

Pixie-16
Programmer’s Manual

Version 3.07
October 13, 2019

Hardware Revisions: B, C, D, F

XIA LLC
31057 Genstar Rd

Hayward, CA 94544 USA
Email: support@xia.com

Tel: (510) 401-5760; Fax: (510) 401-5761
http://www.xia.com/

Information furnished by XIA LLC is believed to be accurate and reliable. However, no responsibility is assumed by

XIA LLC for its use, or for any infringements of patents or other rights of third parties which may result from its use.

No license is granted by implication or otherwise under any patent or patent rights of XIA LLC. XIA LLC reserves

the right to change hardware or software specifications at any time without notice.

http://www.xia.com/

Pixie-16 Programmer’s Manual

Version 3.07 www.xia.com 2

Table of Contents
Warranty Statement .. 4

Contact Information: ... 4

XIA LLC License Agreement: .. 4

Manual Conventions ... 6

1 Introduction ... 7

1.1 About this manual ... 7

1.2 PIXIE-16 API Architecture ... 7

1.3 Windows and Linux Support .. 8

1.4 Support for Different PIXIE-16 Hardware Revisions ... 8

2 Getting Started .. 9

2.1 Pixie-16 API Source Code .. 9

2.2 Installation of PLX API Library ... 9

2.3 Library Compilation Tools.. 9

2.3.1 Windows ... 9
2.3.2 Linux ... 9

3 PIXIE-16 API Reference .. 10

3.1 Overview ... 10

3.2 PIXIE-16 API Functions ... 12

3.2.1 Pixie16AcquireADCTrace .. 13
3.2.2 Pixie16AcquireBaselines .. 14
3.2.3 Pixie16AdjustOffsets .. 15
3.2.4 Pixie16BLcutFinder .. 16
3.2.5 Pixie16BootModule .. 17
3.2.6 Pixie16CheckExternalFIFOStatus .. 20
3.2.7 Pixie16CheckRunStatus .. 21
3.2.8 Pixie16ComputeFastFiltersOffline ... 22
3.2.9 Pixie16ComputeInputCountRate .. 24
3.2.10 Pixie16ComputeLiveTime .. 25
3.2.11 Pixie16ComputeOutputCountRate .. 26
3.2.12 Pixie16ComputeProcessedEvents ... 27
3.2.13 Pixie16ComputeRealTime .. 28
3.2.14 Pixie16ComputeSlowFiltersOffline .. 29
3.2.15 Pixie16ControlTaskRun .. 31
3.2.16 Pixie16CopyDSPParameters ... 32
3.2.17 Pixie16EMbufferIO .. 34
3.2.18 Pixie16EndRun ... 36
3.2.19 Pixie16ExitSystem .. 37
3.2.20 Pixie16GetEventsInfo ... 38
3.2.21 Pixie16GetModuleEvents ... 40
3.2.22 Pixie16IMbufferIO.. 41
3.2.23 Pixie16InitSystem ... 43
3.2.24 Pixie16LoadDSPParametersFromFile .. 45
3.2.25 Pixie16ProgramFippi .. 46
3.2.26 Pixie16RampOffsetDACs (deprecated) .. 47
3.2.27 Pixie16ReadCSR ... 49
3.2.28 Pixie16ReadDataFromExternalFIFO .. 50
3.2.29 Pixie16ReadHistogramFromFile .. 51

http://www.xia.com/

Pixie-16 Programmer’s Manual

Version 3.07 www.xia.com 3

3.2.30 Pixie16ReadHistogramFromModule .. 52
3.2.31 Pixie16ReadListModeTrace .. 53
3.2.32 Pixie16ReadModuleInfo ... 55
3.2.33 Pixie16ReadSglChanADCTrace ... 56
3.2.34 Pixie16ReadSglChanBaselines ... 58
3.2.35 Pixie16ReadSglChanPar ... 60
3.2.36 Pixie16ReadSglModPar .. 62
3.2.37 Pixie16ReadStatisticsFromModule ... 64
3.2.38 Pixie16RegisterIO ... 65
3.2.39 Pixie16SaveDSPParametersToFile ... 66
3.2.40 Pixie16SaveExternalFIFODataToFile .. 67
3.2.41 Pixie16SaveHistogramToFile ... 69
3.2.42 Pixie16SetDACs ... 70
3.2.43 Pixie16StartHistogramRun ... 71
3.2.44 Pixie16StartListModeRun ... 73
3.2.45 Pixie16TauFinder .. 75
3.2.46 Pixie16WriteCSR .. 76
3.2.47 Pixie16WriteSglChanPar .. 77
3.2.48 Pixie16WriteSglModPar ... 80

3.3 PIXIE-16 Utility Functions ... 82

4 Control Parameters ... 83

4.1 User and DSP parameter overview ... 83

4.2 User Parameters .. 87

4.2.1 System Parameters .. 87
4.2.2 Module Parameters (Input) ... 87
4.2.3 Module Parameters (Output) ... 89
4.2.4 Channel Parameters (Input) .. 89
4.2.5 Channel Parameters (Output) .. 91

4.3 DSP Parameters .. 92

4.3.1 Module input parameters .. 92
4.3.2 Channel input parameters .. 95
4.3.3 Module output parameters .. 103
4.3.4 Channel output parameters .. 104

4.4 DSP Control Tasks .. 105

5 Control Registers .. 107

5.1 PCI Host Control Register .. 107

http://www.xia.com/

Pixie-16 Programmer’s Manual

Version 3.07 www.xia.com 4

Warranty Statement

XIA LLC warrants that this product will be free from defects in materials and workmanship

for a period of one (1) year from the date of shipment. If any such product proves defective

during this warranty period, XIA LLC, at its option, will either repair the defective products

without charge for parts and labor, or will provide a replacement in exchange for the

defective product.

In order to obtain service under this warranty, Customer must notify XIA LLC of the defect

before the expiration of the warranty period and make suitable arrangements for the

performance of the service.

This warranty shall not apply to any defect, failure or damage caused by improper uses or

inadequate care. XIA LLC shall not be obligated to furnish service under this warranty a)

to repair damage resulting from attempts by personnel other than XIA LLC representatives

to repair or service the product; or b) to repair damage resulting from improper use or

connection to incompatible equipment.

THIS WARRANTY IS GIVEN BY XIA LLC WITH RESPECT TO THIS PRODUCT IN

LIEU OF ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED. XIA LLC AND

ITS VENDORS DISCLAIM ANY IMPLIED WARRANTIES OF

MERCHANTABILITYOR FITNESS FOR A PARTICULAR PURPOSE. XIA’S

RESPONSIBILITY TO REPAIR OR REPLACE DEFECTIVE PRODUCTS IS THE

SOLE AND EXCLUSIVE REMEDY PROVIDED TO THE CUSTOMER FOR BREACH

OF THIS WARRANTY. XIA LLC AND ITS VENDORS WILL NOT BE LIABLE FOR

ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES

IRRESPECTIVE OF WHETHER XIA LLC OR THE VENDOR HAS ADVANCE

NOTICE OF THE POSSIBILITY OF SUCH DAMAGES.

Contact Information:

XIA LLC

31057 Genstar Rd.

Hayward, CA 94544 USA

Telephone: +1 (510) 401-5760

Downloads: http://support.xia.com

Customer Support: support@xia.com

XIA LLC License Agreement:

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND

CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,

INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE

DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR

CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,

http://www.xia.com/
mailto:support@xia.com

Pixie-16 Programmer’s Manual

Version 3.07 www.xia.com 5

SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT

NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;

LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER

CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,

STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)

ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF

ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

LICENSE Copyright © 2019 XIA LLC

http://www.xia.com/

Pixie-16 Programmer’s Manual

Version 3.07 www.xia.com 6

Manual Conventions

The following conventions are used throughout this manual.

Convention Description Example

»

The » symbol leads you

through nested menu items

and dialog box options.

The sequence

Run Results»MCA Histogram directs you to

pull down the Run Results menu, and select the

MCA Histogram item.

Bold

Bold text denotes items that

you must select or click on in

the software, such as menu

items, and dialog box options.

...click on the Startup tab.

[Bold]
Bold text within [] denotes a

command button.

[Start] indicates the command button labeled

Start Run.

monospace

Items in this font denote text

or characters that you enter

from the keyboard, sections

of code, file contents, and

syntax examples.

Setup.exe refers to a file called “setup.exe”

on the host computer.

“window”

Text in quotation refers to

window titles, and quotations

from other sources

“Acquire ADC Traces” indicates the window

accessed via Settings»Acquire ADC Traces.

Italics

Italic text denotes a new term

being introduced , or simply

emphasis

rise time refers to the length of the slow filter.

...it is important first to set the energy filter flat

top so that it is at least one unit greater than the

preamplifier risetime...

<Key>

<Shift-Alt-

Delete> or

<Ctrl+D>

Angle brackets denote a key

on the keybord (not case

sensitive).

A hyphen or plus between

two or more key names

denotes that the keys should

be pressed simultaneously

(not case sensitive).

<W> indicates the W key

<Ctrl+W> represents holding the control key

while pressing the W key on the keyboard

Bold italic Warnings and cautionary text.
CAUTION: Improper connections or settings

can result in damage to system components.

CAPITALS
CAPITALS denote DSP

parameter names

SLOWLEN is the length of the slow energy

filter

SMALL CAPS

SMALL CAPS are used for

panels/windows/graphs in the

GUI.

…go to the READ HISTOGRAMS panel and you

see…

http://www.xia.com/

Pixie-16 Programmer’s Manual

Version 3.07 www.xia.com 7

1 Introduction

1.1 About this manual

This manual provides information about the functionality of the Pixie-16 Application

Programming Interface (API). The Pixie-16 API consists of a set of C functions for

building various data acquisition applications that use Pixie-16 modules from XIA LLC.

Users should consult this manual for details of each API function when creating their own

data acquisition applications or integrating the Pixie-16 API into their existing data

acquisition systems.

1.2 PIXIE-16 API Architecture

The Pixie-16 API consists of two libraries: Application Library and System Library. Each

library performs different functionality, is standalone, and can be compiled separately. The

following drawing illustrates the basic architecture of the Pixie-16 API.

PIXIE-16 MODULE

PLX PCI

9054

PIXIE-16 SYSTEM LIBRARY
(Functions that communicate to the Pixie-16 module

via PCI bus and PLX PCI 9054 I/O Accelerator)

PIXIE-16 APPLICATION LIBRARY
(Functions that translate user parameters into DSP

parameters and control the operation of Pixie-16

modules)

P
C

I B
u

s

The Application Library consists of C functions that translate user parameters into DSP

parameters and control the operation of Pixie-16 modules. They call functions in the

System Library to communicate to the Pixie-16 module. Since the Pixie-16 is an all-digital

signal processing module whose operation is controlled by parameters in digital forms (e.g.

filter length in multiples of 10 ns ADC sampling rate), there are functions in the Application

Library that convert parameters from physical units (e.g. µs, volts, etc.) into digital formats

that can be understood by the Pixie-16 modules. Other Application Library functions

configure Pixie-16 modules, make MCA or list mode runs and retrieve data from the Pixie-

16 modules.

http://www.xia.com/

Pixie-16 Programmer’s Manual

Version 3.07 www.xia.com 8

Functions in the System Library communicate directly to the Pixie-16 hardware through

the PCI bus (32-bit, 33 MHz) and the PCI 9054 I/O Accelerator from PLX Technology

Inc. (PLX Technology, Inc. is now part of Broadcom Inc.) PLX PCI 9054 is a 32-bit PCI

bus mastering interface chip that on one side connects to the Pixie-16 FPGAs through the

local bus, and on the other side connects to the host computer through the 32-bit PCI bus.

PLX provides a Software Development Kit (SDK) for users to develop their own software

utilizing PLX API functions. The Pixie-16 System Library is built upon the PLX API

functions to communicate to the Pixie-16 modules.

