:%02X s:%02X F:%01X])\n",
Reqld_Write,
(Reqld_Write >> 8) & OxFF,
(Reqld_Write >> 3) & Ox1F,
(Reqld_Write >> 0) & 0x03
)

// Default to auto-selected LUT index
Lutlndex = (U16)-1;

// Add write Req ID to LUT
if (PIxPci_Nt_LutAdd(
&Device,
&Lutlindex,
Reqld_Write,
FALSE // Snoop must be disabled
) = PLX_STATUS_OK)

Cons_printF(""ERROR: Unable to add LUT entry\n');

¥

// Probe for read ReqlD
iT (PIxPci_Nt_ReqldProbe(
&Device,
TRUE, // Probe for reads
&Reqld_Read
) == FALSE)
Cons_printf("ERROR: Unable to probe ReqlD\n™);
else
{
Cons_printf(
"Read ReqlD=%04X [b:%02X s:%02X F:%01X])\n",
Reqld_Read,
(Reqld_Read >> 8) & OxFF,
(Reqld_Read >> 3) & Ox1F,
(Regld_Read >> 0) & 0x03

);

if (Reqld _Read == Reqld Write)

{
}

else

{

Cons_printf(*'-- Read Req ID matches write, skip LUT add --\n");

// Default to auto-selected LUT index
Lutlndex = (U16)-1;

// Add read Req ID to LUT
it (PIxPci_Nt_LutAdd(

&Device,
&Lutlndex,
Reqgld_Read,
FALSE // Snoop must be disabled
) = PLX STATUS_O0K)
{
Cons_printf(""ERROR: Unable to add LUT entry\n');
3
else
{
Cons_printf("'Ok (LUT_Index=%d No_Snoop=0FF)\n", Lutlndex);
3

5-89

PIxPci_Nt_LutDisable

Syntax:

PLX_STATUS

PIxPci_Nt_LutDisable(
PLX_DEVICE_OBJECT *pDevice,
uie Lutlndex

)
** Note: Not yet implemented in the PLX SDK and will currently return PLX_STATUS_UNSUPPORTED **
PLX Chip Support:
PLX 8000 NT

Description:
Disables the specified NT LUT index.

Parameters:

pDevice
Pointer to an open device

Lutindex
The NT LUT index to disable

Return Codes:

Code Description
PLX_STATUS OK The function returned successfully
PLX STATUS NULL PARAM One or more parameters is NULL

PLX STATUS INVALID OBJECT | The device object is not a valid PLX device or has not been opened
PLX STATUS UNSUPPORTED The selected device is not being accessed through the PLX NT driver
PLX STATUS INVALID DATA The specified LUT index was outside the range of possible values

Notes:

The NT LUT is shared by all processes. On successful return, the LUT entry may still actually be enabled in the
PLX chip if other active processes also added the same ReqID and the entry was re-used.

Usage:

5-90

PIxPci_Nt_LutProperties

Syntax:

PLX_STATUS
PIxPci_Nt_LutProperties(
PLX_DEVICE_OBJECT *pDevice,

ule Lutindex,
ui6 *pReqld,
u32 *pFlags,
BOOLEAN *pbEnabled
)

** Note: Not yet implemented in the PLX SDK and will currently return PLX_STATUS_UNSUPPORTED **

PLX Chip Support:
PLX 8000 NT

Description:
Returns the requested properties of the specified PLX NT LUT entry

Parameters:

pDevice
Pointer to an open device

Lutindex
The NT LUT index to retrieve properties for

pReqgld
(May be NULL) A pointer to contain the ReqID in the entry The format of the ID is standard PCle format
found in TLPs:

15 8 7 3 2
| Bus Num | Device/Slot Num | Function Num]

pFlags
(May be NULL) A pointer to contain any additional entry properties. Refer to PLX_NT_LUT_FLAG.

pbEnabled
(May be NULL) A pointer to contain a BOOLEAN specifying whether the entry is enabled or not

Return Codes:

Code Description
PLX_STATUS OK The function returned successfully
PLX STATUS NULL PARAM One or more parameters is NULL

PLX STATUS INVALID OBJECT | The device objectis not a valid PLX device or has not been opened
PLX STATUS UNSUPPORTED The selected device is not being accessed through the PLX NT driver
PLX STATUS INVALID DATA The specified LUT index was outside the range of possible values

Usage:

5-91

PIxPci_Nt_ReqldProbe

Syntax:

PLX_STATUS

PIxPci_Nt_ReqldProbe(
PLX_DEVICE_OBJECT *pDevice
BOOLEAN bRead,
ule *pReqgld
)

PLX Chip Support:
PLX 8000 NT

Description:

Attempts to determine the Host PCle Requester ID when it accesses one of the PLX NT BAR spaces. The
ReqID must then be added to the PLX NT LUT in order for the NT port to accept memory transactions from the
Host. Refer to the PIxPci_Nt LutAdd function.

Parameters:

pDevice
Pointer to an open device

bRead
Determines whether the algorithm probes using memory read or write access

pReqgld
A pointer to contain the detected Requester ID. The format of the ID is standard PCle format found in
TLPs:

15 8 7 3 2 0
| Bus Num | Device/Slot Num | Function Num]

Return Codes:

Code Description
PLX STATUS OK The function returned successfully
PLX STATUS NULL PARAM One or more parameters is NULL

PLX_STATUS INVALID OBJECT | The device object is not a valid PLX device or has not been opened
PLX_STATUS UNSUPPORTED The selected device is not being accessed through the PLX NT driver
PLX STATUS FAILED The determination algorithm failed to properly detect the ReqlD

Notes:

The determination of the Host ReqID involves a special algorithm. This feature may not always be successful in
determining the ReqID, in which case, other techniques must be used. For algorithm details, please refer to
PLX driver source code.

On most systems, the PCle ReqID used for memory reads and writes will be the same. PLX has noticed,
however, that many newer chipsets will use 2 different ReqlDs. In general, the ReqID for write TLPs will be the
Root Complex (bus:0 slot:0: fn:0) & the ReqID for read TLPs will be the parent PCle Root Complex Root Port of
the NT port.

5-92

Usage:

// Probe for write ReqlD
if (PIxPci_Nt_ReqgldProbe(
&Device,
FALSE, // Probe for writes
&Reqgld_Write
) == FALSE)
{

¥

else

{

Cons_printF(""ERROR: Unable to probe ReqlD\n");

Cons_printf(
"Write ReqlD=%04X [b:%02X s:%02X F:%01X1)\n",
Reqld_Write,
(Reqld_Write >> 8) & OxFF,
(Reqld_Write >> 3) & Ox1F,
(Reqld_Write >> 0) & 0x03
)

// Default to auto-selected LUT index
Lutindex = (U16)-1;

// Add write Req ID to LUT
it (PIxPci_Nt_LutAdd(
&Device,
&Lutlindex,
Regld_Write,
FALSE // Snoop must be disabled
) = PLX_STATUS_OK)

Cons_printf(""ERROR: Unable to add LUT entry\n');

}

// Probe for read ReqlD
iT (PIxPci_Nt_ReqldProbe(

&Device,
TRUE, // Probe for reads
&Reqld_Read
) == FALSE)
Cons_printf("ERROR: Unable to probe ReqlD\n™");
else
{

Cons_printf(
"Read ReqlD=%04X [b:%02X s:%02X F:%01X])\n",
Reqld_Read,
(Reqld_Read >> 8) & OxFF,
(Reqld_Read >> 3) & Ox1F,
(Regld_Read >> 0) & 0x03

)
if (Reqld _Read == Reqld _Write)
{

Cons_printf("'-- Read Req ID matches write, skip LUT add --\n"");
}

5-93

else

{
// Default to auto-selected LUT index
Lutindex = (U16)-1;
// Add read Req ID to LUT
if (PIxPci_Nt_LutAdd(
&Device,
&Lutlndex,
Reqld_Read,
FALSE // Snoop must be disabled
) = PLX STATUS_O0K)
{
Cons_printf(""ERROR: Unable to add LUT entry\n');
}
else
{
Cons_printf(""'Ok (LUT_Index=%d No_Snoop=0FF)\n", Lutlndex);
3
3

5-94

PIxPci_PciBarSpaceRead

Syntax:

PLX_STATUS
PIxPci_PciBarSpaceRead(
PLX_DEVICE_OBJECT *pDevice,

us Barlndex,

u32 offset,

VOID *pBuffer,

u32 ByteCount,
PLX_ACCESS_TYPE AccessType,
BOOLEAN bOffsetAsLocalAddr
);

PLX Chip Support:
All 9000 series & 8311

Description:

Reads from the specified PCI BAR space of a PLX chip (sometimes referred to as Direct Slave Read).

Parameters:

pDevice
Pointer to an open device

Barindex
The index of the PCI BAR to access. Valid values are in the range 0-5.

offset
If bOffsetAsLocalAddr is FALSE, offset is an offset from the PCI BAR space. The mapping will not be
adjusted because the function assumes the space is already mapped correctly. The data range accessed
must not be larger than the size of the PCI-to-Local Space window.

If bOffsetAsLocalAddr is TRUE, offset is treated as the actual local bus base address to start reading from.
For 32-bit devices, this allows access to any location on the 4GB local bus space.

pBuffer
A pointer to a user supplied buffer that will contain the retrieved data. This buffer must be large enough to
hold the amount of data requested.

ByteCount
The number of bytes to read. Note: This a number of bytes, not units of data determined by AccessType.

AccessType
Determines the size of each unit of data accessed: 8, 16, or 32-bit.

bOffsetAsLocalAddr (9000 & 8311 devices only)
Determines how the API treats the offset parameter.

If FALSE, offset is treated as an offset from the PCI BAR space.
If TRUE, offset is treated as the actual local bus address. The driver will adjust the space remap register
to access the address.

5-95

Return Codes:

Code Description
PLX_STATUS_OK The function returned successfully
PLX_STATUS_INVALID_ACCESS The function was passed an invalid device handle
PLX_STATUS_NULL_PARAM One or more parameters is NULL
PLX_STATUS_LOW_POWER The PLX device is in a power state that is lower than required for this function

PLX_STATUS_INSUFFICIENT_RES | The API was unable to communicate with the driver due to insufficient resources

PLX_STATUS_INVALID_ACCESS An invalid or unsupported PLX_ACCESS_TYPE parameter

PLX_STATUS_INVALID_ADDR The offset parameter is not aligned based on the AccessType
PLX_STATUS_INVALID_SIZE The transfer size parameter is 0 or is not aligned based on the AccessType
Notes:

This function requires that the PCI-to-Local space is valid, enabled, and the space bus descriptors are setup
properly. Incorrect settings may result in incorrect data or system crashes.

For better performance, use the PIxPci_PciBarMap function and access local memory from an application
directly through a virtual address. This will completely bypass the driver and provide direct access to the local
bus. The disadvantage to the direct method is that the application will be responsible for manually configuring
the PLX chip local space re-map window. This will affect code portability, but overall performance is greater
than using the API function.

The end result of this function is a read from the device’s local bus. If no device on the local bus responds,
system crashes may result. Please make sure that valid devices are accessible and addresses are correct
before using this function.

Usage:
U32 buffer[0x40];

// Read from an absolute local bus address
PIxPci_PciBarSpaceRead(

pDevice,

2, // Use BAR 2

0x00100000, // Absolute local address of 1MB
buffer, // Destination buffer

sizeof(buffer), // Buffer size in bytes

BitSize32, // 32-bit accesses

TRUE // Treat offset as a local bus address
s

// Read from an offset into the PCI BAR
PIxPci_PciBarSpaceRead(

pDevice,

3, // Use BAR 3

0x00000100, // Offset from BAR to start reading from
buffer, // Destination buffer

sizeof(buffer), // Buffer size in bytes

BitSizel6, // 16-bit accesses

FALSE // Treat Offset as an offset from BAR

);

5-96

PIxPci_PciBarSpaceWrite

Syntax:

PLX_STATUS
PIxPci_PciBarSpaceWrite(
PLX_DEVICE_OBJECT *pDevice,

us BarlIndex,

u32 offset,

VOID *pBuffer,

u3s2 ByteCount,
PLX_ACCESS_TYPE AccessType,
BOOLEAN bOffsetAsLocalAddr
);

PLX Chip Support:
All 9000 series & 8311

Description:
Writes to the specified PCI BAR space of PLX chip (sometimes referred to as Direct Slave Write).

Parameters:

pDevice
Pointer to an open device

Barlndex
The index of the PCI BAR to access. Valid values are in the range 0-5.

offset
If bOffsetAsLocalAddr is FALSE, offset is an offset from the PCI BAR space. The mapping will not be
adjusted because the function assumes the space is already mapped correctly. The data range accessed
must not be larger than the size of the PCI-to-Local Space window.

If bOffsetAsLocalAddr is TRUE, offset is treated as the actual local bus base address to start reading from.
For 32-bit devices, this allows access to any location on the 4GB local bus space.

pBuffer
A pointer to a user supplied buffer that contains the data to write.

ByteCount
The number of bytes to write. Note: This a number of bytes, not units of data determined by AccessType.

AccessType
Determines the size of each unit of data accessed: 8, 16, or 32-bit.

bOffsetAsLocalAddr (9000 & 8311 devices only)
Determines how the API treats the offset parameter.

If FALSE, offset is treated as an offset from the PCI BAR space.
If TRUE, offset is treated as the actual local bus address. The driver will adjust the space remap register
to access the address.

5-97

Return Codes:

Code Description
PLX_STATUS_OK The function returned successfully
PLX_STATUS_INVALID_ACCESS The function was passed an invalid device handle
PLX_STATUS_NULL_PARAM One or more parameters is NULL
PLX_STATUS_LOW_POWER The PLX device is in a power state that is lower than required for this function

PLX_STATUS_INSUFFICIENT_RES | The APl was unable to communicate with the driver due to insufficient resources

PLX_STATUS_INVALID_ACCESS An invalid or unsupported PLX_ACCESS_TYPE parameter

PLX_STATUS_INVALID_ADDR The address parameter is not aligned based on the accessType
PLX_STATUS_INVALID_SIZE The transfer size parameter is 0 or is not aligned based on the accessType
Notes:

This function requires that the PCI-to-Local space is valid, enabled, and the space bus descriptors are setup
properly. Incorrect settings may result in incorrect data or system crashes.