1.3 Windows and Linux Support

The Pixie-16 API supports the operation of the Pixie-16 modules in both Windows and

Linux operating systems. Both the System and Application Library incorporate

precompiler switches that can be used to switch the compilation of the library codes to be

used under either Windows or Linux. For Windows, PLX provides an API DLL file that

can be directly called upon. For Linux, PLX provides source codes for its API library that

can be compiled under most standard Linux distributions, such as RedHat or Fedora. A

user can download either the Windows or Linux SDK package from Broadcom’s web site

to gain access to PLX’s API library source codes:

https://www.broadcom.com/products/pcie-switches-bridges/usb-pci/io-

accelerators/pci9054#downloads

(Please search for PCI 9054 at Broadcom’s web site if the above link is removed later on).

1.4 Support for Different PIXIE-16 Hardware Revisions

The Pixie-16 was first developed in 2004, and since then there have been a total of five

hardware revisions: Rev-A, B, C, D, and F (E was a development revision that was never

released). The main difference among these revisions is that Rev. A modules use two

SRAM memories to allow alternating data readout between these two SRAM memories

(ping-pong memory) while other revisions’ modules have an external FIFO memory to

stream data. However, Rev-A modules have become obsolete and are no longer supported

in this version of the software.

Different Pixie-16 hardware revisions are managed by reading module information that are

stored in the module’s onboard EEPROM. Before booting a module, Pixie-16 API function

Pixie16ReadModuleInfo should be called to retrieve the revision, serial number, number

of ADC bits, and ADC sampling rate of the module so that appropriate firmware and

parameter files can be chosen to successfully boot the module.

http://www.xia.com/
https://www.broadcom.com/products/pcie-switches-bridges/usb-pci/io-accelerators/pci9054#downloads
https://www.broadcom.com/products/pcie-switches-bridges/usb-pci/io-accelerators/pci9054#downloads

Pixie-16 Programmer’s Manual

Version 3.07 www.xia.com 9

2 Getting Started

2.1 Pixie-16 API Source Code

Source code for the Pixie-16 APIs is part of the XIA software releases. Please check

http://support.xia.com/default.asp?W372

for the most recent version. The site also has links to user-developed Pixie-16 software.

2.2 Installation of PLX API Library

The Pixie-16 software is based on the PLX API. Users should first try to download the

PLX SDK packages from Broadcom Inc.’s web site. However, XIA will not always update

the Pixie-16 API once a new version of the PLX SDK becomes available. This is because

a newer version of the PLX SDK sometimes only contains updates for a specific PLX

product family, not necessarily the ones used by the Pixie-16s. Consequently, users should

always contact XIA for information about the version of the PLX SDK which is being used

in the Pixie-16 API.

Once users possess the PLX SDK package, please follow the instructions contained in the

SDK to install the package in either Windows or Linux operating systems.

2.3 Library Compilation Tools

The Pixie-16 API libraries can be built using various tools. The following tools were used

by XIA to build the libraries. There are many compatible alternative tools available for the

various build environments. Customers are free to use their own preferred sets of

compatible compilers.

2.3.1 Windows

Microsoft Visual C++ 6.0 was used to compile both the Application and System Library.

There are two static libraries that were needed to link to the Pixie-16 API libraries. One is

PlxApi.lib, which is provided by the PLX SDK. The other is WINMM.lib, which is part of

the Microsoft Visual Studio SDK package (under \Microsoft Visual Studio\VC98\Lib). If

users don’t have the Microsoft Visual Studio SDK package installed on their computers,

they can download the Microsoft Platform SDK from Microsoft’s website and install it on

their computers (go to www.microsoft.com and then search “Platform SDK”).

Alternatively, GCC can also be used to compile the libraries on Windows.

2.3.2 Linux

GCC was used to build both the Application and System Library in Fedora Linux

distribution. Libraries can be compiled as either static or shared libraries.

http://www.xia.com/
http://support.xia.com/default.asp?W372

Pixie-16 Programmer’s Manual

Version 3.07 www.xia.com 10

3 PIXIE-16 API Reference

This section provides the details of all Pixie-16 API functions.

3.1 Overview

In order to better illustrate the usage of the functions in the Pixie-16 API, an overview of

the operation of Pixie-16 is given below and the usage of the API functions is mentioned

wherever appropriate.

At first the system needs to be initialized. This is a process in which the Pixie-16 modules

are made known to the system and are “opened” for communication via the PCI interface.

The function Pixie16InitSystem is used to achieve this. This has to be done once

after the embedded computer, or desktop computer if using a PCI bridge, has booted.

The second step is to boot the Pixie-16 modules. It involves downloading all FPGA

configurations and booting the digital signal processor (DSP). It concludes with

downloading all DSP parameters (the instrument settings) and commanding the DSP to

program the FPGAs and the on-board digital to analog converters (DAC). All this has been

encapsulated in a single function Pixie16BootModule. However, if the module

information is unknown to the user, function Pixie16ReadModuleInfo should be

called first to retrieve variant information of the module so that appropriate firmware, DSP

and configuration parameters files can be chosen for the module prior to calling function
Pixie16BootModule.

Now, the instrument is ready for data acquisition. An important mode of operation is MCA

histogram run which can be used for diagnostic and calibration purposes. The system can

be programmed to acquire independent or coincident energy histograms, or spectra, on

each channel. The function to start a histogram run is Pixie16StartHistogramRun.

MCA runs can time out by themselves when the elapsed run time reaches the preset run

time, or the user can end them prematurely by using Pixie16EndRun, which can also

be used to prematurely end list mode runs as well. Afterwards, histogram and statistics data

are available for read out by the host computer (histograms can also be read out while the

run is in progress) using functions Pixie16ReadHistogramFromModule and

Pixie16ReadStatisticsFromModule. If the MCA run is set to time out by itself,

users can call the function Pixie16CheckRunStatus to see whether the MCA run is

still ongoing or has finished.

Normal operation of the instrument is to start the list mode data acquisition run using the

NEW_RUN mode to erase any old histograms and statistics information by using function

Pixie16StartListModeRun. The host computer will poll the status of the external

FIFO by using function Pixie16CheckExternalFIFOStatus, and if the status

indicates there is data in the FIFO, functions Pixie16ReadExternalFIFO or

Pixie16SaveExternalFIFODataToFile can be used to read data from the

external FIFO and save the data to a file on the local hard drives. List mode runs can be

stopped by calling function Pixie16EndRun. After the list mode run ends, histogram

and statistics data are available for read out by the host computer just as in the case of a

MCA mode run.

http://www.xia.com/

Pixie-16 Programmer’s Manual

Version 3.07 www.xia.com 11

From the statistics data, users can compute useful quantities like real time, total number of

processed events, live time, input count rate, and output count rate by using the functions
Pixie16ComputeRealTime,Pixie16ComputeProcessedEvents,

Pixie16ComputeLiveTime,Pixie16ComputeInputCountRate,

Pixie16ComputeOutputCountRate, respectively.

The following diagram illustrates the sequences for operating the Pixie-16 modules.

Initialize Pixie-16 System
(Pixie16InitSystem)

Boot Pixie-16 Modules
(Pixie16BootModule)

Start MCA run
(Pixie16StartHistogramRun)

Check run status
(Pixie16CheckRunStatus)

Run

ended?

Force run

to end?

No

No

Stop run
(Pixie16EndRun)

Yes

Read histogram and

statistics data
(Pixie16ReadHistogramFromModule,

Pixie16ReadStatisticsFromModule)

Yes

Start List Mode run
(Pixie16StartListModeRun)

Read data from external FIFO
(1

st
: Pixie16CheckExternalFIFOStatus,

2
nd

: Pixie16SaveExternalFIFODataToFile

or Pixie16ReadDataFromExternalFIFO)

Force run to

end?

No

Stop run
(Pixie16EndRun)

Yes

Read histogram and

statistics data
(Pixie16ReadHistogramFromModule,

Pixie16ReadStatisticsFromModule)

http://www.xia.com/

Pixie-16 Programmer’s Manual

Version 3.07 www.xia.com 12

3.2 PIXIE-16 API Functions

API Function Name Description

Pixie16AcquireADCTrace Acquire ADC traces in single or multiple modules

Pixie16AcquireBaselines Acquire baselines from a module

Pixie16AdjustOffsets Adjust DC-offsets in single or multiple modules

Pixie16BLcutFinder Compute new Baseline Cut values of a module

Pixie16BootModule Boot modules so that they can be set up for data taking

Pixie16CheckExternalFIFOStatus Check status of external FIFO of a module

Pixie16CheckRunStatus Check status of a data acquisition run

Pixie16ComputeFastFiltersOffline Compute fast filter response for offline analysis

Pixie16ComputeInputCountRate Compute input count rate of a channel

Pixie16ComputeLiveTime Compute live time that a channel accumulated in a run

Pixie16ComputeOutputCountRate Compute output count rate of a channel

Pixie16ComputeProcessedEvents Compute number of events processed by a module

Pixie16ComputeRealTime Compute real time that a module accumulated in a run

Pixie16ComputeSlowFiltersOffline Compute slow filter response for offline analysis

Pixie16ControlTaskRun Execute special control tasks

Pixie16CopyDSPParameters Copy DSP parameters from a module to others

Pixie16EMbufferIO Transfer data between host and DSP external memory

Pixie16EndRun Stop a data acquisition run

Pixie16ExitSystem Release user virtual addressees assigned to modules

Pixie16GetEventsInfo Get detailed events information from a data file

Pixie16GetModuleEvents Parse a list mode data file to get events information

Pixie16IMbufferIO Transfer data between host and DSP internal memory

Pixie16InitSystem Configure modules for communication in PXI chassis

Pixie16LoadDSPParametersFromFile Load DSP parameters to modules from a file

Pixie16ProgramFippi Program on-board signal processing FPGAs

Pixie16RampOffsetDACs Ramp Offset DACs of a module and record the baselines

Pixie16ReadCSR Read Control & Status Register value from a module

Pixie16ReadDataFromExternalFIFO Read data from external FIFO of a module

Pixie16ReadHistogramFromFile Read histogram data from a histogram data file

Pixie16ReadHistogramFromModule Read histogram data from a module

Pixie16ReadListModeTrace Read trace data from a list mode data file

Pixie16ReadModuleInfo Read information about a module stored in the EEPROM

Pixie16ReadSglChanADCTrace Read ADC trace data from a channel in a module

Pixie16ReadSglChanBaselines Read baselines from a channel in a module

Pixie16ReadSglChanPar Read a CHANNEL level parameter from a module

Pixie16ReadSglModPar Read a MODULE level parameter from a module

Pixie16ReadStatisticsFromModule Read run statistics data from a module

Pixie16RegisterIO Read from or write to registers on a module

Pixie16SaveDSPParametersToFile Read DSP parameters from modules and save to a file

Pixie16SaveExternalFIFODataToFile Read data from external FIFO and save to a file

Pixie16SaveHistogramToFile Read histogram data from a module and save to a file

Pixie16SetDACs Program on-board DACs

Pixie16StartHistogramRun Start a MCA histogram mode data acquisition run

Pixie16StartListModeRun Start a list mode data acquisition run

Pixie16TauFinder Find the exponential decay time of a channel

Pixie16WriteCSR Write to Control & Status Register in a module

Pixie16WriteSglChanPar Write a CHANNEL level parameter to a module

Pixie16WriteSglModPar Write a MODULE level parameter to a module

http://www.xia.com/

Pixie-16 Programmer’s Manual

Version 3.07 www.xia.com 13

3.2.1 Pixie16AcquireADCTrace

Syntax

int Pixie16AcquireADCTrace (

 unsigned short ModNum) // module number

Description

Use this function to acquire ADC traces from Pixie-16 modules. Specify the module using ModNum

which starts counting at 0. If ModNum is set to be less than the total number of modules in the system, only

the module specified by ModNum will have its ADC traces acquired. But if ModNum is equal to the total

number of modules in the system, then all modules in the system will have their ADC traces acquired.

After the successful return of this function, the DSP’s internal memory will be filled with ADC trace

data. A user’s application software should then call the function Pixie16ReadSglChanADCTrace to

read the ADC trace data out to the host computer, channel by channel.