For better performance, use the PIxPci_PciBarMap function and access local memory from an application
directly through a virtual address. This will completely bypass the driver and provide direct access to the local
bus. The disadvantage to the direct method is that the application will be responsible for manually configuring
the PLX chip local space re-map window. This will affect code portability, but overall performance is greater
than using the API function.

The end result of this function is a write to the device’s local bus. If no device on the local bus responds, system
crashes may result. Please make sure that valid devices are accessible and addresses are correct before using
this function.

Usage:
U32 buffer[0x40];

// Write to an absolute local bus address
PIxPci_PciBarSpaceWrite(

pDevice,

2, // Use BAR 2

0x00100000, // Absolute local address of 1MB
buffer, // Destination buffer

sizeof(buffer), // Buffer size in bytes

BitSize32, // 32-bit accesses

TRUE // Treat offset as a local bus address
s

// Write to an offset from the PCl BAR window
PIxPci_PciBarSpaceWrite(

pDevice,

3, // Use BAR 3

0x00000100, // Offset from BAR to start reading from
buffer, // Source buffer

sizeof(buffer), // Buffer size in bytes

BitSizel6, // 16-bit accesses

FALSE // Treat Offset as an offset from BAR

);

5-98

PIxPci_PciBarMap

Syntax:

PLX_STATUS

PIxPci_PciBarMap(
PLX_DEVICE_OBJECT *pDevice,
us BariIndex,
VOID **pVa

)
PLX Chip Support:

All devices

Description:

Maps a PCI BAR into user virtual space and returns the virtual address. User applications may then bypass the
driver and directly access a PCI space for optimal performance.

Parameters:

pDevice
Pointer to an open device

Barlndex
The index of the PCI BAR to map. Valid values are in the range 0-5.

pVa
Pointer to a buffer which will contain the base virtual address

Return Codes:

Code Description
PLX_STATUS OK The function returned successfully
PLX STATUS INVALID OBJECT The device object is not a valid PLX device or has not been opened
PLX STATUS NULL PARAM One or more parameters is NULL
PLX_STATUS_UNSUPPORTED (l;/lri/?rmg of a PCI BAR space is not supported by the installed PLX
PLX STATUS INVALID DATA PCI BAR index is not in the range of valid values
PLX STATUS FAILED Virtual address mapping failed
PLX STATUS INVALID ADDR The PCI space is of type 1/0, not memory
PLX STATUS INVALID SIZE The PCI space is of size 0 (disabled)
PLX STATUS INVALID ADDR The PCI space does not contain a valid PCIl address or is disabled

The driver was not able to map the space due to insufficient OS

PLX_STATUS_INSUFFICIENT_RES
— — — resources

Notes:

It is important to un-map a PCI Space when the virtual address is no longer needed. This should always be
done before the device is released with PIxPci_DeviceClose. Un-mapping a space will release the PTE
resources used back to the OS. Refer to PIxPci_PciBarUnmap.

The PCI space that will be mapped into user virtual space must be a PClI memory type. Mapping of 1/O type
spaces is not allowed. 1/O type spaces should be accessed with PIxPci_loPortRead and PIxPci_loPortWrite.

5-99

The virtual address will cease to be valid after the device is closed. Attempts to use the virtual address after closing a
device will result in exceptions.

Virtual mappings consume Page-Table Entries (PTEs), which are a limited resource in the OS. The OS will fall
a mapping attempt if the number of available PTEs is insufficient to complete the mapping. As the size of a PCI
space gets larger (e.g. 16MB or more), the number of PTESs required increases, resulting in a greater risk of a
failed mapping attempt.

Usage:
us i;
u32 DataValue;
VOID *Va[6];

PLX_STATUS rc;

for (i = 0; 1 <=5; i++)
{
rc =
PIxPci_PciBarMap(
pDevice,
1,
&vali]
)

if (rc = PLX_STATUS_OK)
// Error — Unable to map PCl bar into virtual space

}

printf(

" BAR
" BAR
" BAR

VA: 0x%08x\n"

VA: 0x%08x\n"

VA: 0x%08x\n"

" BAR VA: Ox%08x\n"

' BAR VA: Ox%08x\n"

' BAR 5 VA: Ox%08x\n",

(PLX_UINT_PTR)Va[0], (PLX_UINT_PTR)Va[1], (PLX_UINT_PTR)Va[Z2?],
(PLX_UINT_PTR)Va[3], (PLX_UINT_PTR)Va[4], (PLX_UINT_PTR)Va[5]
):

AWNEFLO

* NOTE: The configuration of a PCl space is left to the application
* The translation registers should be configured correctly
* before accessing the PCI space.

// Read a 32-bit value from PCl BAR O
value = *(U32*)Va[O0];

// Write an 8-bit value to PCI BAR 1, offset 3Ch
((U8)Va[1l] + 0x3C) = Ox1A;

5-100

PIxPci_PciBarProperties

Syntax:

PLX_STATUS
PIxPci_PciBarProperties(

PLX_DEVICE_OBJECT *pDevice,
us BariIndex,
PLX_PCI_BAR_PROP *pBarProperties

)
PLX Chip Support:

All devices

Description:

Returns the properties of the specified PCI BAR space.

Parameters:

pDevice
Pointer to an open device

Barlndex

The index of the PCI BAR to get. Valid values are in the range 0-5.

pBarProperties

A pointer to a PLX_PCI_BAR_PROP structure that will hold the BAR properties

Return Codes:

Code

Description

PLX_STATUS OK

The function returned successfully

PLX_STATUS_INVALID OBJECT

The device object is not a valid PLX device or has not been opened

PLX_STATUS NULL_PARAM

One or more parameters is NULL

PLX STATUS INVALID DATA

PCI BAR index is not in the range of valid values

Usage:

PLX_PCI_BAR_PROP BarProp

// Get BAR 2 size

PIxPci_PciBarProperties(

pDevice,
21
&BarProp

);

Cons_Printf(

"BAR 2: %ld bytes",
(unsigned long)BarProp.Size

)

5-101

PIxPci_PciBarUnmap

Syntax:

PLX_STATUS

PIxPci_PciBarUnmap(
PLX_DEVICE_OBJECT *pDevice,
VOID **pVa

R
PLX Chip Support:

All devices

Description:

Unmaps a PCI BAR space from user virtual space, previously mapped with PIxPci_PciBarMap.

Parameters:

pDevice
Pointer to an open device

pVa
Pointer to the virtual address of the PCI BAR to unmap, previously obtained from PIxPci_PciBarMap.

Return Codes:

Code Description

PLX_STATUS OK The function returned successfully and at least one event ocurred
PLX_STATUS INVALID OBJECT | The device object is not a valid PLX device or has not been opened
Unmapping of a PCI BAR space is not supported by the installed PLX

PLX_STATUS_UNSUPPORTED

driver
PLX STATUS NULL PARAM One or more parameters is NULL
PLX STATUS INVALID ADDR The virtual address is invalid or not a previously mapped address

Notes:
The virtual address must be an address previously obtained with a call to PIxPci_PciBarMap.

This function should be called before a device is released with PIxPci_DeviceClose. The virtual address will cease to
be valid after the device is closed.

5-102

Usage:

u32 *Va;
PLX_STATUS rc;

// Map PCI BAR O

rc =
PIxPci_PciBarMap(
pDevice,
01
(VOID**)&Va
)
if (rc = PLX_STATUS_0OK)
{
// Error — Unable to map PCl bar into virtual space
}
//
// Access PCl space as needed ...
//

// Unmap the space
rc =
PIxPci_PciBarUnmap(
pDevice,
(VOID**)&Va

):
if (rc !'= PLX_STATUS_OK)

// Error — Unable to unmap PCI BAR from virtual space

5-103

PIxPci_PciRegisterRead

Syntax:

u32

PIxPci_PciRegisterRead(
us bus,
us slot,
u8 function,
ui6 offset,
PLX_STATUS *pStatus
)

PLX Chip Support:

All devices

Description:

Returns the value of a PCI configuration register at a specified offset

Parameters:

bus
Device bus number

slot
Device slot number

function
Device function number

offset
PCI register 32-bit aligned offset

pStatus
Pointer to a PLX_STATUS variable to contain the status. (May be NULL)

Return Codes:

Code Description

PLX_STATUS OK The function returned successfully

PLX STATUS NULL PARAM | One or more parameters is NULL

PLX STATUS NO DRIVER A valid PLX driver is not loaded in the system

PLX STATUS FAILED The PCI configuration access failed or device does not exist

Notes:

For faster access to the PCI registers of a device that is already selected, refer to the function
PIxPci_PciRegisterReadFast.

5-104

Usage:

us bus;
us slot;
us2 RegVvalue;

PLX_STATUS rc;

// Scan for all PCIl devices
for (bus = 0; bus < 32; bus++)

for (slot = 0; slot < 32; slot+)

{
// Read the Device/Vendor ID
RegvValue =
PIxPci_PciRegisterRead(
bus,
slot,
0, // Just function 0 devices
0xO0, // Device/Vendor ID register
&rc
)
if ((rc == PLX_STATUS_OK) && (RegValue != (U32)-1))
// Found a valid PCI device
Cons_Printf(
“Device ID: %08x [bus %02x slot %02x]\n”’,
Regvalue, bus, slot
)
}
}

5-105

PIxPci_PciRegisterWrite

Syntax:

PLX_STATUS
PIxPci_PciRegisterWrite(
U8 bus,
U8 slot,
U8 function,
Ul6 offset,
U32 value

):
PLX Chip Support:

All devices

Description:

Writes a 32-bit value to a PCI configuration register at a specified offset

Parameters:

bus
Device bus number

slot
Device slot number

function
Device function number

offset
PCI register 32-bit aligned offset

value
The 32-bit value to write

Return Codes:

Code Description

PLX_STATUS OK The function returned successfully

PLX STATUS NULL PARAM | One or more parameters is NULL

PLX STATUS NO DRIVER A valid PLX driver is not loaded in the system

PLX STATUS FAILED The PCI configuration access failed or device does not exist

Notes:

For faster access to the PCI registers of a device that is already selected, refer to the function
PIxPci_PciRegisterWriteFast.

5-106

Usage:

u32 RegValue;
PLX_STATUS rc;

// Read the PCl Command/Status register
RegvValue =
PIxPci_PciRegisterRead(
1,
Oxe,
0,
CFG_COMMAND, // PCl Command/Status register
&rc

)
if (rc 1= PLX_STATUS_OK)

// ERROR — Unable to read PCI configuration register
}

// Check for any PCl Errors or Aborts
iT (RegValue & 0xf8000000)

// Write PCl Status back to itself to clear any errors
rc =
PIxPci_PciRegisterWrite(

11

Oxe,

0,

CFG_COMMAND,

Regvalue

):
if (rc 1= PLX_STATUS_OK)

// ERROR — Unable to write to PCl configuration register

5-107

PIxPci_PciRegisterReadFast

Syntax:

u32

PIxPci_PciRegisterReadFast(
PLX_DEVICE_OBJECT *pDevice,
u16 offset,
PLX_STATUS *pStatus

)
PLX Chip Support:

All devices

Description:

Reads the value of a PCI configuration register on the selected device.

Parameters:

pDevice
Pointer to an open device

offset
PCI register 32-bit aligned offset

pStatus
Pointer to a PLX_STATUS variable to contain the status. (May be NULL)

Return Codes:

Code Description
PLX_STATUS OK The function returned successfully
PLX STATUS NULL PARAM One or more parameters is NULL
PLX STATUS INVALID OBJECT | The device objectis not a valid PLX device or has not been opened
PLX STATUS FAILED The PCI configuration access failed or device does not exist
Usage:
u32 RegValue;

PLX_STATUS rc;

// Read Device/Vendor ID

Regvalue =
PIxPci_PciRegisterReadFast(
pDevice,
CFG_VENDOR_ID,
&rc
);

it ((rc = PLX_STATUS_OK) || (Regvalue == (U32)-1))

// ERROR — Unable to read PCI register

5-108

PIxPci_PciRegisterWriteFast

Syntax:
PLX_STATUS

PIxPci_PciRegisterWriteFast(
PLX_DEVICE_OBJECT *pDevice,

ul6

offset,

u32 value

)
PLX Chip Support:

All devices

Description:

Writes to a PCI configuration register on the selected device.

Parameters:

pDevice

Pointer to an open device

offset

PCI register 32-bit aligned offset

value
The 32-bit value to write

Return Codes:

Code

Description

PLX_STATUS_OK

The function returned successfully

PLX_STATUS NULL PARAM

One or more parameters is NULL

PLX_STATUS_INVALID_OBJECT

The device object is not a valid PLX device or has not been opened

PLX STATUS FAILED

The PCI configuration access failed or device does not exist

5-109

Usage:

u32 RegValue;
PLX_STATUS rc;

// Read the PCl Command/Status register

RegvValue =
PIxPci_PciRegisterReadFast(
pDevice,
CFG_COMMAND, // PCl Command/Status register
&rc
)

if (rc 1= PLX_STATUS_OK)

// ERROR — Unable to read PCI configuration register
3

// Check for any PCI Errors or Aborts
if (Regvalue & 0xf8000000)

// Write PCl Status back to itself to clear any errors

rc =
PIxPci_PciRegisterWriteFast(
pDevice,
CFG_COMMAND,
Regvalue
)
ifT (rc = PLX_STATUS_OK)
{

// ERROR — Unable to write to PCl configuration register
¥

5-110

PIxPci_PciRegisterRead BypassOS

Syntax:

u32

PIxPci_PciRegisterRead_BypassOS(
us bus,
us slot,
u8 function,
ui6 offset,
PLX_STATUS *pStatus
)

PLX Chip Support:

All devices

Description:

Bypasses the OS services to read a specific PCI configuration register

Parameters:

bus
Device bus number

slot
Device slot number

function
Device function number

offset
PCI register 32-bit aligned offset

pStatus
Pointer to a PLX_STATUS variable to contain the status. (May be NULL)

Return Codes:

Code Description
PLX_STATUS OK The function returned successfully
PLX_STATUS NO DRIVER A valid PLX driver is not loaded in the system
PLX STATUS UNSUPPORTED The function is not supported by the installed PLX driver

Notes:

Due to the nature of the implementation of this function, PLX cannot guarantee its functionality in future SDK
releases. For example, future versions of the OS may not allow PCI I/O port accesses. As a result, PLX does
not support this function. It is provided for customers who absolutely need this functionality.