Return values

Value Description Error Handling

0 Success None

-1 Invalid Pixie-16 module number Correct ModNum

-2 Failed to start run Reboot the modules

-3 Acquiring ADC traces timed out Reboot the modules

Usage example

unsigned short ModNum;

int retval;

// assume we want to acquire ADC trace from module 0

ModNum = 0;

// acquire the trace

retval = Pixie16AcquireADCTrace (ModNum);

if(retval < 0)

{

 // error handling

}

http://www.xia.com/

Pixie-16 Programmer’s Manual

Version 3.07 www.xia.com 14

3.2.2 Pixie16AcquireBaselines

Syntax

int Pixie16AcquireBaselines (

 unsigned short ModNum) // module number

Description

Use this function to acquire baselines from Pixie-16 modules. Specify the module using ModNum which

starts counting at 0. If ModNum is set to be less than the total number of modules in the system, only the

module specified by ModNum will have its baselines acquired. But if ModNum is set to be equal to the

total number of modules in the system, then all modules in the system will have their baselines acquired.

After the successful return of this function, the DSP’s internal memory will be filled with baselines data.

Users should then call the function Pixie16ReadSglChanBaselines to read the baselines data out

to the host computer, channel by channel.

Return values

Value Description Error Handling

0 Success None

-1 Invalid Pixie-16 module number Correct ModNum

-2 Failed to start the GET_BASELINES run Reboot the modules

-3 GET_BASELINES run timed out Reboot the modules

Usage example

unsigned short ModNum;

int retval;

// assume we want to acquire baselines for module 0

ModNum = 0;

// acquire the trace

retval = Pixie16AcquireBaselines (ModNum);

if(retval < 0)

{

 // error handling

}

http://www.xia.com/

Pixie-16 Programmer’s Manual

Version 3.07 www.xia.com 15

3.2.3 Pixie16AdjustOffsets

Syntax

int Pixie16AdjustOffsets (

 unsigned short ModNum) // module number

Description

Use this function to adjust the DC-offsets of Pixie-16 modules. Specify the module using ModNum

which starts counting at 0. If ModNum is set to be less than the total number of modules in the system, only

the module specified by ModNum will have its DC-offsets adjusted. But if ModNum is set to be equal to

the total number of modules in the system, then all modules in the system will have their DC-offsets

adjusted.

After the DC-offset levels have been adjusted, the baseline level of the digitized input signals will be

determined by the DSP parameter BaselinePercent. For instance, if BaselinePercent is set to 10(%), the

baseline level of the input signals will be ~ 409 on the 12-bit ADC scale (minimum: 0; maximum: 4095).

The main purpose of this function is to ensure the input signals fall within the voltage range of the ADCs

so that all input signals can be digitized by the ADCs properly.

Return values

Value Description Error Handling

0 Success None

-1 Invalid Pixie-16 module number Check if ModNum is valid

-2
Failed to start the

ADJUST_OFFSETS run
Reboot the module

-3 ADJUST_OFFSETS run timed out Check error message log file Pixie16msg.txt

Usage example

int retval;

unsigned short ModNum;

// set to the first module

ModNum = 0;

// adjust dc-offsets

retval = Pixie16AdjustOffsets(ModNum);

if(retval < 0)

{

 // error handling

}

http://www.xia.com/

Pixie-16 Programmer’s Manual

Version 3.07 www.xia.com 16

3.2.4 Pixie16BLcutFinder

Syntax

int Pixie16BLcutFinder (

 unsigned short ModNum, // module number

 unsigned short ChanNum, // channel number

 unsigned int *BLcut) // returned BLcut value

Description

Use this function to find the Baseline Cut value for one channel of a Pixie-16 module. The baseline cut

value is then downloaded to the DSP, where baselines are captured and averaged over time. The cut value

would prevent a bad baseline value from being used in the averaging process, i.e., if a baseline value is

outside the baseline cut range, it will not be used for computing the baseline average. Averaging baselines

over time improves energy resolution measurement.

ModNum is the module number which starts counting at 0. ChanNum is the channel number which starts

counting at 0.

Return values

Value Description Error Handling

0 Success None

-1 Invalid Pixie-16 module number Check if ModNum is valid

-2 Failed to collect baselines Reboot the module

-3
Failed to read baselines from the

data memory
Check error message log file Pixie16msg.txt

Usage example

int retval;

unsigned short ModNum, ChanNum;

unsigned int BLcut;

// set to the first module

ModNum = 0;

// set to the first channel

ChanNum = 0;

// find the BLcut value

retval = Pixie16BLcutFinder(ModNum, ChanNum, &BLcut);

if(retval < 0)

{

 // error handling

}

http://www.xia.com/

Pixie-16 Programmer’s Manual

Version 3.07 www.xia.com 17

3.2.5 Pixie16BootModule

Syntax

int Pixie16BootModule (

 char *ComFPGAConfigFile, // name of ComFPGA configuration file

 char *SPFPGAConfigFile, // name of SPFPGA configuration file

 char *TrigFPGAConfigFile, // name of trigger FPGA file

 char *DSPCodeFile, // name of DSP code file

 char *DSPParFile, // name of DSP parameter file

 char *DSPVarFile, // name of DSP variable names file

 unsigned short ModNum, // pixie-16 module number

 unsigned short BootPattern) // boot pattern bit mask

Description

Use this function to boot Pixie-16 modules so that they can be set up for data taking. The function

downloads to the Pixie-16 modules the communication (or system) FPGA configurations, signal processing

FPGA configurations, trigger FPGA configurations (Revision A modules only), executable code for the

digital signal processor (DSP), and DSP parameters.

The FPGA configurations consist of a fixed number of words depending on the hardware mounted on

the modules; the DSP codes have a length which depends on the actual compiled code; and the set of DSP

parameters always consists of 1280 32-bit words for each module. The host software has to make the names

of those boot data files on the hard disk available to the boot function.

ModNum is the module number which starts counting at 0. If ModNum is set to be less than the total

number of modules in the system, only the module specified by ModNum will be booted. But if ModNum

is equal to the total number of modules in the system, e.g. there are 5 modules in the chassis and ModNum

= 5, then all modules in the system will be booted.

The boot pattern is a bit mask (shown below) indicating which on-board chip will be booted. Under

normal circumstances, all on-board chips should be booted, i.e. the boot pattern would be 0x7F. For Rev-

B, C, D, F modules, bit 1, i.e., “Boot trigger FPGA”, will be ignored even if that bit is set to 1.

Bit Description Applicable hardware

0 Boot communication FPGA All Pixie-16 Revisions

1 Boot trigger FPGA Pixie-16 Revision A only

2 Boot signal processing FPGA All Pixie-16 Revisions

3 Boot digital signal processor (DSP) All Pixie-16 Revisions

4 Download DSP I/O parameters All Pixie-16 Revisions

5 Program on-board FPGAs All Pixie-16 Revisions

6 Set on-board DACs All Pixie-16 Revisions

http://www.xia.com/

Pixie-16 Programmer’s Manual

Version 3.07 www.xia.com 18

Return values

Value Description Error Handling

0 Success None

-1 Invalid Pixie-16 module number Correct ModNum

-2 Size of ComFPGAConfigFile is invalid Correct ComFPGAConfigFile

-3 Failed to boot Communication FPGA Check log file (Pixie16msg.txt)

-4
Failed to allocate memory to store data in

ComFPGAConfigFile

Close other programs or reboot the

computer

-5 Failed to open ComFPGAConfigFile Correct ComFPGAConfigFile

-10 Size of SPFPGAConfigFile is invalid Correct SPFPGAConfigFile

-11 Failed to boot signal processing FPGA Check log file (Pixie16msg.txt)

-12
Failed to allocate memory to store data in

SPFPGAConfigFile

Close other programs or reboot the

computer

-13 Failed to open SPFPGAConfigFile Correct SPFPGAConfigFile

-14 Failed to boot DSP Check log file (Pixie16msg.txt)

-15
Failed to allocate memory to store DSP executable

code

Close other programs or reboot the

computer

-16 Failed to open DSPCodeFile Correct DSPCodeFile

-17 Size of DSPParFile is invalid Correct DSPParFile

-18 Failed to open DSPParFile Correct DSPParFile

-19 Can't initialize DSP variable indices Correct DSPVarFile

-20 Can't copy DSP variable indices Check log file (Pixie16msg.txt)

-21 Failed to program Fippi in a module Check log file (Pixie16msg.txt)

-22 Failed to set DACs in a module Check log file (Pixie16msg.txt)

-23 Failed to start RESET_ADC run in a module Check log file (Pixie16msg.txt)

-24 RESET_ADC run timed out in a module Check log file (Pixie16msg.txt)

http://www.xia.com/

Pixie-16 Programmer’s Manual

Version 3.07 www.xia.com 19

Usage example

int retval;

char ComFPGAConfigFile[256], SPFPGAConfigFile[256];

char TrigFPGAConfigFile[256], DSPCodeFile[256], DSPParFile[256];

char DSPVarFile[256];

unsigned short ModNum, BootPattern;

// first, specify file names and paths for all boot data files

sprintf(ComFPGAConfigFile,

 “C:\\XIA\\Pixie16\\Firmware\\syspixie16.bin”);

sprintf(TrigFPGAConfigFile,

 “ ”);

sprintf(SPFPGAConfigFile,

 “C:\\XIA\\Pixie16\\Firmware\\fippixie16.bin”);

sprintf(DSPCodeFile, “C:\\XIA\\Pixie16\\DSP\\Pixie16DSP.ldr”);

sprintf(DSPParFile, “C:\\XIA\\Pixie16\\Configuration\\default.set”);

sprintf(DSPVarFile, “C:\\XIA\\Pixie16\\DSP\\Pixie16DSP.var”);

// second, select the Pixie-16 module to boot. All modules in the system

// can be booted either one-by-one or all at once. The simplest way to

// boot all modules at once is to set ModNum to be equal to the total

// number of modules in the system. Here we assume there are total 5

// Pixie-16 modules.

ModNum = 5;

// third, specify the boot pattern. Normally, it should be 0x7F, i.e.

// all bits of the bit mask are selected.

BootPattern = 0x7F;

// finally, boot the selected modules

retval = Pixie16BootModule (ComFPGAConfigFile, SPFPGAConfigFile,

TrigFPGAConfigFile, DSPCodeFile, DSPParFile, DSPVarFile, ModNum,

BootPattern);

if(retval < 0)

{

 // error handling

}

http://www.xia.com/

Pixie-16 Programmer’s Manual

Version 3.07 www.xia.com 20

3.2.6 Pixie16CheckExternalFIFOStatus

Syntax

int Pixie16CheckExternalFIFOStatus (

 unsigned int *nFIFOWords, // returned number of words in the FIFO

 unsigned short ModNum) // module number

Description

Use this function to check the status of the external FIFO of a Pixie-16 module while a list mode data

acquisition run is in progress. The function returns the number of words (32-bit) that the external FIFO

currently has. If the number of words is greater than a user-set threshold, function

Pixie16ReadDataFromExternalFIFO can then be used to read the data from the external FIFO.

The threshold can be set by the user to either minimize reading overhead or to read data out of the FIFO as

quickly as possible. The Pixie-16 API (pixie16app_defs.h) has defined a threshold with value of 1024 for

external FIFO read out (EXTFIFO_READ_THRESH).

*nFIFOWords returns the number of 32-bit words that the external FIFO currently has.

ModNum is the module number which starts counting at 0.

Return values

Value Description Error Handling

0 Success None

-1 Invalid Pixie-16 module number Correct ModNum

Usage example

int retval;

unsigned int nFIFOWords;

unsigned short ModNum;

ModNum = 0; // the first module

retval = Pixie16CheckExternalFIFOStatus (&nFIFOWords, ModNum);

http://www.xia.com/

Pixie-16 Programmer’s Manual

Version 3.07 www.xia.com 21

3.2.7 Pixie16CheckRunStatus

Syntax

int Pixie16CheckRunStatus (

 unsigned short ModNum) // module number

Description

Use this function to check the run status of a Pixie-16 module while a list mode data acquisition run is

in progress. If the run is still in progress continue polling.

If the return code of this function indicates the run has finished, there might still be some data in the

external FIFO (Rev-B, C, D, F modules) that need to be read out to the host computer. In addition, final run

statistics and histogram data are available for reading out too.

In MCA histogram run mode, this function can also be called to check if the run is still in progress even

though it is normally self-terminating.