Although this function may return PLX_STATUS_OK in the return code, this does not necessarily indicate a
successful access to the device since the driver gets no indication of success or failure. If the register value
returned is FFFF_FFFFh, it is usually an indication of an error or non-existent device in the specified bus/slot.

5-111

Usage:

us
us
u3s2

bus;
slot;
RegVvalue;

PLX_STATUS rc;

// Scan for all PCIl devices

for (bus

5-112

= 0; bus < 32; bus++)

for (slot = 0; slot < 32; slot+)

{

// Read the Device/Vendor 1D
RegvValue =
PIxPci_PciRegisterRead_BypassO0S(
bus,
slot,
0, // Just function O devices
0x0, // Device/Vendor 1D
&rc

):
if ((rc == PLX_STATUS_OK) && (RegValue 1= OXFFFFFFFF))

// Found a valid PCI device

Cons_Printf(
“Device ID: %08x [bus %02x slot %02x]\n”’,
Regvalue, bus, slot

);

PIxPci_PciRegisterWrite_BypassOS

Syntax:

PLX_STATUS
PIxPci_PciRegisterWrite Bypass0S(
U8 bus,
us silot,
U8 function,
Ulé offset,
U32 value

):
PLX Chip Support:

All devices

Description:

Bypasses the OS services to write to a specific PCI configuration register

Parameters:

bus
Device bus number

slot
Device slot number

function
Device function number

offset
PCI register 32-bit aligned offset

value
The 32-bit value to write

Return Codes:

Code Description
PLX_STATUS OK The function returned successfully
PLX_STATUS NO DRIVER A valid PLX driver is not loaded in the system
PLX STATUS UNSUPPORTED The function is not supported by the installed PLX driver

Notes:

Due to the nature of the implementation of this function, PLX cannot guarantee its functionality in future SDK
releases. For example, future versions of the OS may not allow PCI I/O port accesses. As a result, PLX does
not support this function. It is provided for customers who absolutely need this functionality.

Although this function may return PLX_STATUS_OK in the return code, this does not necessarily indicate a
successful access to the device since the driver gets no indication of success or failure. If the register value
returned is FFFF_FFFFh, it is usually an indication of an error or non-existent device in the specified bus/slot.

Use of this function is NOT recommended. Direct modification of PCI registers may result in system instability
or device failure. This function is provided only for completeness and for reference purposes.

5-113

Usage:

u32 RegValue;
PLX_STATUS rc;

// Read the PCl Command/Status register
RegvValue =
PIxPci_PciRegisterRead(
11
Oxe,

07
CFG_COMMAND, // PCl Command/Status register

&rc

)
if (rc 1= PLX_STATUS_OK)
{

}

// Check for any PCl Errors or Aborts
iT (RegValue & 0xf8000000)

// ERROR — Unable to read PCI configuration register

// Write PCl Status back to itself to clear any errors
rc =
PIXxPci_PciRegisterWrite Bypass0S(

11

Oxe,

o,

CFG_COMMAND,

Regvalue

):
if (rc 1= PLX_STATUS_OK)

// ERROR — Unable to write to PCl configuration register

5-114

PIxPci_PerformanceCalcStatistics

Syntax:

PLX_STATUS
PIxPci_PerformanceCalcStatistics(
PLX_PERF_PROP *pPerfProp,
PLX_PERF_STATS *pPerfStats,

u3s2 ElapsedTime_ms

)
PLX Chip Support:

PLX PCI Express 8000 switches that support internal Performance Counters.

Description:

Uses the performance properties to calculate the resulting performance statistics for a specific port

Parameters:

pPerfProp
Pointer to a PLX_PERF_PROP structure that contains the performance counters and properties filled in
from a call to PIxPci_PerformanceGetCounters().

pPerfStats
Pointer to a PLX_PERF_STATS structure that will contain the calculated performance statistics based
upon the counters and elapsed time.

ElapsedTime_ms
The elapsed time in milliseconds betweens reads of the Performance Counters (i.e. calls to
PIxPci_PerformanceGetCounters()).

Return Codes:

Code Description

PLX_STATUS OK The function returned successfully

PLX STATUS NULL PARAM One or more parameters is NULL

PLX STATUS INVALID DATA | Elapsed time is invalid

Notes:

5-115

Usage:

u32 ElapsedTime_ms;
struct timeb PrevTime, EndTime;
PLX_PERF_PROP PerfProp;
PLX_PERF_STATS PerfStats;

// Initialize performance objects
PIxPci_PerformancelnitializeProperties(
pDevice,
&PerfProp

);

// Start performance monitor
PIxPci_PerformanceMonitorControl (
pDevice,
PLX_PERF_CMD_START

);

// Reset counters
PIxPci_PerformanceResetCounters(
pDevice,
&PerfProp,
1 // Only one object

);

// Get starting time
ftime(&PrevTime);

// Insert small delay
PIx_sleep(1000);

// Get statistics
PIxPci_PerformanceGetCounters(
pDevice,
&PerfProp,
1 // Only one object

);

// Get end time
ftime(&EndTime);

// Calculate elapsed time in milliseconds
ElapsedTime_ms = (((U32)EndTime.time * 1000) + EndTime.millitm) -
(((U32)PrevTime.time * 1000) + PrevTime.millitm);

// Calculate performance statistics
PIxPci_PerformanceCalcStatistics(
&PerfProp,
&PerfStats,
ElapsedTime_ms

);

5-116

PIxPci_PerformanceGetCounters

Syntax:

PLX_STATUS
PIxPci_PerformanceGetCounters(
PLX_DEVICE_OBJECT *pDevice,

PLX_PERF_PROP *pPerfProp,
us NumOfObjects
E

PLX Chip Support:

PLX PCI Express 8000 switches that support internal Performance Counters.

Description:

Fills in all the performance counters in the provided performance property objects

Parameters:

pDevice
Pointer to an open device

pPerfProp
A pointer to one or more PLX_PERF_PROP structures.

NumOfObjects
Specifies the number of PLX_PERF_PROP objects pointed to by pPerfProp.

Return Codes:

Code Description
PLX_STATUS OK The function returned successfully
PLX STATUS NULL PARAM One or more parameters is NULL

The device object is not a valid PLX device or has not been opened or one or

PLX_STATUS_INVALID_OBJECT more PLX_PERF_PROP objects is invalid or has not been initialized.

PLX STATUS UNSUPPORTED The PLX chip does not support Performance Counters.

Notes:

5-117

Usage:

u32 ElapsedTime_ms;
struct timeb PrevTime, EndTime;
PLX_PERF_PROP PerfProp;
PLX_PERF_STATS PerfStats;

// Initialize performance objects
PIxPci_PerformancelnitializeProperties(
pDevice,
&PerfProp

);

// Start performance monitor
PIxPci_PerformanceMonitorControl (
pDevice,
PLX_PERF_CMD_START

);

// Reset counters
PIxPci_PerformanceResetCounters(
pDevice,
&PerfProp,
1 // Only one object

);

// Get starting time
ftime(&PrevTime);

// Insert small delay
PIx_sleep(1000);

// Get statistics
PIxPci_PerformanceGetCounters(
pDevice,
&PerfProp,
1 // Only one object

);

// Get end time
ftime(&EndTime);

// Calculate elapsed time in milliseconds
ElapsedTime_ms = (((U32)EndTime.time * 1000) + EndTime.millitm) -
(((U32)PrevTime.time * 1000) + PrevTime.millitm);

// Calculate performance statistics
PIxPci_PerformanceCalcStatistics(
&PerfProp,
&PerfStats,
ElapsedTime_ms

);

5-118

PIxPci_PerformancelnitializeProperties

Syntax:

PLX_STATUS

PIxPci_PerformancelnitializeProperties(
PLX_DEVICE_OBJECT *pDevice,
PLX_PERF_PROP *pPerfProp

R
PLX Chip Support:

PLX PCI Express 8000 switches that support internal Performance Counters.

Description:

Initializes a performance object for use with the performance counter functions

Parameters:

pDevice
Pointer to an open device

pPerfProp
Pointer to a PLX_PERF_PROP object

Return Codes:

Code Description
PLX_STATUS OK The function returned successfully
PLX STATUS NULL PARAM One or more parameters is NULL

The device object is not a valid PLX device or has not been opened or one or more

PLX_STATUS_INVALID_OBJECT PLX_PERF_PROP objects is invalid or has not been initialized.

PLX STATUS UNSUPPORTED The PLX chip does not support Performance Counters or the port number is invalid.

Notes:

5-119

Usage:

u32 ElapsedTime_ms;
struct timeb PrevTime, EndTime;
PLX_PERF_PROP PerfProp;
PLX_PERF_STATS PerfStats;

// Initialize performance objects
PIxPci_PerformancelnitializeProperties(
pDevice,
&PerfProp

);

// Start performance monitor
PIxPci_PerformanceMonitorControl (
pDevice,
PLX_PERF_CMD_START

);

// Reset counters
PIxPci_PerformanceResetCounters(
pDevice,
&PerfProp,
1 // Only one object

);

// Get starting time
ftime(&PrevTime);

// Insert small delay
PIx_sleep(1000);

// Get statistics
PIxPci_PerformanceGetCounters(
pDevice,
&PerfProp,
1 // Only one object

);

// Get end time
ftime(&EndTime);

// Calculate elapsed time in milliseconds
ElapsedTime_ms = (((U32)EndTime.time * 1000) + EndTime.millitm) -
(((U32)PrevTime.time * 1000) + PrevTime.millitm);

// Calculate performance statistics
PIxPci_PerformanceCalcStatistics(
&PerfProp,
&PerfStats,
ElapsedTime_ms

);

5-120

PIxPci_PerformanceMonitorControl

Syntax:
PLX_STATUS

PIxPci_PerformanceMonitorControl(
PLX_DEVICE_OBJECT *pDevice,

PLX_PERF_CMD
):

PLX Chip Support:

command

PLX PCI Express 8000 switches that support internal Performance Counters.

Description:

Controls the PLX Performance Counters

Parameters:

pDevice

Pointer to an open device

command

A PLX_PERF_CMD that specifies the operation to perform

Return Codes:

Code

Description

PLX_STATUS_OK

The function returned successfully

PLX_STATUS NULL PARAM

One or more parameters is NULL

PLX_STATUS_INVALID_OBJECT

The device object is not a valid PLX device or has not been opened

PLX_STATUS_UNSUPPORTED

The PLX chip does not support Performance Counters.

PLX STATUS INVALID DATA

The command parameter is not a valid PLX_PERF_CMD value.

Notes:

5-121

Usage:

u32 ElapsedTime_ms;
PLX_PERF_PROP PerfProp;
PLX_PERF_STATS PerfStats;

// Set desired elapsed time
ElapsedTime_ms = 1000;

// Initialize performance objects
PIxPci_PerformancelnitializeProperties(
pDevice,
&PerfProp

s

// Start performance monitor
PIxPci_PerformanceMonitorControl (
pDevice,
PLX_PERF_CMD_START

);

// Reset counters
PIxPci_PerformanceResetCounters(
pDevice,
&PerfProp,
1 // Only one object

);

// Insert small delay
PIx_sleep(ElapsedTime _ms);

// Get statistics
PIxPci_PerformanceGetCounters(
pDevice,
&PerfProp,
1 // Only one object

);

// Stop performance monitor
PIxPci_PerformanceMonitorControl(
pDevice,
PLX_PERF_CMD_STOP

);

// Calculate performance statistics
PIxPci_PerformanceCalcStatistics(
&PerfProp,
&PerfStats,
ElapsedTime_ms

);

5-122

PIxPci_PerformanceResetCounters

Syntax:

PLX_STATUS
PIxPci_PerformanceResetCounters(
PLX_DEVICE_OBJECT *pDevice,

PLX_PERF_PROP *pPerfProp,
us NumOfObjects
E

PLX Chip Support:

PLX PCI Express 8000 switches that support internal Performance Counters.

Description:

Resets all the performance counters in the provided performance property objects

Parameters:

pDevice
Pointer to an open device

pPerfProp
A pointer to one or more PLX_PERF_PROP structures.

NumOfObjects
Specifies the number of PLX_PERF_PROP objects pointed to by pPerfProp.

Return Codes:

Code Description
PLX_STATUS OK The function returned successfully
PLX STATUS NULL PARAM One or more parameters is NULL

The device object is not a valid PLX device or has not been opened or
PLX_STATUS_INVALID_OBJECT one or more PLX_PERF_PROP objects is invalid or has not been
initialized.

PLX STATUS UNSUPPORTED The PLX chip does not support Performance Counters.

Notes:

5-123

Usage:

u32 ElapsedTime_ms;
struct timeb PrevTime, EndTime;
PLX_PERF_PROP PerfProp;
PLX_PERF_STATS PerfStats;

// Initialize performance objects
PIxPci_PerformancelnitializeProperties(
pDevice,
&PerfProp

);

// Start performance monitor
PIxPci_PerformanceMonitorControl (
pDevice,
PLX_PERF_CMD_START

);

// Reset counters
PIxPci_PerformanceResetCounters(
pDevice,
&PerfProp,
1 // Only one object

);

// Get starting time
ftime(&PrevTime);

// Insert small delay
PIx_sleep(1000);

// Get statistics
PIxPci_PerformanceGetCounters(
pDevice,
&PerfProp,
1 // Only one object

);

// Get end time
ftime(&EndTime);

// Calculate elapsed time in milliseconds
ElapsedTime_ms = (((U32)EndTime.time * 1000) + EndTime.millitm) -
(((U32)PrevTime.time * 1000) + PrevTime.millitm);

// Calculate performance statistics
PIxPci_PerformanceCalcStatistics(
&PerfProp,
&PerfStats,
ElapsedTime_ms

);

5-124

PIxPci_PhysicalMemoryAllocate

Syntax:

PLX_STATUS

PIxPci_PhysicalMemoryAllocate(
PLX_DEVICE_OBJECT *pDevice,
PLX_PHYSICAL _MEM *pMemorylnfo,
BOOLEAN bSmal lerOk

)
PLX Chip Support:

All devices

Description:

Attempts to allocate a physically contiguous, page-locked buffer which is safe for use with DMA operation.

Parameters:

pDevice
Pointer to an open device

pMemorylinfo
A pointer to a PLX_PHYSICAL_MEM structure will contain the buffer information. The requested size of
the buffer to allocate should be set in this structure before making the call. The actual size of the
allocated buffer will be specified in the same field when the call returns.

bSmallerOk
Flag to specify whether a buffer of size smaller than specified is acceptable

e If FALSE, the driver will return an error if the buffer allocation fails

e If TRUE and the allocation fails, the driver will reattempt to allocate the buffer, but decrement
the size each time until the allocation succeeds.