ModNum is the module number which starts counting at 0.

Return values

Value Description Error Handling

0 No run is in progress None

1 Run is still in progress None

-1 Invalid Pixie-16 module number Correct ModNum

Usage example

int retval;

unsigned short ModNum;

ModNum = 0; // the first module

retval = Pixie16CheckRunStatus (ModNum);

if(retval < 0)

{

 // invalid module number

}

else if(retval == 1)

{

 // run is still in progress

}

else if(retval == 0)

{

 // run has finished

}

http://www.xia.com/

Pixie-16 Programmer’s Manual

Version 3.07 www.xia.com 22

3.2.8 Pixie16ComputeFastFiltersOffline

Syntax

int Pixie16ComputeFastFiltersOffline (

 char *FileName, // the list mode data file name (with complete path)

 unsigned short ModuleNumber, // the module to be analyzed

 unsigned short ChannelNumber, // the channel to be analyzed

 unsigned int FileLocation, // the location of the trace in the file

 unsigned short RcdTraceLength,// recorded trace length

 unsigned short *RcdTrace, // recorded trace

 double *fastfilter, // fast filter response

 double *cfd) // cfd response

Description

Use this function to compute fast filter responses of each event in the list mode data file for offline

analysis. The algorithm implemented in this offline analysis function is equivalent to the one implemented

in the Pixie-16 hardware. So this function can be used to analyze how the leading edge fast trigger filter

and the CFD filter implemented in the hardware respond to the shape of recorded traces. By analyzing the

response of these filters, it is possible to optimize the performance of the leading edge trigger or CFD trigger

by adjusting the fast filter and CFD parameters offline. Such optimized parameters can then be saved to a

settings file to be used for online data acquisition.

Return values

Value Description Error Handling

0 Success None

-1
Null pointer

*RcdTrace

Make sure *RcdTrace has been allocated enough memory (maximum

possible length is 32768, but can be shorter to match the actual trace

length)

-2
Null pointer

*fastfilter

Make sure *fastfilter has been allocated enough memory (maximum

possible length is 32768, but can be shorter to match the actual trace

length)

-3 Null pointer *cfd
Make sure *cfd has been allocated enough memory (maximum possible

length is 32768, but can be shorter to match the actual trace length)

-4

Target module

number is

invalid

Correct ModuleNumber

-5
Trace length is

too short

The length of recorded trace is too short for the offline analysis using the

fast filter length (fast filter rise time and flat top). Either a different

settings file with shorter fast filter length has to be used, or new traces with

longer trace length have to be acquired

-6

Failed to open

list mode data

file

Check the list mode file name and its path are correct

http://www.xia.com/

Pixie-16 Programmer’s Manual

Version 3.07 www.xia.com 23

Usage example

int retval;

unsigned short ModuleNumber, ChannelNumber;

unsigned int FileLocation;

unsigned short RcdTraceLength;

unsigned short RcdTrace[1000];

double fastfilter[1000];

double cfd[1000];

char *FileName = {“C:\\XIA\\Pixie16\\PulseShape\\listmodedata.bin”};

ModuleNumber = 0; // the first module

ChannelNumber = 0; // the first channel

FileLocation = 16; // the starting address of the trace in the

// list mode data file (32-bit word address)

RcdTraceLength = 1000; // the length of the recorded trace

retval = Pixie16ComputeFastFiltersOffline (FileName, ModuleNumber,

ChannelNumber, FileLocation, RcdTrace, fastfilter, cfd);

if(retval < 0)

{

 // error handling

}

http://www.xia.com/

Pixie-16 Programmer’s Manual

Version 3.07 www.xia.com 24

3.2.9 Pixie16ComputeInputCountRate

Syntax

double Pixie16ComputeInputCountRate (

 unsigned int *Statistics, // run statistics data

 unsigned short ModNum, // module number

 unsigned short ChanNum) // channel number

Description

Use this function to calculate the input count rate on one channel of a Pixie-16 module. This function

does not communicate with Pixie-16 modules. Before calling this function, another function,

Pixie16ReadStatisticsFromModule, should be called to read statistics data from the module.

*Statistics is a pointer to an array whose size is exactly 448 unsigned integer words (32-bit). The

*Statistics array is filled with data from a Pixie-16 module after calling function

Pixie16ReadStatisticsFromModule. ModNum is the module number which starts counting at 0.

ChanNum is the channel number which starts counting at 0.

Return values

The return value is the input count rate in counts per second.

Usage example

double icr;

unsigned int Statistics[448];

unsigned short ModNum, ChanNum;

int retval;

ModNum = 0; // the first module

ChanNum = 0; // the first channel

// first call Pixie16ReadStatisticsFromModule to get the statistics data

retval = Pixie16ReadStatisticsFromModule (Statistics, ModNum);

if(retval < 0)

{

 // error handling

}

// compute input count rate

icr = Pixie16ComputeInputCountRate (Statistics, ModNum, ChanNum);

http://www.xia.com/

Pixie-16 Programmer’s Manual

Version 3.07 www.xia.com 25

3.2.10 Pixie16ComputeLiveTime

Syntax

double Pixie16ComputeLiveTime (

 unsigned int *Statistics, // run statistics data

 unsigned short ModNum, // module number

 unsigned short ChanNum) // channel number

Description

Use this function to calculate the live time that one channel of a Pixie-16 module has spent on data

acquisition. This function does not communicate with Pixie-16 modules. Before calling this function,

another function, Pixie16ReadStatisticsFromModule, should be called to read statistics data

from the module.

*Statistics is a pointer to an array whose size is exactly 448 unsigned integer words (32-bit). The

*Statistics array is filled with data from a Pixie-16 module after calling function

Pixie16ReadStatisticsFromModule. ModNum is the module number which starts counting at 0.

ChanNum is the channel number which starts counting at 0.

Return values

The return value is the live time in seconds.

Usage example

double livetime;

unsigned int Statistics[448];

unsigned short ModNum, ChanNum;

int retval;

ModNum = 0; // the first module

ChanNum = 0; // the first channel

// first call Pixie16ReadStatisticsFromModule to get the statistics data

retval = Pixie16ReadStatisticsFromModule (Statistics, ModNum);

if(retval < 0)

{

 // error handling

}

// compute live time

livetime = Pixie16ComputeLiveTime (Statistics, ModNum, ChanNum);

http://www.xia.com/

Pixie-16 Programmer’s Manual

Version 3.07 www.xia.com 26

3.2.11 Pixie16ComputeOutputCountRate

Syntax

double Pixie16ComputeOutputCountRate (

 unsigned int *Statistics, // run statistics data

 unsigned short ModNum, // module number

 unsigned short ChanNum) // channel number

Description

Use this function to calculate the output count rate on one channel of a Pixie-16 module. This function

does not communicate with Pixie-16 modules. Before calling this function, another function,

Pixie16ReadStatisticsFromModule, should be called to read statistics data from the module.

*Statistics is a pointer to an array whose size is exactly 448 unsigned integer words (32-bit). The

*Statistics array is filled with data from a Pixie-16 module after calling function

Pixie16ReadStatisticsFromModule. ModNum is the module number which starts counting at 0.

ChanNum is the channel number which starts counting at 0.

Return values

The return value is the output count rate in counts per second.

Usage example

double ocr;

unsigned int Statistics[448];

unsigned short ModNum, ChanNum;

int retval;

ModNum = 0; // the first module

ChanNum = 0; // the first channel

// first call Pixie16ReadStatisticsFromModule to get the statistics data

retval = Pixie16ReadStatisticsFromModule (Statistics, ModNum);

if(retval < 0)

{

 // error handling

}

// compute output count rate

ocr = Pixie16ComputeOutputCountRate (Statistics, ModNum, ChanNum);

http://www.xia.com/

Pixie-16 Programmer’s Manual

Version 3.07 www.xia.com 27

3.2.12 Pixie16ComputeProcessedEvents

Syntax

double Pixie16ComputeProcessedEvents (

 unsigned long *Statistics, // run statistics data

 unsigned short ModNum) // module number

Description

Use this function to calculate the number of events that have been processed by a Pixie-16 module during

a data acquisition run. This function is only used by Rev-A modules. This function does not communicate

with Pixie-16 modules. Before calling this function, another function,

Pixie16ReadStatisticsFromModule, should be called to read statistics data from the module

first.

*Statistics is a pointer to an array whose size is exactly 448 unsigned integer words (32-bit). The

*Statistics array is filled with data from a Pixie-16 module after calling function

Pixie16ReadStatisticsFromModule. ModNum is the module number which starts counting at 0.

ChanNum is the channel number which starts counting at 0.

Return values

The return value is the number of processed events.

Usage example

double NumEvents;

unsigned long Statistics[448];

unsigned short ModNum;

int retval;

ModNum = 0; // the first module

// first call Pixie16ReadStatisticsFromModule to get the statistics data

retval = Pixie16ReadStatisticsFromModule (Statistics, ModNum);

if(retval < 0)

{

 // error handling

}

// compute number of processed events

NumEvents = Pixie16ComputeProcessedEvents (Statistics, ModNum);

http://www.xia.com/

Pixie-16 Programmer’s Manual

Version 3.07 www.xia.com 28

3.2.13 Pixie16ComputeRealTime

Syntax

double Pixie16ComputeRealTime (

 unsigned int *Statistics, // run statistics data

 unsigned short ModNum) // module number

Description

Use this function to calculate the real time that a Pixie-16 module has spent on data acquisition. This

function does not communicate with Pixie-16 modules. Before calling this function, another function,

Pixie16ReadStatisticsFromModule, should be called to read statistics data from the module.

*Statistics is a pointer to an array whose size is exactly 448 unsigned integer words (32-bit). The

*Statistics array is filled with data from a Pixie-16 module after calling function

Pixie16ReadStatisticsFromModule. ModNum is the module number which starts counting at 0.

ChanNum is the channel number which starts counting at 0.

Return values

The return value is the real time in seconds.

Usage example

double realtime;

unsigned int Statistics[448];

unsigned short ModNum;

int retval;

ModNum = 0; // the first module

// first call Pixie16ReadStatisticsFromModule to get the statistics data

retval = Pixie16ReadStatisticsFromModule (Statistics, ModNum);

if(retval < 0)

{

 // error handling

}

// compute real time

realtime = Pixie16ComputeRealTime (Statistics, ModNum);

http://www.xia.com/

Pixie-16 Programmer’s Manual

Version 3.07 www.xia.com 29

3.2.14 Pixie16ComputeSlowFiltersOffline

Syntax

int Pixie16ComputeSlowFiltersOffline (

 char *FileName, // the list mode data file name (with complete path)

 unsigned short ModuleNumber, // the module to be analyzed

 unsigned short ChannelNumber, // the channel to be analyzed

 unsigned int FileLocation, // the location of the trace in the file

 unsigned short RcdTraceLength,// recorded trace length

 unsigned short *RcdTrace, // recorded trace

 double *slowfilter) // slow filter response

Description

Use this function to compute slow filter responses of each event in the list mode data file for offline

analysis. The algorithm implemented in this offline analysis function is equivalent to the one implemented

in the Pixie-16 hardware. So this function can be used to analyze how the slow filter implemented in the

hardware for computing event energy responds to the shape of recorded traces. By analyzing the responses

of these filters, it is possible to optimize the performance of the slow filter by adjusting its parameters

offline. Such optimized parameters can then be saved to a settings file to be used for online data acquisition.