Return Codes:

Code Description
PLX_STATUS OK The function returned successfully and at least one event ocurred
PLX_STATUS NULL_PARAM One or more parameters is NULL
PLX STATUS INVALID OBJECT The device object is not a valid PLX device or has not been opened
PLX STATUS INSUFFICIENT RES | Insufficient resource to allocate buffer

Notes:

The allocation of a physically contiguous page-locked buffer is dependent upon system resources and the
fragmentation of memory. This type of memory is typically a limited resource in OS environments. As a result,
allocation of large size buffers (> 512k) may fail.

In current versions of Linux, the size of a buffer is additionally limited. In Linux kernel version 2.4 & 2.6, the maximum
is 4MB unless the kernel is modified.

It is possible to call this function to allocate multiple buffers, even if a single call for a large buffer may fail. For example,
a call to allocate a 4MB buffer may fail, but two calls to allocate two 2MB buffers may succeed. It must be noted,
however, that these buffers together do not make up a contiguous 4MB block in memory; they are separate.

5-125

The purpose of these buffers is typically for use with PLX DMA engines or for transfers across an NT port. Since the
buffers are page-locked and physically contiguous in memory, the DMA engine can access the memory as one
continuous block. When using a buffer for DMA transfers, the bus physical address should be used when specifying
the PCI address of a block DMA transfer.

The allocated buffer is not mapped into user virtual space when allocated. To map the buffer into virtual space, use
PIxPci_PhysicalMemoryMap.
Usage:

PLX_STATUS rc;

PLX_PHYSICAL_MEM Buffer_1;

PLX_PHYSICAL_MEM Buffer_2;

// Allocate a buffer that must succeed

// Set desired size

Buffer_1.Size = 0x300000; // 3MB
rc =
PIxPci_PhysicalMemoryAllocate(
pDevice,
&Buffer_1,
FALSE // Do not allocate a smaller buffer on failure
);

if (rc !'= PLX_STATUS_OK)

// Error — unable to allocate physical buffer

}

// Allocate a buffer, accepting any size

// Set desired size

RequestSize = 0x1000000; // 16MB

Buffer_2.Size = RequestSize;

rc =

PIxPci_PhysicalMemoryAllocate(

pDevice,
&Buffer_2,
TRUE // A smaller size buffer is acceptable
):

if (rc !'= PLX_STATUS_OK)

// Error — unable to allocate physical buffer

}

if (Buffer_2.Size != RequestSize)

// Buffer allocated, but smaller than requested size

5-126

PIxPci_PhysicalMemoryFree

Syntax:

PLX_STATUS

PIxPci_PhysicalMemoryFree(
PLX_DEVICE_OBJECT *pDevice,
PLX_PHYSICAL _MEM *pMemorylnfo

R
PLX Chip Support:

All devices

Description:

Releases a buffer previously allocated with PIxPci_PhysicalMemoryAllocate.

Parameters:

pDevice
Pointer to an open device

pMemoryinfo
A pointer to a PLX_PHYSICAL_MEM structure which contains the buffer information.

Return Codes:

Code Description
PLX_STATUS OK The function returned successfully and at least one event ocurred
PLX STATUS NULL PARAM One or more parameters is NULL

PLX STATUS INVALID OBJECT | The device objectis not a valid PLX device or has not been opened

The buffer information is invalid or it was not allocated with
PIxPci_PhysicalMemoryAllocate

PLX_STATUS_INVALID_DATA

Notes:

If the buffer was previously mapped to user virtual space, with PIxPci_PhysicalMemoryMap, it should be unmapped
with PIxPci_PhysicalMemoryUnmap before freeing it from memory.

Once this buffer is released, any virtual mappings to it will fail and the buffer should no longer be used by hardware,
such as the DMA engine. The memory will be returned to the operating system.

All allocated buffers should be unmapped and freed before releasing a device with a call to PIxPci_DeviceClose.
Buffers will become invalid once a device is released.

5-127

Usage:
PLX_STATUS rc;

PLX_PHYSICAL_MEM Buffer;
// Allocate a buffer

// Set desired size
Buffer.Size = 0x1000;

rc =
PIxPci_PhysicalMemoryAllocate(
pDevice,
&Buffer,
FALSE // Do not allocate a smaller buffer on failure
)
if (rc = PLX_STATUS_OK)
{
// Error — unable to allocate physical buffer
}
//
// Use the buffer as needed
//
// Release the buffer
rc =
PIxPci_PhysicalMemoryFree(
pDevice,
&Buffer
)

if (rc 1= PLX_STATUS_ OK)

// Error — unable to free physical buffer

5-128

PIxPci_PhysicalMemoryMap

Syntax:

PLX_STATUS

PIxPci_PhysicalMemoryMap(
PLX_DEVICE_OBJECT *pDevice,
PLX_PHYSICAL _MEM *pMemorylnfo

R
PLX Chip Support:

All devices

Description:

Maps into user virtual space a buffer previously allocated with PIxPci_PhysicalMemoryAllocate.

Parameters:

pDevice
Pointer to an open device

pMemoryinfo
A pointer to a PLX_PHYSICAL_MEM structure which contains the buffer information.

Return Codes:

Code Description
PLX_STATUS OK The function returned successfully and at least one event ocurred
PLX_STATUS NULL_PARAM One or more parameters is NULL
PLX STATUS INVALID OBJECT The device object is not a valid PLX device or has not been opened
PLX_STATUS INVALID DATA Buffer information is invalid or buffer not allocated properly
PLX STATUS INVALID ADDR Physical address of buffer is invalid or buffer not allocated properly
PLX STATUS INSUFFICIENT RES | Insufficient resources to perform the mapping

Notes:

Mapping of physical memory into user virtual space may fail due to insufficient Page-Table Enties (PTEs). The
larger the buffer size, the greater the number of PTEs required to map it into user space.

The buffer should be unmapped before calling PIxPci_DeviceClose to close the device. The virtual address will
cease to be valid after closing the device or after unmapping the buffer. Refer to
PIxPci_PhysicalMemoryUnmap.

5-129

Usage:

us value;
PLX_STATUS rc;
PLX_PHYSICAL_MEM Buffer;

// Allocate a buffer

// Set desired size
Buffer.Size = 0x1000;

rc =
PIxPci_PhysicalMemoryAllocate(
pDevice,
&Buffer,
FALSE // Do not allocate a smaller buffer on failure
);

if (rc 1= PLX_STATUS_OK)

// Error — unable to allocate physical buffer

}

// Map the buffer into user space
rc =
PIxPci_PhysicalMemoryMap(
pDevice,
&Buffer

);
if (rc !'= PLX_STATUS_OK)

// Error — unable to map physical buffer
¥

// Write 32-bit value to buffer
(U32) (Buffer.UserAddr + 0x100) = 0x12345;

// Read 8-bit value from buffer
value = *(U8*)(Buffer.UserAddr + 0x54);

5-130

PIxPci_PhysicalMemoryUnmap

Syntax:

PLX_STATUS

PIxPci_PhysicalMemoryUnmap(
PLX_DEVICE_OBJECT *pDevice,
PLX_PHYSICAL _MEM *pMemorylnfo

R
PLX Chip Support:

All devices

Description:

Unmaps a physical buffer previously mapped with PIxPci_PhysicalMemoryMap.

Parameters:

pDevice
Pointer to an open device

pMemoryinfo
A pointer to a PLX_PHYSICAL_MEM structure which contains the buffer information

Return Codes:

Code Description
PLX_STATUS OK The function returned successfully and at least one event ocurred
PLX STATUS NULL PARAM One or more parameters is NULL

PLX STATUS INVALID OBJECT | The device objectis not a valid PLX device or has not been opened

The virtual address is invalid or was not previously mapped with

PLX_STATUS_INVALID_ADDR PIxPci_PhysicalMemoryMap

The buffer information is invalid or it was not allocated with

PLX_STATUS_INVALID_DATA PIxPci_PhysicalMemoryAllocate

Notes:

It is important to unmap a physical buffer when it is no longer needed to release mapping resources back to the
system.

The buffer should be un-mapped before calling PIxPci_DeviceClose to close the device. The virtual address will
cease to be valid after closing the device or after un-mapping the buffer.

5-131

Usage:

PLX_STATUS rc;
PLX_PHYSICAL_MEM Buffer;

// Allocate a buffer (not shown)

// Map buffer into user space to get virtual address
rc =
PIxPci_PhysicalMemoryMap(
pDevice,
&Buffer

)
f (rc 1= PLX_STATUS_OK)

// Error — unable to map physical buffer

// Access buffer as needed

// Unmap the buffer from virtual space

rc =

PIxPci_PhysicalMemoryUnmap(
pDevice,
&Buffer

);
if (rc !'= PLX_STATUS_OK)

// Error — unable to unmap physical buffer

5-132

PIxPci_PIxRegisterRead

Syntax:

u32
PIxPci_PIxRegisterRead(

PLX_DEVICE_OBJECT *pDevice,

u32 offset,
PLX_STATUS *pStatus
);

PLX Chip Support:
All PLX devices

Description:

Reads a PLX-specific register from the selected device

Parameters:

pDevice

Pointer to an open device

offset

PLX register 32-bit aligned offset

pStatus

Pointer to a PLX_STATUS variable to contain the status. (May be NULL)

Return Codes:

Code

Description

PLX_STATUS_OK

The function returned successfully

PLX_STATUS NULL PARAM

One or more parameters is NULL

PLX_STATUS_INVALID_OBJECT

The device object is not a valid PLX device or has not been opened

PLX STATUS INVALID OFFSET

The register offset is not aligned or is not one a PLX-specific register

Notes:

For PLX 8000 series devices, the PLX driver will internally adjust the register offset based on the device port
number. For example, if the selected PCI device is Port 8 of the PLX switch, the driver will add (8 * 4k) to the
offset parameter in order to access the correct register region for that specific port.

5-133

Usage:

u32 RegValue;
PLX_STATUS rc;

// Read the PCl Control register
RegvValue =
PIxPci_PIxRegisterRead(
pDevice,
0x100C, // PCIl Control register
&rc

);

if (rc 1= PLX_STATUS_OK)
{

}

// Determine PCI clock rate
if (Regvalue & (1 << 7))

// PCI clock is running at 66MHz
else

// PCI clock is running at 33MHz

// ERROR — Unable to read PLX register

5-134

PIxPci_PIxRegisterWrite

Syntax:
PLX_STATUS

PIxPci_PIxRegisterWrite(

PLX_DEVICE_OBJECT *pDevice,

u32 offset,
u32 value
);

PLX Chip Support:
All PLX devices

Description:

Writes to a PLX-specific register on the selected device

Parameters:

pDevice
Pointer to an open device

offset

PLX register 32-bit aligned offset

value
The 32-bit value to write

Return Codes:

Code

Description

PLX_STATUS_OK

The function returned successfully

PLX_STATUS NULL PARAM

One or more parameters is NULL

PLX_STATUS_INVALID_OBJECT

The device object is not a valid PLX device or has not been opened

PLX STATUS INVALID OFFSET

The register offset is not aligned or is not one a PLX-specific register

Notes:

For PLX 8000 series devices, the PLX driver will internally adjust the register offset based on the device port
number. For example, if the selected PCI device is Port 8 of the PLX switch, the driver will add (8 * 4k) to the
offset parameter in order to access the correct register region for that specific port.

5-135

Usage:

5-136

u32 Regvalue;
PLX_STATUS rc;

// Write a value to the Mailbox 1 register
rc =

PIxPci_PIxRegisterWrite (

pDevice,
0x1034, // Mailbox 1 register
O0xFF001300
)
if (rc = PLX_STATUS_0OK)
{
// ERROR — Unable to write to PLX register
3

PIxPci_PlxMappedRegisterRead

Syntax:

u32
PIxPci_PlIxMappedRegisterRead(
PLX_DEVICE_OBJECT *pDevice,

u32 offset,
PLX_STATUS *pStatus
);

PLX Chip Support:
All PLX devices

Description:

Reads a PLX-specific register from the selected device without adjusting the offset based on the port.

Parameters:

pDevice
Pointer to an open device

offset
PLX register 32-bit aligned offset

pStatus
Pointer to a PLX_STATUS variable to contain the status. (May be NULL)

Return Codes:

Code Description
PLX_STATUS OK The function returned successfully
PLX STATUS NULL PARAM One or more parameters is NULL

PLX STATUS INVALID OBJECT | The device objectis not a valid PLX device or has not been opened

PLX STATUS INVALID OFFSET | The register offset is not aligned or is not one a PLX-specific register

Notes:

This function is identical to PIxPci_PIxRegisterRead except the PLX driver will not make an internal adjustment
for the port number. The register accessed is simply BAR 0 of the upstream port plus the offset parameter.

5-137

Usage:

u32 RegValue;
PLX_STATUS rc;

// Read register 264h from Port 9
RegvValue =
PIxPci_PIxMappedRegisterRead(
pDevice,
0x264 + (9 * (4 * 1024)),
&rc

);

if (rc 1= PLX_STATUS_OK)
{

}

// ERROR — Unable to read PLX register

5-138

PIxPci_PlxMappedRegisterWrite

Syntax:
PLX_STATUS

PIxPci_PIxMappedRegisterWrite(
PLX_DEVICE_OBJECT *pDevice,

u32 offset,
u32 value
);

PLX Chip Support:
All PLX devices

Description:

Writes to a PLX-specific register on the selected device without adjusting the offset based on the port

Parameters:

pDevice

Pointer to an open device

offset

PLX register 32-bit aligned offset

value
The 32-bit value to write

Return Codes:

Code

Description

PLX_STATUS_OK

The function returned successfully

PLX_STATUS NULL PARAM

One or more parameters is NULL

PLX_STATUS_INVALID_OBJECT

The device object is not a valid PLX device or has not been opened

PLX STATUS INVALID OFFSET

The register offset is not aligned or is not one a PLX-specific register

Notes:

This function is identical to PIxPci_PIxRegisterWrite except the PLX driver will not make an internal adjustment
for the port number. The register accessed is simply BAR 0 of the upstream port plus the offset parameter.