Return values

Value Description Error Handling

0 Success None

-1
Null pointer

*RcdTrace

Make sure *RcdTrace has been allocated enough memory (maximum

possible length is 32768, but can be shorter to match the actual trace

length)

-2
Null pointer

*slowfilter

Make sure *slowfilter has been allocated enough memory (maximum

possible length is 32768, but can be shorter to match the actual trace

length)

-3

Target module

number is

invalid

Correct ModuleNumber

-4
Trace length is

too short

The length of recorded trace is too short for the offline analysis using the

slow filter length (slow filter rise time and flat top). Either a different

settings file with shorter slow filter length has to be used, or new traces

with longer trace length have to be acquired

-5

Failed to open

list mode data

file

Check the list mode file name and its path are correct

http://www.xia.com/

Pixie-16 Programmer’s Manual

Version 3.07 www.xia.com 30

Usage example

int retval;

unsigned short ModuleNumber, ChannelNumber;

unsigned int FileLocation;

unsigned short RcdTraceLength;

unsigned short RcdTrace[1000];

double slowfilter[1000];

char *FileName = {“C:\\XIA\\Pixie16\\PulseShape\\listmodedata.bin”};

ModuleNumber = 0; // the first module

ChannelNumber = 0; // the first channel

FileLocation = 16; // the starting address of the trace in the

// list mode data file (32-bit word address)

RcdTraceLength = 1000; // the length of the recorded trace

retval = Pixie16ComputeSlowFiltersOffline (FileName, ModuleNumber,

ChannelNumber, FileLocation, RcdTrace, slowfilter);

if(retval < 0)

{

 // error handling

}

http://www.xia.com/

Pixie-16 Programmer’s Manual

Version 3.07 www.xia.com 31

3.2.15 Pixie16ControlTaskRun

Syntax

int Pixie16ControlTaskRun (

unsigned short ModNum, // module number

unsigned short ControlTask, // control task run type

unsigned int Max_Poll) // Timeout control in unit of ms

Description

Use this function to execute special control tasks. This may include programming the Fippi or setting

the DACs after downloading DSP parameters. See section 4.4 for a list of control tasks.

ModNum is the module number which starts counting at 0. ChanNum is the channel number which starts

counting at 0.

Return values

Value Description Error Handling

0 Success None

-1 Invalid Pixie-16 module number Correct ModNum

-2 The control task run failed Reboot the module

Usage example

int retval;

unsigned short ControlTask, ModNum;

unsigned int Max_Poll;

ModNum = 0; // this is the first module

ControlTask = SET_DACS; // constant SET_DACS defined in header file

Max_Poll = 10000; // give the run 10 seconds to finish

retval = Pixie16ControlTaskRun (ControlTask, ModNum, Max_Poll);

if(retval < 0)

{

 // Error handling

}

http://www.xia.com/

Pixie-16 Programmer’s Manual

Version 3.07 www.xia.com 32

3.2.16 Pixie16CopyDSPParameters

Syntax

int Pixie16CopyDSPParameters (

unsigned short BitMask, // copy items bit mask

unsigned short SourceModule, // source module

unsigned short SourceChannel, // source channel

unsigned short *DestinationMask) // destination bit mask

Description

Use this function to copy DSP parameters from one module to the others that are installed in the system.

BitMask is bit pattern which designates which items should be copied from the source module to the

destination module(s).

Bit Item

0 Filter (energy and trigger)

1 Analog signal conditioning (polarity, dc-offset, gain/attenuation)

2 Histogram control (minimum energy, binning factor)

3 Decay time

4 Pulse shape analysis (trace length and trace delay)

5 Baseline control (baseline cut, baseline percentage)

7 Channel CSRA register (good channel, trigger enabled, etc.)

8 CFD trigger (CFD delay, scaling factor)

9 Trigger stretch lengths (veto, external trigger, etc.)

10 FIFO delays (analog input delay, fast trigger output delay, etc.)

11 Multiplicity (bit masks, thresholds, etc.)

12 QDC (QDC sum lengths)

SourceModule and SourceChannel is the module and channel number of the source of the DSP

parameters which are to be copied to other modules and channels.

DestinationMask is an array which indicates the channel and module whose settings will be copied from

the source channel and module. For instance, if there are 5 modules (total 80 channels) in the system,

DestinationMask would be defined as DestinationMask[80], where DestinationMask[0] to

DestinationMask[15] would select channel 0 to 15 of module 0, DestinationMask[16] to

DestinationMask[31] would select channel 0 to 15 of module 1, and so on. If a given channel i is to be

copied, then DestinationMask[i] should be set to 1, otherwise, it should be set to 0.

http://www.xia.com/

Pixie-16 Programmer’s Manual

Version 3.07 www.xia.com 33

Return values

Value Description Error Handling

0 Success None

-1 Failed to program Fippi in a module Reboot the modules

-2 Failed to set DACs in a module Reboot the modules

Usage example

int retval;

unsigned short BitMask; // copy items bit mask

unsigned short SourceModule; // source module

unsigned short SourceChannel; // source channel

unsigned short DestinationMask[384]; // destination bit mask

unsigned short k;

BitMask = 0x1FF; // copy everything

SourceModule = 0; // the first module

SourceChannel = 0; // the first channel

// assume there are 6 Pixie-16 modules in the system

for(k = 0; k < (6 * 16); k ++)

{

 DestinationMask[k] = 1; // copy to all channels of all modules

}

retval = Pixie16CopyDSPParameters (BitMask, SourceModule, SourceChannel,

DestinationMask);

if(retval < 0)

{

 // error handling

}

http://www.xia.com/

Pixie-16 Programmer’s Manual

Version 3.07 www.xia.com 34

3.2.17 Pixie16EMbufferIO

Syntax

int Pixie16EMbufferIO (

unsigned int *Buffer, // buffer data

unsigned int NumWords, // number of buffer words to read or write

unsigned int Address, // buffer address

unsigned short Direction, // I/O direction

unsigned short ModNum) // module number

Description

Use this function to directly read data from or write data to the on-board external memory of a Pixie-16

module. The valid memory address is from 0x0 to 0x7FFFF (32-bit wide). Use Direction = 1 for read and

Direction = 0 for write.

The external memory is used to store the histogram data accumulated for each of the 16 channels of a

Pixie-16 module. Each channel has a fixed histogram length of 32768 words (32-bit wide), and the

placement of the histogram data in the memory is in the same order of the channel number, i.e. channel 0

occupies memory address 0x0 to 0x7FFF, channel 1 occupies 0x8000 to 0xFFFF, and so on.

NOTE: another function Pixie16ReadHistogramFromModule can also be used to read out the

histograms except that it needs to be called channel by channel.

ModNum is the module number which starts counting at 0.

Return values

Value Description Error Handling

0 Success None

-1 null pointer for buffer data Correct pointer *Buffer

-2 number of buffer words exceeds the limit Reduce the number of buffer words

-3 invalid DSP external memory address Use the valid address

-4 invalid I/O direction Use the valid direction

-5 invalid Pixie-16 module number Correct the ModNum

-6 I/O Failure Reboot the module

Usage example

int retval;

unsigned short Direction, ModNum;

unsigned int MCAData[32768], NumWords, Address;

NumWords = 32768; // to read out the MCA data from channel 0

ModNum = 0; // the first module in the system

Address = 0x0; // the starting memory address

Direction = 1; // I/O direction is read

http://www.xia.com/

Pixie-16 Programmer’s Manual

Version 3.07 www.xia.com 35

// read out the MCA data for Channel 0

retval = Pixie16EMbufferIO (MCAData, NumWords, Address, Direction,

ModNum);

if(retval != 0)

{

 // Error handling

}

http://www.xia.com/

Pixie-16 Programmer’s Manual

Version 3.07 www.xia.com 36

3.2.18 Pixie16EndRun

Syntax

int Pixie16EndRun (

 unsigned short ModNum) // module number

Description

Use this function to end a histogram run, or to force the end of a list mode run. In a multi-module system,

if all modules are running synchronously, only one module needs to be addressed this way. It will

immediately stop the run in all other module in the system. ModNum is the module number which starts

counting at 0.

Return values

Value Description Error Handling

0 Success None

-1 Invalid Pixie-16 module number Correct ModNum

-2 Failed to stop the run Reboot the module

Usage example

int retval;

unsigned short ModNum;

ModNum = 0; // the first module

retval = Pixie16EndRun (ModNum);

if(retval < 0)

{

 // error handling

}

http://www.xia.com/

Pixie-16 Programmer’s Manual

Version 3.07 www.xia.com 37

3.2.19 Pixie16ExitSystem

Syntax

int Pixie16ExitSystem (

 unsigned short ModNum) // Pixie-16 module number

Description

Use this function to release the user virtual addressees that are assigned to Pixie-16 modules when these

modules are initialized by function Pixie16InitSystem. This function should be called before a user’s

application exits.

If ModNum is set to less than the total number of modules in the system, only the module specified by

ModNum will be closed. But if ModNum is equal to the total number of modules in the system, e.g. there

are 5 modules in the chassis and ModNum = 5, then all modules in the system will be closed altogether.

Note that the modules are counted starting at 0.

Return values

Value Description Error Handling

0 Success None

-1 Invalid Pixie-16 module number
Correct ModNum (it should not be greater than the

total number of modules in the system)

-2 Failed to close Pixie-16 modules Check error message log file Pixie16msg.txt

Usage example

int retval;

unsigned short ModNum, k;

// assume there are totally 5 modules in the system

// so close all 5 modules

ModNum = 5;

retval = Pixie16ExitSystem (ModNum);

if(retval < 0)

{

 // error handling

}

// or module by module

for(k=0; k<5; k++)

{

retval = Pixie16ExitSystem (k);

if(retval < 0)

{

 // error handling

}

}

http://www.xia.com/

Pixie-16 Programmer’s Manual

Version 3.07 www.xia.com 38

3.2.20 Pixie16GetEventsInfo

Syntax

int Pixie16GetEventsInfo (

 char *FileName, // the list mode data file name (with complete path)

 unsigned int *EventsInformation, // to hold event information

 unsigned short ModuleNumber) // module to get events from

Description

Use this function to retrieve the detailed information (except waveforms) of each event in the list mode

data file for the designated module. ModNum is the module number which starts counting at 0. ChanNum

is the channel number which starts counting at 0.

 Before calling this function to get the individual events information, another function

Pixie16GetModuleEvents should be called first to determine the number of events that have been

recorded for each module. If the number of events for a given module is nEvents, a memory block

*EventInformation should be allocated with a length of (nEvents*68):

EventInformation = (unsigned int *)malloc(sizeof(unsigned int) * nEvents * 68);

where 68 is the length of the information records of each event (energy, timestamps, etc.) and has the

following structure.

Index Value

EventInformation [0] Event number

EventInformation [1] Channel number

EventInformation [2] Slot number

EventInformation [3] Crate number

EventInformation [4] Header length

EventInformation [5] Event length

EventInformation [6] Finish code

EventInformation [7] Event timestamp (lower 32-bit)

EventInformation [8] Event timestamp (upper 16-bit)

EventInformation [9] Event energy

EventInformation [10] Trace length

EventInformation [11] Trace location

EventInformation [67:12] Not used

http://www.xia.com/

Pixie-16 Programmer’s Manual

Version 3.07 www.xia.com 39

Return values

Value Description Error Handling

0 Success None

-1 Null pointer *EventInformation Correct *EventInformation

-2 Invalid Pixie-16 module number Correct ModuleNumber

-3 Failed to open list mode data file Correct file name and path

Usage example

int retval;

char *FileName = {“C:\\XIA\\Pixie16\\PulseShape\\listmodedata.bin”};

unsigned short ModuleNumber;

unsigned int *EventInformation;

unsigned int ModuleEvents[7]; // assume maximum number of modules is 7

retval = Pixie16GetModuleEvents (FileName, ModuleEvents);

if(retval < 0)

{

 // error handling

}

ModuleNumber = 0; // the first module

EventInformation = (unsigned int *)malloc(sizeof(unsigned int) *

ModuleEvents[ModuleNumber] * 68);

retval = Pixie16GetEventsInfo(FileName, EventInformation, ModuleNumber);

if(retval < 0)

{

 // error handling

}

http://www.xia.com/

Pixie-16 Programmer’s Manual

Version 3.07 www.xia.com 40

3.2.21 Pixie16GetModuleEvents

Syntax

int Pixie16GetModuleEvents (

 char *FileName, // the list mode data file name (with complete path)

 unsigned int *ModuleEvents) // receives number of events for modules

Description

Use this function to parse the list mode events in the list mode data file. The number of events for each

module will be reported.