5-139

Usage:

5-140

u32 RegValue;
PLX_STATUS rc;

// Write a value to register 660h from Port 8
rc =

PIxPci_PIxMappedRegisterWrite(

pDevice,
0x660 + (8 * (4 * 1024)),
O0xFF001300
)
if (rc = PLX_STATUS_0OK)
{
// ERROR — Unable to write to PLX register
3

PIxPci_VpdRead

Syntax:

u32
PIxPci_VpdRead(
PLX_DEVICE_OBJECT *pDevice,

ule offset,
PLX_STATUS *pStatus
);

PLX Chip Support:
Any device that supports the PCI VPD capability

Description:

Reads a 32-bit value at a specified offset of the Vital Product Data.

Parameters:

pDevice
Pointer to an open device

offset
The is the byte offset to read from (must be aligned 32-bit boundary)

pStatus
A pointer to a buffer for the return code

Return Codes:

Code Description
PLX_STATUS OK The function returned successfully
PLX STATUS NULL PARAM One or more parameters is NULL
PLX STATUS INVALID OBJECT | The device objectis not a valid PLX device or has not been opened

Usage:

u32 VpdData;
PLX_STATUS rc;

// Read the default Space 1 range (assuming a 9054)
VpdData =
PIxPci_VpdRead(
pDevice,
0x48,
&rc

);

if (rc 1= PLX_STATUS_OK)
{

}

// ERROR — Unable to read VPD data

5-141

PIxPci_VpdWrite

Syntax:

PLX_STATUS
PIxPci_VpdWrite(
PLX_DEVICE_OBJECT *pDevice,

ule offset,
u32 value
);

PLX Chip Support:
Any device that supports the PCI VPD capability

Description:
Write a 32-bit value to a specified offset of the Vital Product Data.

Parameters:

pDevice
Pointer to an open device

offset
The is the byte offset to write to (must be aligned 32-bit boundary)

value
The 32-bit value to write

Return Codes:

Code Description
PLX_STATUS OK The function returned successfully
PLX STATUS NULL PARAM One or more parameters is NULL
PLX STATUS INVALID OBJECT | The device objectis not a valid PLX device or has not been opened

Usage:

// Write the new Device/Vendor ID (assuming 9054 device)
PIxPci_VpdWrite(

pDevice,

0x0,

0x186010b5

);

// Write custom data to non-PLX used EEPROM space
PIxPci_VpdWrite(
pDevice,
0x60, // 9054 data ends at 0x58
0x0024beef

s

5-142

5.2 PLX API Data Structures and Types

This section documents details of the structures and data types used by the PLX API.

5.2.1 Standard Data Types

These data types are used for code portability between all supported environments. PLX header files
automatically define the definitions depending upon the build environment.

Data Type Storage Allocation
S8 Signed 8-bit
Us Unsigned 8-bit
S16 Signed 16-bit
Ul6 Unsigned 16-hit
S32 Signed 32-bit
u32 Unsigned 32-bit
S64 Signed 64-hit
ue4 Unsigned 64-bit
PLX INT PTR Typgs large enough to cqntain a pginter on the target platform. Will be 32-.bit on
PLX UINT PTR 32-bit platforms and 64-b|t on 64-bit CPU platforms. Signed (INT) and unsigned
— — (UINT) types are provided.

5.2.1.1 Code Portability Macros

To support source code portability between platforms, the following macros are provided:
e PLX PTR_TO_INT(pointer) - Converts a pointer to an integer
e PLX_INT_TO_PTR(integer) - Convert an integer to a pointer

5.2.2 Enumerated Types

This section contains the enumerated data types used in the PLX API.

5-143

PLX_ACCESS TYPE

typedef enum _ACCESS_TYPE

BitSize8,
BitSizel6,
BitSize32,
BitSize64
} ACCESS_TYPE;

Purpose

Enumerated type used for determining the access type size for a data transfer.

Members

BitSize8
Use 8-bits access

BitSizel6
Use 16-bit access

BitSize32
Use 32-bit access

BitSize64
Use 64-bit access (may not be supported on target platform)

5-144

PLX_BAR_FLAG

typedef enum _PLX BAR _FLAG

PLX_BAR_FLAG_MEM
PLX_BAR_FLAG_I0
PLX_BAR_FLAG_BELOW_1MB
PLX_BAR_FLAG_32_ BIT
PLX_BAR_FLAG_64 _BIT
PLX_BAR_FLAG_PREFETCHABLE
PLX_BAR_FLAG_UPPER_32
PLX_BAR_FLAG_PROBED

} PLX_BAR_FLAG;

Purpose

Enumerated type to specify additional PCI BAR properties

Members

PLX_BAR_FLAG_MEM
BAR type is a memory space

PLX BAR_FLAG_IO
BAR type is an I/O space

PLX_BAR_FLAG_BELOW_1MB

BAR is requesting a memory address below 1MB in PCI space (deprecated in PCI 2.0 & higher)

PLX_BAR_FLAG_32_BIT

<<
<<
<<
<<
<<
<<
<<
<<

BAR is requesting a memory address in 32-bit space

PLX_BAR_FLAG_64 BIT

BAR is requesting a memory address in 64-bit space (Uses up 2 BARS)

PLX_BAR_FLAG_PREFETCHABLE
BAR supports Prefetch & write-combining

PLX_BAR_FLAG_UPPER_32

0),
1),
2),
3),
4),
5),
6),
7)

BAR is used as the upper 32-bits of a 64-bit BAR space

PLX_BAR_FLAG_PROBED

Used internally by PLX software for probing & mapping purposes

5-145

PLX_API_MODE

typedef enum _PLX_API1_MODE

PLX_API_MODE_PCI,
PLX_AP1_MODE_12C_AARDVARK,
PLX_API_MODE_TCP

} PLX_API_MODE;

Purpose

Enumerated type to specify the method used to access a device.

Members

PLX_API_MODE_PCI
Device is accessed via the PLX driver over PCI/PCI Express bus

PLX_API_MODE_I2C_AARDVARK
Device is accessed over I°C using the Aadvark USB I°C /SPI connector

PLX_API_MODE_TCP
Device is accessed over TCP/IP (not currently supported)

5-146

PLX_CHIP_FAMILY

typedef enum _PLX_CHIP_FAMILY

PLX_FAMILY_NONE = 0,
PLX_FAMILY_UNKNOWN,
PLX_FAMILY_BRIDGE_P2L,
PLX_FAMILY_BRIDGE_PCI_P2P,
PLX_FAMILY_BRIDGE_PCIE_P2P,
PLX_FAMILY_ALTAIR,
PLX_FAMILY_ALTAIR_XL,
PLX_FAMILY_VEGA,
PLX_FAMILY_VEGA_LITE,
PLX_FAMILY_DENEB,
PLX_FAMILY_SIRIUS,

PLX_FAMILY_CYGNUS,
PLX_FAMILY_SCOUT,
PLX_FAMILY_DRACO_1,
PLX_FAMILY_DRACO_2,
PLX_FAMILY_MIRA,
PLX_FAMILY_CAPELLA 1,
PLX_FAMILY_CAPELLA 2

PLX_FAMILY_LAST_ENTRY
} PLX_CHIP_FAMILY;

Purpose
Enumerated type to specify the PLX chip family.

Members

PLX_FAMILY_NONE
Device is not a PLX chip

PLX_FAMILY_UNKOWN
The PLX chip family was unable to be determined

PLX_FAMILY _Xxxxx
The various PLX chip families

//

//
//
//

//
//
//
//
//
//

/7
//
//

//
//

9000 series & 8311
6000 series
8111,8112,8114
8525,8533,8547,8548
8505, 8509
8516,8524,8532
8508,8512,8517,8518

8612,8616,8624,8632,8647,8648
8604 ,8606,8608,8609,8613,8614,8615

8617,8618,8619

8625,8636,8649,8664,8680,8696

8700

8712,8716,8724,8732,8747,8748,8749

8713,8717,8725,8733 + [Draco 1 rev BA]

2380,3380,3382,8603,8605

8714,8718,8734,8750,8764,8780,8796
9712,9713,9716,9717,9733,9734,9749

9750,9765,9766,9781,9782,9797,9798

-- Must be final entry --

5-147

PLX_CHIP_MODE

typedef enum _PLX CHIP_MODE

PLX_CHIP_MODE_UNKNOWN,
PLX_CHIP_MODE_STANDARD,
PLX_CHIP_MODE_STD_LEGACY_NT,
PLX_CHIP_MODE_STD_NT_DS_P2P,
PLX_CHIP_MODE_VIRT_SW,
PLX_CHIP_MODE_FABRIC,
PLX_CHIP_MODE_ROOT_COMPLEX,
PLX_CHIP_MODE_LEGACY_ADAPTER

3 PLX_CHIP_MODE;

Purpose

//
//

//
//
//

Standard switch fan-out mode

Standard mode w/NT but no parent DS P2P
Standard mode w/NT & parent DS P2P
Virtual Switch (VS) mode

PCle fabric mode

RC mode

Legacy adapter mode

Enumerated type to specify the current PLX chip running mode.

Members

Refer to comments in structure

5-148

PLX _CRC_STATUS
typedef enum _PLX_ CRC_STATUS

PLX_CRC_INVALID
PLX_CRC_VALID
PLX_CRC_UNSUPPORTED
PLX_CRC_UNKNOWN

} PLX_CRC_STATUS;

WNEFO

Purpose
Enumerated type used to report EEPROM CRC status

Members

PLX_CRC_INVALID
The CRC is not valid

PLX_CRC_VALID
The CRC is valid

PLX_CRC_UNSUPPORTED
The CRC feature is not supported by the selected device

PLX_CRC_UNKNOWN
The CRC status is unknown

5-149

PLX_DMA_COMMAND

typedef enum _PLX_DMA_COMMAND

DmaPause,
DmaPauselmmediate,
DmaResume,
DmaAbort

} PLX_DMA_COMMAND;

Purpose

Enumerated type used to control DMA transfers.

Members

DmaPause
Pause a DMA transfer, gracefully if supported by hardware (i.e. completes pending transfers, etc).

DmaPauselmmediate
Pause a DMA transfer immediately without waiting for pending transfers to complete.

DmaResume
Resume a paused DMA transfer.

DmaAbort
Abort a DMA transfer.

5-150

PLX_DMA_DESCR_MODE
typedef enum _PLX DMA DESCR_MODE

PLX_DMA_MODE_BLOCK =0,
PLX_DMA_MODE_SGL =1,
PLX_DMA_MODE_SGL_INTERNAL = 2,

} PLX_DMA_DESCR_MODE;

Purpose

Enumerated type used to control DMA transfers.

Members

PLX_DMA_ MODE_BLOCK
DMA operates in single transfer block mode

PLX_DMA_MODE_SGL
DMA operates in SGL (ring) transfer mode with descriptors held externally (off-chip mode)

PLX_DMA_MODE_SGL_INTERNAL
DMA operates in SGL (ring) transfer mode with descriptors held in internal RAM (on-chip mode)

5-151

PLX_DMA_RING_DELAY_TIME
typedef enum _PLX _DMA RING_DELAY_ TIME

PLX_DMA_RING_DELAY_0O
PLX_DMA_RING_DELAY_1us
PLX_DMA_RING_DELAY_ 2us
PLX_DMA_RING_DELAY_8us
PLX_DMA_RING_DELAY_32us
PLX_DMA_RING_DELAY_128us
PLX_DMA_RING_DELAY_512us
PLX_DMA_RING_DELAY_1ms

3 PLX_DMA_RING_DELAY TIME;

[T O I | | I VI 1
NoOoOohhWNEO

Purpose

In SGL mode, when DMA reaches the end of the ring and ring wrap mode is enabled, this controls the delay
before the DMA wraps back to the beginning of the ring.

Members

DMA ring delay period varies from none or 1us = 1ms via preset values. Refer to the member name for the
delay time.

5-152

PLX_DMA_DIR
typedef enum _PLX DMA DIR

PLX_DMA_PCI_TO_LOC

PLX_DMA_LOC_TO_PCI

PLX_DMA_USER_TO_PCI

PLX_DMA_PCI_TO_USER
} PLX_DMA DIR;

0, // PCl --> Local bus (9000 DMA)
1, // Local bus --> PCI (9000 DMA)
PLX_DMA_PCI_TO_LOC, // User buffer --> PCI (8000 DMA)
PLX_DMA_LOC_TO_PCI // PCl --> User buffer (8000 DMA)

Purpose

Enumerated type used to specify the direction of DMA transfers.

Members

PLX_DMA_PCI_TO_LOC (9000 DMA)
Sets the DMA transfer direction from PCI = Local Bus

PLX_DMA_LOC_TO_PCI (9000 DMA)
Sets the DMA transfer direction from Local Bus = PCI

PLX_DMA_USER_TO_PCI (8000 DMA)
Sets the DMA transfer direction from a user mode provided buffer > a destination PCI address

PLX_DMA_PCI_TO_USER (8000 DMA)
Sets the DMA transfer direction from a source PCI address - a user mode provided buffer

5-153

PLX_DMA_MAX_SRC_TSIZE
typedef enum _PLX DMA MAX_SRC_TSIZE

PLX_DMA_MAX_SRC_TSIZE_64B
PLX_DMA_MAX_SRC_TSIZE_128B
PLX_DMA_MAX_SRC_TSIZE_256B
PLX_DMA_MAX_SRC_TSIZE_512B
PLX_DMA_MAX_SRC_TSIZE_1K
PLX_DMA_MAX_SRC_TSIZE_2K
PLX_DMA_MAX_SRC_TSIZE_4K
} PLX_DMA_SRC_MAX_TSIZE;

1 I e 1 O T | B
~N~NOoOA~AWNREO

Purpose

Sets the TLP Max Payload Size (MPS) when the DMA engine reads the source location. This should not
exceed the MPS set by the system in the DMA PCle Capabilities.

Members

DMA maximum transfer sizes vary from 64B - 4KB.. Refer to the member name for the maximum transfer size

5-154

PLX_EEPROM_PORT
typedef enum _PLX_ EEPROM_PORT

PLX_EEPROM_PORT_NONE =0,
PLX_EEPROM_PORT_NT_VIRT_O = 254,
PLX_EEPROM_PORT_NT_LINK O = 253,
PLX_EEPROM_PORT_NT_VIRT 1 = 252,
PLX_EEPROM_PORT_NT_LINK 1 = 251,
PLX_EEPROM_PORT_DMA_O = 250,
PLX_EEPROM_PORT_DMA_1 = 249,
PLX_EEPROM_PORT_DMA_2 = 248,
PLX_EEPROM_PORT_DMA_3 = 247,
PLX_EEPROM_PORT_SHARED MEM = 246

} PLX_EEPROM_PORT

Purpose

Enumerated type used for specifying ports other than standard transparent to target in EEPROM values

Members

PLX_EEPROM_PORT_NONE
Port type not specified

PLX_EEPROM_PORT_NT_xxx
One of the NT-virtual or NT-Link ports

PLX_EEPROM_PORT_DMA_xxx
One of the DMA functions

PLX_EEPROM_PORT_SHARED_MEM
Shared memory in the PLX chip (8111/8112)

5-155

PLX_EEPROM_STATUS

typedef enum _PLX_ EEPROM_STATUS

PLX_EEPROM_STATUS_NONE
PLX_EEPROM_STATUS_VALID
PLX_EEPROM_STATUS_INVALID_DATA
PLX_EEPROM_STATUS_BLANK
PLX_EEPROM_STATUS_CRC_ERROR

} PLX_EEPROM_STATUS;

0,
1,
2,
PLX_EEPROM_STATUS_INVALID_DATA,
PLX_EEPROM_STATUS_INVALID_DATA

Purpose
Enumerated type used for providing EEPROM status

Members

PLX_EEPROM_STATUS_NONE
EEPROM not present.

PLX_EEPROM_STATUS_VALID
EEPROM is present with valid data

PLX_EEPROM_STATUS_INVALID_DATA
EEPROM is present with invalid data or CRC error

PLX_EEPROM_STATUS_BLANK
EEPROM is blank. Returns same value as PLX_EEPROM_STATUS_INVALID_DATA

PLX_EEPROM_STATUS_CRC_ERROR
EEPROM has CRC error. Returns same value as PLX _EEPROM_STATUS_INVALID_DATA

5-156

PLX_FLAG_PORT

typedef enum _PLX_ FLAG_PORT

PLX_FLAG_PORT_NT_LINK_1
PLX_FLAG_PORT_NT_LINK_O
PLX_FLAG_PORT_NT_VIRTUAL_1
PLX_FLAG_PORT_NT_VIRTUAL_O
PLX_FLAG_PORT_NT_DS_P2P
PLX_FLAG_PORT_DMA_RAM
PLX_FLAG_PORT_DMA_3
PLX_FLAG_PORT_DMA_2
PLX_FLAG_PORT_DMA_1
PLX_FLAG_PORT_DMA_O
PLX_FLAG_PORT_PCIE_TO_USB
PLX_FLAG_PORT_USB
PLX_FLAG_PORT_ALUT_3
PLX_FLAG_PORT_ALUT 2
PLX_FLAG_PORT_ALUT 1
PLX_FLAG_PORT_ALUT_O
PLX_FLAG_PORT_VS_REGS_S5
PLX_FLAG_PORT_VS_REGS_S4
PLX_FLAG_PORT_VS_REGS_S3
PLX_FLAG_PORT_VS_REGS_S2
PLX_FLAG_PORT_VS_REGS_S1
PLX_FLAG_PORT_VS_REGS_SO
PLX_FLAG_PORT_MAX

} PLX_FLAG_PORT;

Purpose

63,
62,
61,
60,
59,
58,
57,
56,
55,
54,
53,
52,
51,
50,
49,
48,
47,
46,
45,
a4,
43,
42,
41

//
//
//

//
//
//

//
//
//
//
//
//

/7
//
//

//
/7/
//

// Bit

for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for

NT Link
NT Link

port O
port 1

NT Virtual port O
NT Virtual port 1
NT DS P2P port (Virtual)

DMA RAM

DMA channel 3
DMA channel 2
DMA channel 1
DMA ch 0 or Func 1 (all 4 ch)
or Root Port

PCle-to-

USB P2P

USB Host/Bridge
ALUT RAM arrays
ALUT RAM arrays
ALUT RAM arrays
ALUT RAM arrays

VS mode
VS mode
VS mode
VS mode
VS mode
VS mode
highest

Enumerated type used for providing special ports in the PLX chip port mask

Members
PLX_FLAG_PORT_xxxx

Bit position representing the PLX port type

station
station
station
station
station
station

ARrWNRFRPOWNEFO

specific
specific
specific
specific
specific
specific

regs
regs
regs
regs
regs
regs

possible standard port

5-157

PLX_NT_LUT FLAG

typedef enum _PLX NT_LUT_FLAG

PLX_NT_LUT_FLAG_NONE =0,

PLX_NT_LUT_FLAG_NO_SNOOP = (1 << 0),
PLX_NT_LUT_FLAG_READ = (1 << 1),
PLX_NT_LUT_FLAG_WRITE = (1 << 2)

} PLX_NT_LUT_FLAG;

Purpose

Enumerated type used for reporting NT port type

Members

PLX_NT_LUT_FLAG_NONE
No active flags

PLX_NT_LUT_FLAG_NO_SNOOP
Enables the No_Snoop disable option for the LUT entry

PLX_NT_LUT_FLAG_READ
Enables memory read TLP access (Not supported in current PLX chips)

PLX_NT_LUT_FLAG_WRITE
Enables memory write TLP access (Not supported in current PLX chips)

5-158

PLX_PERF_CMD

typedef enum _PLX_ PERF_CMD

PLX_PERF_CMD_START,
PLX_PERF_CMD_STOP,
} PLX_PERF_CMD;

Purpose

Commands to control the PLX Performance Counters

Members

PLX_PERF_CMD_START
Starts the Performance Counters

PLX_PERF_CMD_STOP
Stops the Performance Counters

5-159

PLX_PORT TYPE

typedef enum _PLX PORT_TYPE

PLX_PORT_UNKNOWN
PLX_PORT_ENDPOINT
PLX_PORT_LEGACY_ENDPOINT
PLX_PORT_ROOT_PORT
PLX_PORT_UPSTREAM
PLX_PORT_DOWNSTREAM
PLX_PORT_PCIE_TO_PCI_BRIDGE
PLX_PORT_PCI_TO_PCIE_BRIDGE
PLX_PORT_ROOT_ENDPOINT
PLX_PORT_ROOT_EVENT_COLL

} PLX_PORT_TYPE;

xFF,

POO~NOOUIARFL, OO

Onu

Purpose

Enumerated type used for providing port type information.

Members
N/A

5-160

PLX_SPECIFIC_PORT_TYPE

PLX_SPEC_PORT_UNKNOWN
PLX_SPEC_PORT_INVALID
PLX_SPEC_PORT_NT_VIRTUAL
PLX_SPEC_PORT_NT_LINK
PLX_SPEC_PORT_UPSTREAM
PLX_SPEC_PORT_DOWNSTREAM
PLX_SPEC_PORT_P2P_BRIDGE
PLX_SPEC_PORT_LEGACY_EP
PLX_SPEC_PORT_DMA
PLX_SPEC_PORT_HOST
PLX_SPEC_PORT_FABRIC
PLX_SPEC_PORT_GEP
PLX_SPEC_PORT_SYNTH_NIC
PLX_SPEC_PORT_SYNTH_TWC

PLX_SPEC_PORT_SYNTH_EN_EP

typedet enum _PLX SPECIFIC_PORT_TYPE

//
//
//
//
//
//
//
//
//
//
. //
10, //
11, 7/
12, //
13 //

X u
T
M

O©CooO~NOOOAWNEFL OO

// Following definitions are deprecated & only
PLX_SPEC_PORT_UNKNOWN,

,PLX_NT_PORT_NONE
PLX_NT_PORT_PRIMARY
PLX_NT_PORT_SECONDARY
PLX_NT_PORT_VIRTUAL
PLX_NT_PORT_LINK
PLX_NT_PORT_UNKOWN

} PLX_SPECIFIC_PORT_TYPE;

Purpose

PLX_SPEC_PORT_NT_
PLX_SPEC_PORT_NT_
PLX_SPEC_PORT_NT_
PLX_SPEC_PORT_NT_

Unknown port type
Invalid port type
NT Virtual-side
NT Link-side
Upstream port
Downstream port
P2P bridge

Legacy EP

DMA EP

Host port

Fabric port
Global EP
Synthetic NIC VF
Synthetic TWC EP
Synthetic Enabler EP

remain for compatibility

VIRTUAL,
LINK,
VIRTUAL,
LINK,

PLX_SPEC_PORT_INVALID

Enumerated type used for reporting PLX-specific port types

Members

Refer to comments in structure

5-161

PLX_STATE

typedef enum _PLX_STATE

PLX_STATE_OK,
PLX_STATE_NO_CHANGE,
PLX_STATE_WORKING,
PLX_STATE_ERROR,
PLX_STATE_ENABLED,
PLX_STATE_DISABLED,
PLX_STATE_UNINITIALIZED,
PLX_STATE_INITIALIZING,
PLX_STATE_INITIALIZED,
PLX_STATE_IDLE,
PLX_STATE_BUSY,
PLX_STATE_STARTED,
PLX_STATE_STARTING,
PLX_STATE_STOPPED,
PLX_STATE_STOPPING,
PLX_STATE_CANCELED,
PLX_STATE_DELETED,
PLX_STATE_MARKED_FOR_DELETE,
PLX_STATE_OK_TO_DELETE,
PLX_STATE_TRIGGERED,
PLX_STATE_PENDING,
PLX_STATE_WAITING,
PLX_STATE_TIMEOUT,
PLX_STATE_REQUESTING,
PLX_STATE_REQUESTED,
PLX_STATE_ACCEPTING,
PLX_STATE_ACCEPTED,
PLX_STATE_REJECTED,
PLX_STATE_COMPLETING,
PLX_STATE_COMPLETED,
PLX_STATE_CONNECTING,
PLX_STATE_CONNECTED,
PLX_STATE_DISCONNECTING,
PLX_STATE_DISCONNECTED
} PLX_STATE;

Purpose

Enumerated type to provide generic states for general use

Members

Self-explanatory

5-162

PLX_STATUS

// Return type
typedef int PLX_STATUS;

// APl Return Code Values
typedef enum _PLX_ STATUS_ CODE
{
PLX_STATUS_OK,
PLX_STATUS_FAILED,
PLX_STATUS NULL_PARAM,
PLX_STATUS UNSUPPORTED,
PLX_STATUS_NO_DRIVER,
PLX_STATUS_INVALID_OBJECT,
PLX_STATUS_VER_MISMATCH,
PLX_STATUS_INVALID_ OFFSET,
PLX_STATUS_INVALID DATA,
PLX_STATUS_INVALID SIZE,
PLX_STATUS_INVALID_ADDR,
PLX_STATUS_INVALID_ACCESS,
PLX_STATUS_INSUFFICIENT_RES,
PLX_STATUS_TIMEOUT,
PLX_STATUS_CANCELED,
PLX_STATUS_COMPLETE,
PLX_STATUS_PAUSED,
PLX_STATUS_IN_PROGRESS,
PLX_STATUS_PAGE_GET_ERROR,
PLX_STATUS_PAGE_LOCK_ERROR,
PLX_STATUS_ LOW_POWER,
PLX_STATUS_IN_USE,
PLX_STATUS_DISABLED,
PLX_STATUS_PENDING,
PLX_STATUS_NOT_FOUND,
PLX_STATUS_INVALID_STATE,
PLX_STATUS_BUFF_TOO_SMALL,
PLX_STATUS_RSVD LAST_ ERROR // Do not add API errors below this line
} PLX_STATUS_CODE;

Purpose
Type used for providing PLX status codes for all PLX API functions.

Members
N/A

5-163

5.2.3 Data Structures

This section contains the enumerated data types used in the PLX API.

5-164

PLX_DEVICE_KEY

typedef struct _PLX DEVICE_KEY

U32 IsvalidTag;
U8 domain;

U8 bus;

U8 slot;

U8 function;
Ul6 Vendorld;
Ul6 Deviceld;
Ul6 SubVendorld;
Ul6 SubbDeviceld;
U8 Revision;
Ul6é PIxChip;

U8 PIxRevision;
U8 PlIxFamily;
U8 Apilndex;

U8 DeviceNumber;

U8 ApiMode;
U8 PlIxPort;
union

{

U8 PIxPortType;
U8 NTPortType;
}:
U8 NTPortNum;
U8 DeviceMode;
U32 Apilnternal[2];
} PLX_DEVICE_KEY;

Purpose

//
//

//

//
//
//
//

/7/
//

//
//

//
//
//

Uniquely identifies a PCI device in a system. The

drivers and should not be modified.

Members
IsValidTag

Reserved for internal use by the PLX API

domain
PCI segment/domain number

bus
The PCI device bus number

slot
The PCI device slot number

function
The PCI device function number

Vendorld
The PCI device Vendor ID

Deviceld
The PCI device Device ID

Internal Use - Magic number for validity
Physical device location

Device ldentifier

Internal
Internal
Internal
Internal
Internal
Internal
Internal

Use
Use
Use
Use
Use
Use
Use

PLX-specific
(Deprecated) ITf NT, stores NT port type

- PLX chip type

- PLX chip revision

- PLX chip family

- Used by PLX API

- Used by PLX device drivers
— APl Mode to access device
- PLX port number of device

port type (NT/DMA/Host/etc)

Internal Use - ITf NT port, NT port number
Internal Use - Device mode used by PLX API

Internal

Use

- Reserved for PLX APl use

values in the key are used throughout the PLX API and

5-165

SubVendorld
The PCI device subsystem Vendor ID

SubDeviceld
The PCI device subsystem Device ID

Revision
The PCI device revision

PIxChip
The PLX chip type. Will be 0 if non-PLX chip.

PIxRevision
The PLX chip revision

PIxFamily
The PLX chip family. Refer to PLX_CHIP_FAMILY.

Apilndex
Reserved for internal use by the PLX API

DeviceNumber
Reserved for internal use by PLX device drivers

ApiMode
Mode the PLX API is using to access the device (e.g. PCI, I°C, TCP). Refer to PLX_API_MODE.

PIxPort
The PCI Express port number of the PLX device

PIxPortType
PLX-specific port type. Refer to.PLX_SPECIFIC_PORT_TYPE

NTPortNum
If an NT port exists, specifies the NT port number.

DeviceMode
Mode PLX chip is running in. Refer to PLX_CHIP_MODE.