Return values

Value Description Error Handling

0 Success None

-1 Null pointer *ModuleEvents Correct *ModuleEvents

-2 Failed to open list mode data file Correct file name and path

Usage example

int retval;

char *FileName = {“C:\\XIA\\Pixie16\\PulseShape\\listmodedata.bin”};

unsigned int ModuleEvents[7]; // assume maximum number of modules is 7

retval = Pixie16GetModuleEvents (FileName, ModuleEvents);

if(retval < 0)

{

 // error handling

}

http://www.xia.com/

Pixie-16 Programmer’s Manual

Version 3.07 www.xia.com 41

3.2.22 Pixie16IMbufferIO

Syntax

int Pixie16IMbufferIO (

 unsigned int *Buffer, // buffer data

 unsigned int NumWords, // number of buffer words to transfer

 unsigned int Address, // buffer address

 unsigned short Direction, // I/O direction

 unsigned short ModNum) // module number

Description

Use this function to directly transfer data between the host and the DSP internal memory of a Pixie-16

module. ModNum is the module number which starts counting at 0.

The DSP internal memory is split into two blocks with address range 0x40000 to 0x4FFFF for the first

block and address range 0x50000 to 0x5FFFF for the second block. Within the first block, address range

0x40000 to 0x49FFF is reserved for program memory and shouldn’t be accessed directly by the host

computer. Address range 0x4A000 to 0x4A4FF is used by the DSP I/O parameters which are stored in the

configuration files (.set files) in the host. Within this range, 0x4A000 to 0x4A33F can be both read and

written, but 0x4A340 to 0x4A4FF can only be read but not written. The remaining address range (0x4A500

to 4FFFF) in the first block and the entire second block (0x50000 to 0x5FFFF) should only be read but not

written by the host. Use Direction = 1 for read and Direction = 0 for write.

Return values

Value Description Error Handling

0 Success None

-1 Null pointer for buffer data Correct pointer *Buffer

-2 Number of buffer words exceeds the limit Reduce the number of buffer words

-3 Invalid DSP internal memory address Use the valid address

-4 Invalid I/O direction Use the valid direction

-5 Invalid Pixie-16 module number Correct the ModNum

-6 I/O Failure Reboot the module

Usage example

int retval;

unsigned short Direction, ModNum;

unsigned int DSPMemBlock1[65536], NumWords, Address;

NumWords = 65536; // to read out block 1 of the DSP internal memory

ModNum = 0; // the first module in the system

Address = 0x50000; // the starting address for block 1

Direction = 1; // I/O direction is read

http://www.xia.com/

Pixie-16 Programmer’s Manual

Version 3.07 www.xia.com 42

// read out the whole block 1 of the DSP internal memory

retval = Pixie16IMbufferIO (DSPMemBlock1, NumWords, Address, Direction,

ModNum);

if(retval != 0)

{

 // Error handling

}

http://www.xia.com/

Pixie-16 Programmer’s Manual

Version 3.07 www.xia.com 43

3.2.23 Pixie16InitSystem

Syntax

int Pixie16InitSystem (

 unsigned short NumModules, // total number of Pixie-16 modules

 unsigned short *PXISlotMap, // an array containing the slot number of

// each Pixie-16 module

 unsigned short OfflineMode) // specify if using offline mode

Description

Use this function to configure the Pixie-16 modules in the PXI chassis.

NumModules is the total number of Pixie-16 modules installed in the system. PXISlotMap is the pointer

to an array that must have at least as many entries as there are Pixie-16 modules in the chassis.

PXISlotMap serves as a simple mapping of the logical module number and the physical slot number that

the modules reside in. The logical module number runs from 0. For instance, in a system with 5 Pixie-16

modules, these 5 modules may occupy slots 3 through 7. The user must fill PXISlotMap as follows:

PXISlotMap = {3, 4, 5, 6, 7 ...} since module number 0 resides in slot number 3, etc. To find out in which

slot a module is located, any piece of subsequent code can use the expression PXISlotMap[ModNum],

where ModNum is the logic module number.

OfflineMode is used to indicate to the API whether the system is running in OFFLINE mode (1) or

ONLINE mode (0). OFFLINE mode is useful for situations where no Pixie-16 modules are present but

users can still test their calls to the API functions in their application software.

This function must be called as the first step in the boot process. It makes the modules known to the

system and “opens” each module for communication.

The function relies on an initialization file (pxisys.ini) that contains information about the Host PC’s PCI

buses, including the slot enumeration scheme. XIA’s software distribution normally puts this file under the

same folder as Pixie-16 software installation folder. However, the user has the flexibility of putting it in

other folders by simply changing the definition of the string PCISysIniFile in the header part of the file

pixie16sys.c.

Return values

Value Description Error Handling

0 Success None

-1
Invalid total number of

Pixie-16 modules

Check if NumModules <= PRESET_MAX_MODULES

(defined in pixie16app_defs.h)

-2 Null pointer *PXISlotMap Correct PXISlotMap

-3 Failed to initialize system Check error message log file Pixie16msg.txt

http://www.xia.com/

Pixie-16 Programmer’s Manual

Version 3.07 www.xia.com 44

Usage example

int retval;

unsigned short NumModules, PXISlotMap[8], OfflineMode;

// there are 5 modules in the system

NumModules = 5;

// specify the slot number for each module

PXISlotMap[0] = 2;

PXISlotMap[1] = 3;

PXISlotMap[2] = 4;

PXISlotMap[3] = 5;

PXISlotMap[4] = 6;

// running in online mode

OfflineMode = 0;

// configure the PXI slots in the chassis

retval = Pixie16InitSystem (NumModules, PXISlotMap, OfflineMode);

if(retval < 0)

{

 // error handling

}

http://www.xia.com/

Pixie-16 Programmer’s Manual

Version 3.07 www.xia.com 45

3.2.24 Pixie16LoadDSPParametersFromFile

Syntax

int Pixie16LoadDSPParametersFromFile (

 char *FileName) // DSP parameters file name (with complete path)

Description

Use this function to read DSP parameters from a settings file and then download the settings to Pixie-16

modules that are installed in the system. Each module has exactly 1280 DSP parameter values (32-bit

unsigned integers), and depending on the value of PRESET_MAX_MODULES (defined in

pixie16app_defs.h), the settings file should have exactly (1280 * PRESET_MAX_MODULES * 4) bytes

when stored on the computer hard drive.

Return values

Value Description Error Handling

0 Success None

-1 Size of DSPParFile is invalid Correct DSPParFile

-2 Failed to program Fippi in a module Reboot the modules

-3 Failed to set DACs in a module Reboot the modules

-4 Failed to open the DSP parameters file Correct the DSP parameters file name

Usage example

int retval;

char *FileName = {“C:\\XIA\\Pixie16\\Configuration\\test.set”};

retval = Pixie16LoadDSPParametersFromFile (FileName);

if(retval < 0)

{

 // error handling

}

http://www.xia.com/

Pixie-16 Programmer’s Manual

Version 3.07 www.xia.com 46

3.2.25 Pixie16ProgramFippi

Syntax

int Pixie16ProgramFippi (

unsigned short ModNum) // module number

Description

Use this function to program the on-board signal processing FPGAs of the Pixie-16 modules. After the

host computer has written the DSP parameters to the DSP memory, the DSP needs to write some of these

parameters to the FPGAs. This function makes the DSP perform that action. ModNum is the module

number which starts counting at 0.

Return values

Value Description Error Handling

0 Success None

-1 Invalid Pixie-16 module number Correct ModNum

-2 Failed to start the PROGRAM_FIPPI run Reboot the module

-3 PROGRAM_FIPPI run timed out Reboot the module

Usage example

int retval;

unsigned short ModNum;

ModNum = 0; // the first module

retval = Pixie16ProgramFippi (ModNum);

if(retval < 0)

{

 // error handling

}

http://www.xia.com/

Pixie-16 Programmer’s Manual

Version 3.07 www.xia.com 47

3.2.26 Pixie16RampOffsetDACs (deprecated)

Syntax

int Pixie16RampOffsetDACs (

double *DCValues, // returned DC offset values

unsigned short NumDCVals, // number of DC values to read

unsigned short ModNum) // module number

Description

Use this function to execute the RAMP_OFFSETDACS control task run. Each Offset DAC has 65536

steps, and the RAMP_OFFSETDACS control task ramps the DAC from 0 to 65335 with a step size of 64,

i.e., a total of 1024 steps. At each DAC step, the control task computes the baseline value as the

representation of the signal baseline and stores it in the DSP memory. After the control task is finished, the

stored baseline values are read out to the host computer and saved to a binary file called “rampdacs.bin” in

the form of IEEE 32-bit floating point numbers. Users can then plot the baseline values vs. DAC steps to

determine the appropriate DAC value to be set in the DSP in order to bring the input signals into the voltage

range of the ADCs. However, this function is no longer needed due to the introduction of function

Pixie16AdjustOffsets.

If ModNum is set to less than the total number of modules in the system, only the module specified by

ModNum will start the RAMP_OFFSETDACS control task run. But if ModNum is equal to the total

number of modules in the system, e.g. there are 5 modules in the chassis and ModNum = 5, then all modules

in the system will start the RAMP_OFFSETDACS control task run. Note that the modules are counted

starting at 0.

Return values

Value Description Error Handling

0 Success None

-1 Invalid Pixie-16 module number Correct ModNum

-2 Null pointer *DCValues Correct *DCValues

-3
Requested number of DC values exceeded the

limit
Reduce NumDCVals

-4 Failed to start the RAMP_OFFSETDACS run Reboot the module

-5 RAMP_OFFSETDACS run timed out Reboot the module

-6 Failed to read offset DAC values Reboot the module

Usage example

int retval;

unsigned short ModNum;

ModNum = 0; // the first module

retval = Pixie16RampOffsetDACs (ModNum);

http://www.xia.com/

Pixie-16 Programmer’s Manual

Version 3.07 www.xia.com 48

if(retval < 0)

{

 // error handling

}

http://www.xia.com/

Pixie-16 Programmer’s Manual

Version 3.07 www.xia.com 49

3.2.27 Pixie16ReadCSR

Syntax

int Pixie16ReadCSR (

unsigned short ModNum, // module number

unsigned int *CSR) // returned CSR value

Description

Use this function to read the host Control & Status Register (CSR) value. This register is unrelated to

the DSP parameters ModCSRA/B, ChanCSRA/B. It is used to control the operation of the module and read

directly by the host. Direct reading or writing by the host is not recommended, for example use functions

like Pixie16CheckRunStatus to poll the active bit.

See section 5.1 for CSR bit definitions

Return values

Value Description Error Handling

0 Success None

-1 Invalid Pixie-16 module number Correct ModNum

Usage example

unsigned short ModNum;

unsigned int CSR;

ModNum = 0; // the first module

Pixie16ReadCSR (ModNum, &CSR);

http://www.xia.com/

Pixie-16 Programmer’s Manual

Version 3.07 www.xia.com 50

3.2.28 Pixie16ReadDataFromExternalFIFO

Syntax

int Pixie16ReadDataFromExternalFIFO (

 unsigned int *ExtFIFO_Data, // to receive the external FIFO data

 unsigned int nFIFOWords, // number of words to read from FIFO

 unsigned short ModNum) // module number

Description

Use this function to read data from the external FIFO of a module.

This function reads list mode data from the external FIFO of a Pixie-16 module. The data are 32-bit

unsigned integers. Normally, function Pixie16CheckExternalFIFOStatus is called first to see

how many words the external FIFO currently has, and then this function is called to read the data from the

FIFO. ModNum is the module number which starts counting at 0.

Return values

Value Description Error Handling

0 Success None

-1 Invalid Pixie-16 module number Check ModNum

-2 Failed to read data from the external FIFO
Check error message log file

Pixie16msg.txt

Usage example

int retval;

unsigned int nFIFOWords, *ExtFIFO_Data;

unsigned short ModNum;

ModNum = 0; // the first module in the system

retval = Pixie16CheckExternalFIFOStatus (&nFIFOWords, ModNum);

if(retval < 0)

{

 // Error handling

}

if(nFIFOWords > 0) // Check if there is data in the external FIFO

{

 ExtFIFO_Data =

(unsigned int *)malloc(sizeof(unsigned int) * nFIFOWords);

 retval =

Pixie16ReadDataFromExternalFIFO(ExtFIFO_Data,nFIFOWords,ModNum);

 if(retval != 0)

 {

 // Error handling

 }

}

http://www.xia.com/

Pixie-16 Programmer’s Manual

Version 3.07 www.xia.com 51

3.2.29 Pixie16ReadHistogramFromFile

Syntax

int Pixie16ReadHistogramFromFile (

 char *FileName, // histogram file name (with complete path)

 unsigned int *Histogram, // histogram data

 unsigned int NumWords, // number of words to be read out

 unsigned short ModNum, // module number

 unsigned short ChanNum) // channel number

Description

Use this function to read histogram data from a histogram data file. Before calling this function, the host

code should allocate appropriate amount of memory to store the histogram data. The default histogram

length is 32768. Histogram data are 32-bit unsigned integers.