5-166

PLX_DEVICE_OBJECT
typedef struct _PLX DEVICE_OBJECT

us2 IsvalidTag; // Magic number to determine validity
PLX_DEVICE_KEY Key; // Device location key identifier
PLX_DRIVER_HANDLE hDevice; // Handle to driver

PLX_PCI_BAR_PROP PciBar[6]; // PCI BAR properties

ue4 PciBarVal[6]; // For PCI BAR user-mode BAR mappings

us BarMapRef[6]; // BAR map count used by API
PLX_PHYSICAL_MEM CommonBuffer; // Used to store common buffer information
ues PrivateData[4];// Private storage for user application

} PLX_DEVICE_OBJECT;

Purpose

Opagque structure that describes a selected PLX device object.

Members

The members in this object, other than PrivateData, should never be accessed directly. The structure definition
may change in future SDK versions and its members are reserved for internal use by the PLX APl and PLX
drivers.

PrivateData
A set of data locations the device object which an application may use. The PLX API will not access or
modify these values. May be useful if an application needs a private data buffer associated with an open
device.

5-167

PLX_DMA_PARAMS

typedef struct _PLX DMA_PARAMS

U4 UserVa;

U64 AddrSource;

U64 AddrDest;

U64 PciAddr;

U32 LocalAddr;

U32 ByteCount;

U8 Direction;

U8 bConstAddrSrc t1;
U8 bConstAddrDest :1;
U8 bForceFlush o
U8 blgnoreBlockiInt :1;

Purpose

Structure used to provide the parameters for a DMA transfer.

Members

UserVa
Specifies the virtual address of the user-mode buffer for the DMA transfer.

AddrSource (8000 DMA)
Specifies the source PCI address for a DMA block transfer.

AddrDest (8000 DMA)
Specifies the destination PCI address for a DMA block transfer.

PciAddr (9000 DMA)
Specifies the PCI address for a DMA block transfer. Can be 64-bit.

LocalAddr (9000 DMA)
The 32-bit local bus address for the DMA transfer.

ByteCount
The number of bytes to transfer.

Direction
Specifies the direction of the DMA transfer. Refer to PLX_DMA_DIR.

bConstAddrSrc (8000 DMA)
Specifies that the source PCI address should not be incremented

bConstAddrDest (8000 DMA)
Specifies that the destination PCI address should not be incremented

bForceFlush (8000 DMA)
Forces the DMA to use a write flush to ensure data in the final descriptor is written before the DMA engine
reports DMA completion.

blgnoreBlockint
Specifies to disable the DMA done interrupt for the transfer. Typically used if DMA done polling is desired to
eliminate the overhead of handling the DMA done interrupt. Applies only for DMA block mode transfers.

5-168

PLX_DMA_PROP

typedef struct _PLX DMA_PROP

// 8000 DMA properties

us
us
us
us
us
us
us
us
us
us
us
us
us
us
us
us
us
us
us

CplStatusWriteBack
DescriptorMode
DescriptorPol IMode
RingHal tAtEnd
RingWrapDelayTime
RelOrderDescrRead
RelOrderDescrWrite
RelOrderDataReadReq
RelOrderDataWrite
NoSnoopDescrRead
NoSnoopDescrWrite
NoSnoopDataReadReq
NoSnoopDataWrite
MaxSrcXferSize
MaxDestWriteSize
TrafficClass
MaxPendingReadReq
DescriptorPollTime;
MaxDescriptorFetch;

OWWWRRPRRRPRRPRREPRWORRLRNR

U16 ReadReqgDelayClocks;

// 9000 DMA properties

us
us
us
us
us
us
us
us
us
us
us
us
us
us
us
us
us
us

Readylnput

Burst
BurstiInfinite
SglMode
Donelnterrupt
RoutelntToPci
ConstAddrLocal
Writelnval idMode
DemandMode
EnableEOT
FastTerminateMode
ClearCountMode
DualAddressMode
EOTEndLink
ValidMode
ValidStopControl
LocalBusWidth
WaitStates

DANRPRRPRRRRPRRPRRRERRERRBRRE

} PLX_DMA_PROP;

Purpose

Structure used to configure the DMA channel properties. For all one-bit values, O=disable and 1=disable.

5-169

Members

8000 DMA

CplStatusWriteBack
In ring mode, determines whether DMA updates the first DWORD in a DMA descriptor to provide status
information and clear valid bit after the transfer has completed for that descriptor.
(0 = No write back, 1 = Update descriptor with status information)

DescriptorMode
Sets the DMA to Block or Ring/SGL mode. Refer to PLX _DMA_DESCR_MODE.

DescriptorPollMode
** Not available in current DMA hardware Reserved for future use, set to 0. **

RingHaltAtEnd
Determines whether DMA halts when it reaches end of ring or wraps back to beginning.
(0 =Wrap, 1 = Halt)

RingWrapDelayTime
If RingHaltAtEnd is disabled, determines the delay before the DMA wraps to the start of the ring. Refer to
PLX_DMA_RING_DELAY_TIME

RelOrderDescrRead
Use PCle Relaxed Ordering for descriptor reads

RelOrderDescrWrite
Use PCle Relaxed Ordering for descriptor writes

RelOrderDataReadReq
Use PCle Relaxed Ordering for DMA data read requests

RelOrderDataWrite
Use PCle Relaxed Ordering for DMA data writes

NoSnoopDescrRead
Set TLP No Snoop for descriptor reads

NoSnoopDescrWrite
Set TLP No Snoop for descriptor writes

NoSnoopDataReadReq
Set TLP No Snoop for DMA read requests

NoSnoopDataWrite
Set TLP No Snoop for DMA data writes

MaxSrcXferSize
Sets the maximum TLP read request size the DMA engine may request from the source address. Refer to
PLX_DMA_MAX_SRC_TSIZE.

MaxDestWriteSize (Not supported on 8600 DMA)
Sets the maximum payload size to write to the destination

TrafficClass
Sets the PCI Express Traffic Class used for DMA transfers

MaxPendingReadReq
Determines the maximum number of pending DMA read requests from the source.

DescriptorPollTime
** Not available in current DMA hardware Reserved for future use, set to 0. **

5-170

MaxDescriptorFetch
Sets the maximum number of descriptors to prefetch at any given time

ReadReqDelayClocks
Sets the number of clocks between DMA data read requests. May be used to slow down DMA traffic.

9000 DMA

ReadyInput
Enables the Ready input (READY#)

Burst
Enables bursting for the Local bus (Burst of 4LW if BurstInfinite not enabled).

BurstInfinite
Enables the BTERM# input if set, which allows for infinite bursting. (Burst must also be set)

SglMode
Sets DMA to operate in Scatter-Gather List (SGL) mode

Donelnterrupt
Enables the DMA done interrupt

RoutelntToPci
Set the DMA interrupt to assert to the PCI side. If not set, DMA interrupt to assert on local-side.

ConstAddrLocal
Prevents the DMA engine from incrementing the local bus address

WritelnvalidMode
Enables PCI write and invalidate cycles for DMA transfers

DemandMode
Enables DMA Demand mode if set.

EnableEOT
Enables the DMA EOT# input pin

FastTerminateMode
Specifies the DMA termination mode. 0=Slow, 1=Fast

ClearCountMode
Enable SGL DMA transfer count clear mode if set. The DMA engine will clear the transfer count of each
descriptor once the data has been transferred for that descriptor.

DualAddressMode
Enables DMA dual address cycles for DMA transfers. In block mode, the upper 32-bits of the PCI address
are taken from the Dual Address Cycle register. In SGL mode, SGL descriptors become 5 DWORDs
instead of the standard 4 DWORDS for 32-bit transfers. The 5" DWORD in each descriptor specifies the
upper 32-bits of the PCI address, which will be loaded into the Dual-Address Cycle register.

EOTENdLink
Controls DMA descriptor processing when EOT# is asserted during a DMA SGL transfer. If set (=1), when
EOT# is asserted, the DMA controller halts the current SGL transfer and continues to the next descriptor. If
not set (=0), when EOT# is asserted, the DMA transfer halts the current SGL transfer, but does not continue
to the next descriptor.

ValidMode
Enables DMA descriptor valid mode. The DMA descriptor fetch will then only retrieve descriptors with the
valid bit set.

ValidStopControl
Controls whether the DMA engine continuously polls (=0) the current descriptor’s valid bit or halts the
descriptor fetch (=1) when an invalid descriptor is reached.

5-171

LocalBusWidth
Specifies the local bus width for DMA transfers. 0=8-bit, 1=16-bit, 2=32-bit

WaitStates
The walit states inserted after the address strobe and before the data is ready on the bus is defined with this
value.

5-172

PLX_DRIVER_PROP
typedef struct _PLX _DRIVER_PROP

U32 Version;
char Name[16];
char FullName[255];
us blsServiceDriver;
U4 AcpiPcieEcam;
us Reserved[40];
} PLX_DRIVER_PROP;

Purpose

Structure used to report properties of the selected PLX device driver.

Members

Version
Returns the driver version in the form Major[19:16], Minor[15:8]

Name
Returns the string name of the PLX driver being used to access the selected device

FullName
Returns the full user-friendly string name of the PLX driver being used to access the selected device

blsServiceDriver
Returns TRUE if the PLX PCI/PCle Service driver is being used to access the device; otherwise, a value of
FALSE is returned to indicate a PLX Plug ‘n’ Play driver is being used.

AcpiPcieEcam
If available, returns the ACPI Enhanced Configuration Address Mechanism (ECAM) base address. The
ECAM is specified in the PCl Express Specification and contains the memory mapped PCI configuration
space for all PCI devices in the system. PLX drivers utilize this region when PCI extended configuration
registers are accessed (offsets 100h & above). PLX drivers probe ACPI tables in the system to determine
this address.

5-173

PLX_INTERRUPT
typedef struct _PLX_ INTERRUPT

U32 Doorbell; // Up to 32 doorbells

U8 PciMain t1;

U8 PciAbort t1;

U8 LocalToPci 12; // Local->PCI int 1 & 2

U8 DmaDone 24; // DMA channel 0-3 interrupts
U8 DmaPauseDone t4;

U8 DmaAbortDone 24;

U8 DmalmmedStopDone 24;

U8 DmalnvalidDescr t4;

U8 DmaError 14;

U8 MulnboundPost t1;

U8 MuOutboundPost t1;

U8 MuOutboundOverflow t1;

U8 TargetRetryAbort t1;

U8 Message :4; // 6000 NT 0-3 message interrupts
U8 Swlinterrupt g e

U8 ResetDeassert t1;

U8 PmeDeassert t1;

U8 GPIO_4 5 t1; // 6000 NT GPIO 4/5 interrupt
u8 GPIO_14_15 t1; // 6000 NT GPIO 14/15 interrupt
U8 NTV_LE Correctable t1; // 8000 NT Virtual - Link-side error ints

U8 NTV_LE_ Uncorrectable t1;
U8 NTV_LE LinkStateChange :1;
U8 NTV_LE UncorrErrorMsg :1;

U8 HotPlugAttention :1;
U8 HotPlugPowerFault t1;
U8 HotPlugMrilSensor t1;
U8 HotPlugChangeDetect :1;
U8 HotPlugCmdCompleted :1;

} PLX_INTERRUPT;

Purpose

Contains the supported PLX device interrupts used to return active interrupts, enable/disable interrupts, or
select certain interrupts. For all one-bit values, O=disable and 1=disable.

For multi-bit interrupts, interrupt numbers are associated with bit positions. For example, the DmaDone field is
4 bits, representing up to 4 DMA channel done interrupts. Bit 0 = Channel 0, Bit 1 = Channel 1, Bit 2 = Channel
2, & Bit 3 = Channel 3.

Members

Doorbell
Represents up to 32 (0> 31) doorbell interrupts

PciMain
Represents the main PCI interrupt line. This field is only used in interrupt enable/disable API functions.

PciAbort
Represents the PCI abort interrupt.

LocalToPci
Represents the generic Local->PCl interrupts (bit 0 = L>P #1, bit 1 = L>P #2)

5-174

DmaDone
Represents the DMA channel transfer complete interrupts (bit 0=Ch 0, bil=Ch 1, etc)

DmaPauseDone
Represents the DMA pause complete interrupts (bit 0=Ch 0, bi1=Ch 1, etc)

DmaAbortDone
Represents the DMA abort complete interrupts (bit 0=Ch 0, bi1l=Ch 1, etc)

DmalmmedStopDone
Represents the DMA immediate pause/stop complete interrupts (bit 0=Ch 0, bil=Ch 1, etc)

DmalnvalidDescr
Represents the DMA invalid descriptor detected interrupts (bit 0=Ch 0, bil=Ch 1, etc)

DmakError
Represents the general DMA error interrupts (bit 0=Ch 0, bil=Ch 1, etc)

MulnboundPost
Represents the messaging unit’s inbound post FIFO interrupt

MuOutboundPost
Represents the messaging unit’s outbound post FIFO interrupt

MuOutboundOverflow
The value represents the messaging unit’s outbound FIFO overflow interrupt

TargetRetryAbort
Represents the PLX chip’s Target Abort interrupt after 256 Master consecutive retries to the target

Message
For 6254/6540/6466 NT mode, represents the four message interrupts (bit 0=Msg 0, bit 1=Msg 1, etc.)

Swinterrupt
Represents the Software-triggered interrupt of PLX 9000 slave devices (9050/9052/9030)

ResetDeassert
For 6254/6540/6466, represents S_RSTIN# or P_RSTIN# de-assertion interrupt

PmeDeassert
For 6254/6540/6466, represents S_PME# or P_PME# de-assertion interrupt

GPIO_4 5
For 6254/6540/6466, represents GP104 (primary-side) or GPIO5 (secondary-side) interrupt

GPIO_14 15
For 6254/6540/6466, represents GP1014 (primary-side) or GPIO15 (secondary-side) interrupt

NT_LE_Correctable
(8000-series NT Virtual side) NT Link interface detected a correctable TLP error

NT_LE_Uncorrectable
(8000-series NT Virtual side) NT Link interface detected an uncorrectable TLP error

NT_LE_LinkStateChange
(8000-series NT Virtual side) Link interface link state changed (Link Down or Link Up)

NT_LE_UncorrErrorMsg
(8000-series NT Virtual side) Link interface received and uncorrectable error message TLP

HotPlugAttention
Represents the Hot Plug Attention button pressed interrupt.