Specify the module using ModNum and the channel on the module using ChanNum. Note that both the

modules and channels are counted starting at 0.

Return values

Value Description Error Handling

0 Success None

-1 Failed to open the histogram data file Correct the histogram data file name

-2 No histogram data is available for this channel Change the ModNum and ChanNum

Usage example

int retval;

char *FileName = {“C:\\XIA\\Pixie16\\MCA\\histogramdata.bin”};

unsigned short ModNum, ChanNum;

unsigned int NumWords, Histogram[32768];

ModNum = 0; // the first module

ChanNum = 0; // the first channel

NumWords = 32768;

retval = Pixie16ReadHistogramFromFile (FileName, Histogram, NumWords,

ModNum, ChanNum);

if(retval < 0)

{

 // error handling

}

http://www.xia.com/

Pixie-16 Programmer’s Manual

Version 3.07 www.xia.com 52

3.2.30 Pixie16ReadHistogramFromModule

Syntax

int Pixie16ReadHistogramFromModule (

 unsigned int *Histogram, // histogram data

 unsigned int NumWords, // number of words to be read out

 unsigned short ModNum, // module number

 unsigned short ChanNum) // channel number

Description

Use this function to read out the histogram data from a Pixie-16 module’s histogram memory. Before

calling this function, the host code should allocate appropriate amount of memory to store the histogram

data. The default histogram length is 32768. Histogram data are 32-bit unsigned integers.

Specify the module using ModNum and the channel on the module using ChanNum. Note that both the

modules and channels are counted starting at 0.

Return values

Value Description Error Handling

0 Success None

-1 Invalid Pixie-16 module number Correct ModNum

-2 Invalid Pixie-16 channel number Correct ChanNum

-3 Failed to get the histogram data Reboot the module

Usage example

int retval;

unsigned short ModNum, ChanNum;

unsigned int NumWords, Histogram[32768];

ModNum = 0; // the first module

ChanNum = 0; // the first channel

NumWords = 32768;

retval = Pixie16ReadHistogramFromModule (Histogram, NumWords, ModNum,

ChanNum);

if(retval < 0)

{

 // error handling

}

http://www.xia.com/

Pixie-16 Programmer’s Manual

Version 3.07 www.xia.com 53

3.2.31 Pixie16ReadListModeTrace

Syntax

int Pixie16ReadListModeTrace (

 char *FileName, // list mode data file name

 unsigned short *Trace_Data, // list mode trace data (16-bit words)

 unsigned short NumWords, // number of 16-bit words to be read out

 unsigned int FileLocation) // the location of the trace in the file

Description

Use this function to retrieve list mode trace from a list mode data file. It uses the trace length and file

location information obtained from function Pixie16GetEventsInfo for the selected event.

Return values

Value Description Error Handling

0 Success None

-1 Failed to open list mode data file Correct file name and path

Usage example

int retval;

char *FileName = {“C:\\XIA\\Pixie16\\PulseShape\\listmodedata.bin”};

unsigned short ModuleNumber, ChannelNumber;

unsigned int *EventInformation, FileLocation, EventNumber;

unsigned short *Trace_Data, NumWords;

unsigned int ModuleEvents[7]; // assume maximum number of modules is 7

retval = Pixie16GetModuleEvents (FileName, ModuleEvents);

if(retval < 0)

{

 // error handling

}

ModuleNumber = 0; // the first module

EventInformation = (unsigned int *)malloc(sizeof(unsigned int) *

ModuleEvents[ModuleNumber]*68);

retval = Pixie16GetEventsInfo (FileName, EventInformation, ModuleNumber);

if(retval < 0)

{

 // error handling

}

ChannelNumber = 0; // the first channel

EventNumber = 0; // the first event

NumWords = (unsigned short)EventInformation[EventNumber*68 + 10] * 2;

http://www.xia.com/

Pixie-16 Programmer’s Manual

Version 3.07 www.xia.com 54

FileLocation = EventInformation[EventNumber*68 + 11];

Trace_Data= (unsigned short *)malloc(sizeof(unsigned short) * NumWords);

retval =

 Pixie16ReadListModeTrace (FileName,Trace_Data,NumWords,FileLocation);

if(retval < 0)

{

 // error handling

}

http://www.xia.com/

Pixie-16 Programmer’s Manual

Version 3.07 www.xia.com 55

3.2.32 Pixie16ReadModuleInfo

Syntax

int Pixie16ReadModuleInfo (

unsigned short ModNum, // module number

 unsigned short *ModRev, // returned module revision

 unsigned int *ModSerNum, // returned module serial number

 unsigned short *ModADCBits, // returned module ADC bits

 unsigned short *ModADCMSPS) // returned module ADC sampling rate

Description

Use this function to read information stored on each module, including its revision, serial number, ADC

bits and sampling rate. This should be done after initializing the PCI communication. Information from the

module can be used to select the appropriate firmware, DSP, and configuration parameters files before

booting the module. ModNum is the module number which starts counting at 0.

Return values

Value Description Error Handling

0 Success None

-1 Invalid Pixie module number Correct ModNum

-2 Failed to read from I2C serial EEPROM Check error message log file Pixie16msg.txt

Usage example

int retval;

unsigned short ModuleNumber;

unsigned short ModRev;

unsigned int ModSerNum;

unsigned short ModADCBits;

unsigned short ModADCMSPS;

retval = Pixie16ReadModuleInfo (ModuleNumber, &ModRev, &ModSerNum,

&ModADCBits, &ModADCMSPS);

if(retval < 0)

{

 // error handling

}

http://www.xia.com/

Pixie-16 Programmer’s Manual

Version 3.07 www.xia.com 56

3.2.33 Pixie16ReadSglChanADCTrace

Syntax

int Pixie16ReadSglChanADCTrace (

 unsigned short *Trace_Buffer, // trace data

 unsigned int Trace_Length, // number of trace data words to read

 unsigned short ModNum, // module number

 unsigned short ChanNum) // channel number

Description

Use this function to read ADC trace data from a Pixie-16 module. Before calling this function, another

function Pixie16AcquireADCTrace should be called to fill the DSP internal memory first. Also, the

host code should allocate appropriate amount of memory to store the trace data. The ADC trace data length

for each channel is 8192. Since the trace data are 16-bit unsigned integers (for hardware variants with less

than 16-bit ADCs only the lower 12-bit or 14-bit contain real data), two consecutive 16-bit words are packed

into one 32-bit word in the DSP internal memory. So for each channel, 4096 32-bit words are read out first

from the DSP, and then each 32-bit word is unpacked to form two 16-bit words.

Specify the module using ModNum and the channel on the module using ChanNum. Note that both the

modules and channels are counted starting at 0.

Return values

Value Description Error Handling

0 Success None

-1 Invalid Pixie-16 module number Correct ModNum

-2 Invalid Pixie-16 channel number Correct ChanNum

-3 Invalid trace length Correct Trace_Length

-4 Failed to allocate memory to store ADC traces
Close other programs or reboot the

computer

-5 Failed to read ADC traces Reboot the module

Usage example

unsigned short NumWords, ModNum, ChanNum;

int retval;

unsigned short ADCTrace[8192];

// assume we want to acquire ADC trace from channel 0 of module 0

ModNum = 0;

ChanNum = 0;

// number of ADC trace words is 8192

NumWords = 8192;

// acquire the trace

http://www.xia.com/

Pixie-16 Programmer’s Manual

Version 3.07 www.xia.com 57

retval = Pixie16AcquireADCTrace (ModNum);

if(retval < 0)

{

 // error handling

}

// read out the trace

retval = Pixie16ReadSglChanADCTrace (ADCTrace, NumWords, ModNum, ChanNum);

if(retval < 0)

{

 // error handling

}

http://www.xia.com/

Pixie-16 Programmer’s Manual

Version 3.07 www.xia.com 58

3.2.34 Pixie16ReadSglChanBaselines

Syntax

int Pixie16ReadSglChanBaselines (

 double *Baselines, // returned baseline values

 double *TimeStamps, // timestamps for each baseline value

 unsigned short NumBases, // number of baseline data words to read

 unsigned short ModNum, // module number

 unsigned short ChanNum) // channel number

Description

Use this function to read baseline data from a Pixie-16 module. Before calling this function, another

function Pixie16AcquireBaselines should be called to fill the DSP internal memory first. Also, the

host code should allocate appropriate amount of memory to store the baseline data. The number of baselines

for each channel is 3640. In the DSP internal memory, each baseline is a 32-bit IEEE floating point number.

After being read out to the host, this function will convert each baseline data to a decimal number. In

addition to baseline values, timestamps corresponding to each baseline are also returned after this function

call.

Specify the module using ModNum and the channel on the module using ChanNum. Note that the

modules and channels are counted starting at 0.

Return values

Value Description Error Handling

0 Success None

-1 Invalid Pixie-16 module number Correct ModNum

-2
Requested number of baselines exceeded the

limit
Correct NumBases

-3 Failed to allocate memory to store baselines Close other programs or reboot computer

-4 Failed to read baselines Reboot the module

Usage example

unsigned short NumWords, ModNum, ChanNum;

int retval;

double Baselines[3640], TimeStamps[3640];

// assume we want to acquire baselines for channel 0 of module 0

ModNum = 0;

ChanNum = 0;

// number of baseline words is 3640

NumWords = 3640;

// acquire the baselines

retval = Pixie16AcquireBaselines (ModNum);

http://www.xia.com/

Pixie-16 Programmer’s Manual

Version 3.07 www.xia.com 59

if(retval < 0)

{

 // error handling

}

// read out the baselines

retval = Pixie16ReadSglChanBaselines (Baselines, TimeStamps, NumWords,

ModNum, ChanNum);

if(retval < 0)

{

 // error handling

}

http://www.xia.com/

Pixie-16 Programmer’s Manual

Version 3.07 www.xia.com 60

3.2.35 Pixie16ReadSglChanPar

Syntax

int Pixie16ReadSglChanPar (

char *ChanParName, // channel parameter name

double *ChanParData, // channel parameter value

unsigned short ModNum, // channel number

unsigned short ChanNum) // module number

Description

Use this function to read a channel parameter from a Pixie-16 module. ModNum is the module number

which starts counting at 0. ChanNum is the channel number which starts counting at 0.The supported

channel parameters are listed below.