HotPlugPowerFault
Represents the Hot Plug Power Fault interrupt

5-175

HotPlugMrlSensor
Represents the Hot Plug MRL Sensor interrupt

HotPlugChangeDetect
Represents the Hot Plug Change Detected interrupt

HotPlugCmdCompleted
Represents the Hot Plug Command Completed interrupt

5-176

PLX_MULTI_HOST_PROP

typedef struct PLX MULTI_HOST_PROP

U8 SwitchMode;

Ul6 VS EnabledMask;

U8 VS _UpstreamPortNum[8];

U32 VS _DownstreamPorts[8];

U8 blsMgmtPort;

U8 bMgmtPortActiveEn;

U8 MgmtPortNumActive;

U8 bMgmtPortRedundantEn;

U8 MgmtPortNumRedundant;
} PLX_MULTI_HOST_PROP;

Purpose

Contains properties of PLX multi-root switches.

Members

SwitchMode
Current switch mode. Refer to PLX_CHIP_MODE.

VS_EnabledMask
Bit for each enabled Virtual Switch

VS_UpstreamPortNum
Upstream port number of each Virtual Switch

VS_DownstreamPorts
Downstream ports associated with a Virtual Switch

blsMgmtPort

Specifies whether the selected port is the management port. Will always be TRUE in standard host mode.
In Multi-host mode, properties are only available through the management port; otherwise, they are invalid.

bMgmtPortActiveEn

Specifies whether the active management port is enabled

MgmtPortNumActive
Active management port number

bMgmtPortRedundantEn

Specifies whether the redundant management port is enabled

MgmtPortNumRedundant
Redundant management port number

5-177

PLX_MODE_PROP

typedef struct _PLX MODE_PROP

union

{

struct

Ul6 l12cPort;

U1l6 SlaveAddr;

U32 ClockRate;
} 12c;

struct
{

U64 IpAddress;
} Tcp;

} PLX_MODE_PROP;

Purpose

Used to provide APl mode properties for finding/selecting a device.

Members

I12c.12cPort
Contains the port number for the I°C USB device to use. For Aardvark I°C, starts at ‘0".

I2c.SlaveAddr
The I°C bus address assigned to the PLX chip to access.

I2c.ClockRate
Specifies the 1°C clock rate in KHz

Tcp.lpAddress
Specifies the TCP IP address of the device to access (not currently supported)

5-178

PLX_NOTIFY_OBJECT
typedef struct _PLX _NOTIFY_OBJECT

U32 IsvalidTag; // Magic number to determine validity
U64 pWaitObject; // —-- INTERNAL -- Wait object used by the driver
U64 hEvent; // User event handle (HANDLE can be 32 or 64 bit)

} PLX_NOTIFY_OBJECT;

Purpose

Opagque structure that used for interrupt notification functions

Members

The members in this object should never be accessed directly. The structure definition may change in future
SDK versions and its members are reserved for internal use by the PLX APl and PLX drivers.

5-179

PLX_PCI_BAR_PROP
typedef struct _PLX PCl_BAR_PROP

U64 BarValue;
U6é4 Physical;
U4 Size;
U32 Flags;

} PLX_PCI_BAR_PROP;

Purpose
This data type provides information for a contiguous page-locked buffer allocated by the device driver. This is
typically used as a buffer for DMA transfers.

Members

BarValue

Actual value in the PCI BAR register(s). If the BAR is 64-bit, the value from two BAR spaces will be
combined into a single property.

Physical
The physical address assigned to the BAR

Size
The size of the BAR space

Flags
Contains additional BAR properties as bit flags. Refer to PLX_BAR_FLAG.

5-180

PLX_PERF_PROP

typedef struct _PLX PERF_PROP
U32 IsvalidTag; // Magic number to determine validity

// Port properties
U8 PortNumber;

U8 LinkWidth;

U8 LinkSpeed;

U8 Station;

U8 StationPort;

// Ingress counters

U32 IngressPostedHeader;
U32 IngressPostedDW;

U32 IngressNonpostedDW;
U32 IngressCplHeader;
U32 IngressCplDW;

U32 IngressDIlp;

U32 IngressPhy;

// Egress counters

U32 EgressPostedHeader;
U32 EgressPostedDW;

U32 EgressNonpostedDW;
U32 EgressCplHeader;
U32 EgressCplDW;

U32 EgressDIlp;

U32 EgressPhy;

// Previous Ingress counters
U32 Prev_lIngressPostedHeader;
U32 Prev_IngressPostedDW;

U32 Prev_lIngressNonpostedDW;
U32 Prev_lIngressCplHeader;
U32 Prev_IngressCplDW;

U32 Prev_IngressDIllp;

U32 Prev_IngressPhy;

// Previous Egress counters
U32 Prev_EgressPostedHeader;
U32 Prev_EgressPostedDW;

U32 Prev_EgressNonpostedDW;
U32 Prev_EgressCplHeader;
U32 Prev_EgressCplDW;

U32 Prev_EgressDIlp;

U32 Prev_EgressPhy;

}

Purpose

Used to store the current and previous performance counters obtained from the PLX chip.

Members

These members are not documented because they are reserved for internal use by PLX software tools.

5-181

PLX_PERF_STATS

typedef struct _|

S64

long double
S64

S64

S64

S64

S64

S64

S64

double

long double
long double

S64

long double
S64

S64

S64

S64

S64

S64

S64

double

long double
long double

}

Purpose

PLX_PERF_STATS

IngressTotalBytes;
IngressTotalByteRate;
IngressCplAvgPerReadReq;
IngressCplAvgBytesPerTlp;
IngressPayloadReadBytes;

IngressPayloadReadBytesAvg;

IngressPayloadWriteBytes;

//
//
//
//
//
//
//

IngressPayloadWriteBytesAvg;//

IngressPayloadTotalBytes;
IngressPayloadAvgPerTIlp;
IngressPayloadByteRate;
IngressLinkUtilization;

EgressTotalBytes;
EgressTotalByteRate;
EgressCplAvgPerReadReq;
EgressCplAvgBytesPerTlp;
EgressPayloadReadBytes;
EgressPayloadReadBytesAvg;
EgressPayloadWriteBytes;

EgressPayloadWriteBytesAvg;

EgressPayloadTotalBytes;
EgressPayloadAvgPerTlp;
EgressPayloadByteRate;
EgressLinkUtilization;

//
//
//
//

//
//
//
//
//
//
//
//
//
//
//
//

Total bytes including overhead
Total byte rate

Avg completion TLPs per read req
Avg bytes per completion TLP
Payload bytes read (Cpl TLPs)

Avg read payload bytes (Cpl TLPs)
Payload bytes written (Posted TLPs)
Avg write payload bytes (P. TLPs)
Payload total bytes

Payload average size per TLP
Payload byte rate

Total link utilization

Total byte including overhead
Total byte rate

Avg completion TLPs per read req
Avg bytes per completion TLPs
Payload bytes read (Cpl TLPs)

Avg read payload bytes (Cpl TLPs)
Payload bytes written (Posted TLPs)
Avg write payload bytes (P. TLPs)
Payload total bytes

Payload average size per TLP
Payload byte rate

Total link utilization

Used to store the calculated performance values for a particular port

Members

These members are not documented because they are reserved for internal use by PLX software tools.

5-182

PLX_PHYSICAL_MEM
typedef struct _PLX PHYSICAL_MEM

U64 UserAddr;
U64 PhysicalAddr;
U64 CpuPhysical;
U32 Size;

} PLX_PHYSICAL_MEM;

Purpose

This data type provides information for a contiguous page-locked buffer allocated by the device driver. This is
typically used as a buffer for DMA transfers.

Members

UserAddr
User Virtual Address for the buffer

PhysicalAddr
The Bus or Logical Physical address of the buffer. This address may be used to program the DMA engine.

CpuPhysical
The CPU Physical address of the buffer. This value is used internally by the PLX driver for mappings to
user space.

Size
The size of the buffer.

Notes

The CPU address is the physical address from the point of view of the CPU. The Bus or Logical physical
address is the address from the point of view of a device. The bus address should be used when programming
PCI addresses in hardware (e.g. DMA controllers). On x86 platforms, CPU and Logical addresses are the same
because no I/O Memory Management Unit (IOMMU) exists on these systems. On other platforms, the CPU
address may not be equal to the Logical address.

PLX software already includes placeholders for the various addresses. If the correct field is used when code is
written, applications should work properly on all target platforms, regardless of whether an IOMMU exists or not.

5-183

PLX_PORT_PROP
typedef struct _PLX PORT_PROP

U8 PortType;

U8 PortNumber;

U8 LinkWidth;

U8 MaxLinkWidth;

U8 LinkSpeed;

U8 MaxLinkSpeed;

Ul6 MaxReadReqSize;

Ul6 MaxPayloadSize;

Ul6 MaxPayloadSupported;

U8 bNonPcieDevice;
} PLX_PORT_PROP;

Purpose

Structure used to report PCI Express port properties.

Members

PortType
Contains the port type (refer to PLX_PORT_TYPE)

PortNumber
Contains the port number

Linkwidth
Specifies the negotiated link width

MaxLinkWidth
Specifies the maximum link width the device is capable of

LinkSpeed

Specifies the negotiated link speed (1 = 2.5 Gbps, 2 = 5 Ghps)
MaxLinkSpeed

Specifies the maximum link speed the device is capable of

MaxReadReqSize
Specifies the maximum amount of data the device may request in a single PCI Express read packet

MaxPayloadSize
Specifies the current maximum TLP payload size (MPS) setting in the device

MaxPayloadSupported
Specifies the maximum TLP payload size (MPS) supported by the device

bNonPcieDevice
Flag to specify whether the device is not a PCI Express device (i.e. does not support PCl Express
Capability)

5-184

PLX_ VERSION
typedef struct _PLX VERSION

PLX_API_MODE ApiMode;

union

{

struct

{
Ul6 ApiLibrary;
U1l6 Software;
U1l6 Firmware;
U16 Hardware;
Ul6 SwReqgByFw;
U1l6 FwReqgBySw;
Ul6 ApiReqBySw;
U32 Features;

} 12c;

} PLX_VERSION;

Purpose

Structure used to report version information. All 16-bit version numbers are in the format (Major << 8) | (Minor).
For example, the number 0114h = v1.20.

Members

ApiMode
Contains the ApiMode that the version information is for. This determines which union in the structure is
contains valid information. (Refer to PLX_API_MODE)

I2c.ApiLibrary
Version of the 12C API libraray

I12c.Software
Version of the 12C software

I12c.Firmware
Version of the firmware in the 12C USB device

I2c.Hardware
Version of the 12C USB hardware

12c.SwRegByFw

Firmware requires that software version must be >= this version
I2c.ApiReqBySw

Software requires that the API version must be >= this version

I2c.Features
Bitmask of features supported by the device. At the time of this writing, these are the features:

#define AA_FEATURE_SPI 0x00000001
#define AA_FEATURE_I2C 0x00000002
#define AA_FEATURE_GPIO 0x00000008

#define AA_FEATURE_I2C_MONITOR 0x00000010

5-185

	PLX SDK User Manual
	Table of Contents
	1 General Information
	1.1 About this Manual
	1.2 PLX SDK Features
	1.3 Terminology

	2 Getting Started
	2.1 Development Tools
	2.2 PLX SDK Version Compatibility
	2.3 PLX SDK Installation in Microsoft Windows
	2.4 PLX SDK Removal
	2.5 Installation of PLX Device Drivers in Windows
	2.5.1 PLX Plug and Play Device Driver Installation
	2.5.1.1 PLX Device Driver Installation
	2.5.1.2 Modifying the PLX INF File for Use with Custom Device/Vendor IDs

	2.5.2 PLX PCI/PCIe Service Driver
	2.5.2.1 Install Using Service Control Manager (SCM) API
	2.5.2.2 Install Using Windows “sc.exe” Utility
	2.5.2.3 Install Manually via Registry and Reboot
	2.5.2.4 Starting and Stopping the PLX Service Driver
	2.5.2.4.1 Use command-line utilities
	2.5.2.4.2 Use Device Manager

	2.5.3 Modifying PLX Driver Options in the Registry
	2.5.3.1 PLX Driver Options Wizard

	2.6 Installation of PLX Device Drivers in Linux
	2.7 Distribution of PLX Software
	2.7.1 License Agreement

	3 PLX Host-side Software
	3.1 SDK Directory Structure
	3.2 PLX SDK Architecture Overview
	3.3 PLX API Library
	3.4 Device Drivers
	3.5 PLX API and Multi-threading
	3.5.1 PLX Device Driver Directory Structure
	3.5.2 Building Windows Device Drivers

	3.6 User-mode Applications
	3.6.1 PLX Sample Applications
	3.6.2 Creating Windows PCI Host Applications

	4 PLX Debug Utilities
	4.1 PLX PEX Device Editor (PDE)
	4.1.1 Probe Mode
	4.1.2 Selecting Signal combinations for probe mode
	4.1.3 External and Internal Modes
	4.1.4 Capturing, Saving and displaying data
	4.1.5 Serdes Eye Width
	4.1.5.1 Serdes Eye for PLX Gen2 Devices
	4.1.5.2 Serdes Eye for PLX Gen3 Devices

	4.2 PLX GenMon
	4.2.1 Performace Monitor
	4.2.2 Packet Generator

	4.3 PLXMon
	4.3.1 PLXMon Access Modes
	4.3.1.1 PCI Mode
	4.3.1.2 EEPROM File Edit Mode
	4.3.1.3 Serial Mode

	4.3.2 PLXMon Toolbar
	4.3.3 Working with PLXMon Dialogs
	4.3.3.1 Register Dialogs
	4.3.3.2 EEPROM Dialogs
	4.3.3.3 Memory Access Dialog

	4.3.4 Specifying PLX Chip Type for Unknown Devices
	4.3.5 Performance Measure Dialog
	4.3.5.1 Notes before Using the Performance Measure
	4.3.5.2 Performance Measure Options
	4.3.5.3 DMA Performance Test
	4.3.5.4 Direct Slave Performance Test

	4.3.6 The Command-Line Interface
	4.3.7 Working with Virtual Addresses
	4.3.8 Command-Line Variables

	5 PLX SDK API Reference
	5.1 PLX API Functions
	5.2 PLX API Data Structures and Types
	5.2.1 Standard Data Types
	5.2.1.1 Code Portability Macros

	5.2.2 Enumerated Types
	5.2.3 Data Structures