Channel Parameters (Input) Unit Type Corresponding DSP Variables

TRIGGER_RISETIME μs user set FASTLENGTH

TRIGGER_FLATTOP μs user set FASTGAP

TRIGGER_THRESHOLD ADC units user set FASTTHRESH

ENERGY_RISETIME μs user set SLOWLENGTH

ENERGY_FLATTOP μs user set SLOWGAP

TAU μs user set PREAMPTAU

TRACE_LENGTH μs user set TRACELENGTH

TRACE_DELAY μs user set TRIGGERDELAY, PAFLENGTH

VOFFSET V user set OFFSETDAC

XDT μs user set XWAIT

BASELINE_PERCENT % user set BASELINEPERCENT

EMIN None user set ENERGYLOW

BINFACTOR None user set LOG2EBIN

BASELINE_AVERAGE None User set LOG2BWEIGHT

CHANNEL_CSRA bit pattern user set CHANCSRA

CHANNEL_CSRB bit pattern user set CHANCSRB

BLCUT None user set/auto API BLCUT

INTEGRATOR None user set INTEGRATOR

FASTTRIGBACKLEN μs user set FASTTRIGBACKLEN

CFDDelay μs user set CFDDELAY

CFDScale None user set CFDSCALE

http://www.xia.com/

Pixie-16 Programmer’s Manual

Version 3.07 www.xia.com 61

CFDThresh None user set CFDTHRESH

QDCLen0 μs user set QDCLEN0

QDCLen1 μs user set QDCLEN1

QDCLen2 μs user set QDCLEN2

QDCLen3 μs user set QDCLEN3

QDCLen4 μs user set QDCLEN4

QDCLen5 μs user set QDCLEN5

QDCLen6 μs user set QDCLEN6

QDCLen7 μs user set QDCLEN7

ExtTrigStretch μs user set EXTTRIGSTRETCH

VetoStretch μs user set VETOSTRETCH

MultiplicityMaskL bit pattern user set MULTIPLICITYMASKL

MultiplicityMaskH bit pattern user set MULTIPLICITYMASKH

ExternDelayLen μs user set EXTERNDELAYLEN

FtrigoutDelay μs user set FTRIGOUTDELAY

ChanTrigStretch μs user set CHANTRIGSTRETCH

Return values

Value Description Error Handling

0 Success None

-1 Invalid Pixie-16 module number Correct ModNum

-2 Invalid Pixie-16 channel number Correct ChanNum

-3 Invalid channel parameter name Correct *ChanParName

Usage example

int retval;

unsigned short ModNum, ChanNum;

double ChanParData;

// read energy filter rise time from module 0 channel 0

ModNum = 0; // this is the first module

ChanNum = 0; // the first channel

retval = Pixie16ReadSglChanPar ("ENERGY_RISETIME”, &ChanParData, ModNum,

ChanNum);

if(retval < 0)

{

 // Error handling

}

http://www.xia.com/

Pixie-16 Programmer’s Manual

Version 3.07 www.xia.com 62

3.2.36 Pixie16ReadSglModPar

Syntax

int Pixie16ReadSglModPar (

char *ModParName, // module parameter name

unsigned int *ModParData, // module parameter value

unsigned short ModNum) // module number

Description

Use this function to read a module parameter from a Pixie-16 module. ModNum is the module number

which starts counting at 0. The supported module parameters are listed below.

Module Parameters Unit Type Corresponding DSP Variables

MODULE_NUMBER None user set MODNUM

MODULE_CSRA bit pattern user set MODCSRA

MODULE_CSRB bit pattern user set MODCSRB

MODULE_FORMAT None auto DSP MODFORMAT

MAX_EVENTS None user set/auto DSP MAXEVENTS

SYNCH_WAIT logic (0, 1) user set SYNCHWAIT

IN_SYNCH logic (0, 1) User/DSP set INSYNCH

SLOW_FILTER_RANGE None user set SLOWFILTERRANGE

FAST_FILTER_RANGE None user set FASTFILTERRANGE

FastTrigBackplaneEna bit pattern user set FASTTRIGBACKPLANEENA

CrateID None user set CRATEID

SlotID None user set SLOTID

ModID None user set MODID

TrigConfig0 None user set TRIGCONFIG[0]

TrigConfig1 None user set TRIGCONFIG[1]

TrigConfig2 None user set TRIGCONFIG[2]

TrigConfig3 None user set TRIGCONFIG[3]

HOST_RT_PRESET None user set HOSTRUNTIMEPRESET

http://www.xia.com/

Pixie-16 Programmer’s Manual

Version 3.07 www.xia.com 63

Return values

Value Description Error Handling

0 Success None

-1 Invalid Pixie-16 module number Correct ModNum

-2 Invalid module parameter name Correct *ModParName

Usage example

int retval;

unsigned short ModNum;

unsigned int ModParData;

// Read SlowFilterRange in module 0

ModNum = 0; // this is the first module

retval = Pixie16ReadSglModPar ("SLOW_FILTER_RANGE”, &ModParData, ModNum);

if(retval < 0)

{

 // Error handling

}

http://www.xia.com/

Pixie-16 Programmer’s Manual

Version 3.07 www.xia.com 64

3.2.37 Pixie16ReadStatisticsFromModule

Syntax

int Pixie16ReadStatisticsFromModule (

 unsigned int *Statistics, // statistics data

 unsigned short ModNum) // module number

Description

Use this function to read out statistics data from a Pixie-16 module. Before calling this function, the host

code should allocate appropriate amount of memory to store the statistics data. The number of statistics

data for each module is fixed at 448. Statistics data are 32-bit unsigned integers.

Specify the module using ModNum. Note that the modules are counted starting at 0.

Return values

Value Description Error Handling

0 Success None

-1 Invalid Pixie-16 module number Correct ModNum

-2 Failed to get the statistics data Reboot the module

Usage example

int retval;

unsigned short ModNum, ChanNum;

unsigned int Statistics[448];

ModNum = 0; // the first module

ChanNum = 0; // the first channel

retval = Pixie16ReadStatisticsFromModule (Statistics, ModNum);

if(retval < 0)

{

 // error handling

}

http://www.xia.com/

Pixie-16 Programmer’s Manual

Version 3.07 www.xia.com 65

3.2.38 Pixie16RegisterIO

Syntax

int Pixie16RegisterIO (

 unsigned short ModNum, // module number

 unsigned int address, // register address

 unsigned short direction, // read or write

 unsigned int *value) // holds or receives the data

Description

Use this function to read data from or write data to a register in a Pixie-16 module.

Specify the module using ModNum. Note that the modules are counted starting at 0.

Return values

Value Description Error Handling

0 Success None

-1 Invalid Pixie-16 module number Correct ModNum

Usage example

int retval;

unsigned short ModNum;

unsigned int address, value;

ModNum = 0; // the first module

address = PCI_STOPRUN_REGADDR; // address of the register for ending run

value = 0;

retval = Pixie16RegisterIO (ModNum, address, MOD_WRITE, &value);

if(retval < 0)

{

 // error handling

}

http://www.xia.com/

Pixie-16 Programmer’s Manual

Version 3.07 www.xia.com 66

3.2.39 Pixie16SaveDSPParametersToFile

Syntax

int Pixie16SaveDSPParametersToFile (

 char *FileName) // DSP parameters file name (with complete path)

Description

Use this function to save DSP parameters to a settings file. It will first read the values of DSP parameters

on each Pixie-16 module and then write them to the settings file. Each module has exactly 1280 DSP

parameter values (32-bit unsigned integers), and depending on the value of PRESET_MAX_MODULES

(defined in pixie16app_defs.h), the settings file should have exactly (1280 * PRESET_MAX_MODULES

* 4) bytes when stored on the computer hard drive.

Return values

Value Description Error Handling

0 Success None

-1
Failed to read DSP parameter values from the Pixie-16

modules
Reboot the modules

-2 Failed to open the DSP parameters file
Correct the DSP parameters file

name

Usage example

int retval;

char *FileName = {“C:\\XIA\\Pixie16\\Configuration\\test.set”};

retval = Pixie16SaveDSPParametersToFile (FileName);

if(retval < 0)

{

 // error handling

}

http://www.xia.com/

Pixie-16 Programmer’s Manual

Version 3.07 www.xia.com 67

3.2.40 Pixie16SaveExternalFIFODataToFile

Syntax

int Pixie16SaveExternalFIFODataToFile (

 char *FileName, // list mode data file name

 unsigned int *nFIFOWords, // number of words read from ext. FIFO

 unsigned short ModNum, // module number

 unsigned short EndOfRunRead) // indicator if this is end of run read

Description

Use this function to read data from the external FIFO of a module. ModNum is the module number which

starts counting at 0.

This function first checks the status of the external FIFO of a Pixie-16 module, and if there are data in

the external FIFO, this function then reads list mode data (32-bit unsigned integers) from the external FIFO.

So this function essentially encapsulates both functions Pixie16CheckExternalFIFOStatus and

Pixie16ReadDataFromExternalFIFO within one function. The number of words that are read from

the external FIFO is recorded in variable *FIFOWords. The function also expects setting the value of a

variable called “EndOfRunRead” to indicate whether this read is at the end of a run (1) or during the run

(0). This is necessary since the external FIFO needs special treatment when the host reads the last few words

from the external FIFO due to its pipelined structure.

Return values

Value Description Error Handling

0 Success None

-1 Invalid Pixie-16 module number Check ModNum

-2 Failed to allocate memory to store list mode data Check computer resources

-3 Failed to open list mode data file Check if file is protected

-4 Failed to read external FIFO status
Check error message log file

Pixie16msg.txt

-5 Failed to read data from external FIFO
Check error message log file

Pixie16msg.txt

Usage example

int retval;

unsigned int nFIFOWords;

unsigned short ModNum, EndOfRunRead;

ModNum = 0; // the first module in the system

EndOfRunRead = 0; // this is a read during the run

retval = Pixie16SaveExternalFIFODataToFile(“listmodedata_mod0.bin”,

&nFIFOWords, ModNum, EndOfRunRead);

if(retval < 0)

http://www.xia.com/

Pixie-16 Programmer’s Manual

Version 3.07 www.xia.com 68

{

 // Error handling

}

http://www.xia.com/

Pixie-16 Programmer’s Manual

Version 3.07 www.xia.com 69

3.2.41 Pixie16SaveHistogramToFile

Syntax

int Pixie16SaveHistogramToFile (

 char *FileName, // histogram data file name (with complete path)

 unsigned short ModNum) // module number

Description

Use this function to read histogram data from a Pixie-16 module and save the histogram data to a file

with file name specified by the user: First this function saves the histogram data to a binary file, and it then

saves the histogram data to an ASCII file with run statistics data appended to the end of the ASCII file.

Existing files will be overwritten. ModNum is the module number which starts counting at 0.

Return values

Value Description Error Handling

0 Success None

-1 Invalid Pixie-16 module number Correct ModNum

-2 Failed to get histogram data from module Reboot the module

-3 Failed to allocate memory to store histogram data
Close other programs or reboot

computer

-4 Failed to open histogram data file Correct file name and path

-5 Failed to open mca ascii output file Correct file name and path

-6
Failed to allocate memory to store histogram data for

ascii text file

Close other programs or reboot

computer

-7 Failed to read histogram data from file Check file name and path

-8 Failed to read run statistics data from module Reboot the module

Usage example

int retval;

char *FileName = {“C:\\XIA\\Pixie16\\MCA\\histogramdata.bin”};

unsigned short ModNum;

ModNum = 0; // the first module

retval = Pixie16SaveHistogramToFile (FileName, ModNum);

if(retval < 0)

{

 // error handling

}

http://www.xia.com/

Pixie-16 Programmer’s Manual

Version 3.07 www.xia.com 70

3.2.42 Pixie16SetDACs

Syntax

int Pixie16SetDACs (

unsigned short ModNum); // module number

Description

Use this function to reprogram the on-board digital to analog converters (DAC) of the Pixie-16 modules.

In this operation the DSP uses data from the DSP parameters that were previously downloaded. ModNum

is the module number which starts counting at 0.

Return values

Value Description Error Handling

0 Success None

-1 Invalid Pixie-16 module number Correct ModNum

-2 Failed to start the SET_DACS run Reboot the module

-3 SET_DACS run timed out Reboot the module

Usage example

int retval;

unsigned short ModNum;

ModNum = 0; // the first module

retval = Pixie16SetDACs (ModNum);

if(retval < 0)

{

 // error handling

}

http://www.xia.com/

Pixie-16 Programmer’s Manual

Version 3.07 www.xia.com 71

3.2.43 Pixie16StartHistogramRun

Syntax

int Pixie16StartHistogramRun (

 unsigned short ModNum, // module number

 unsigned short mode) // run mode

Description

Use this function to begin a data acquisition run that accumulates energy histograms, one for each

channel. It launches a data acquisition run in which only energy information is preserved and histogrammed

locally to each channel.

Call this function for each Pixie-16 module in the system to initialize the run in each module. Actual

data acquisition will start synchronously in all modules when the last module finished the initialization

(requires the synchronization parameter to be set). Histogram runs can be self-terminating when the elapsed

run time exceeds the preset run time, or the user can prematurely terminate the run by calling

Pixie16EndRun. On completion, final histogram and statistics data will be available.

Use mode=NEW_RUN (=1) to erase histograms and statistics information before launching the new run.

Use mode=RESUME_RUN (=0) to resume an earlier run.

ModNum is the module number which starts counting at 0. If ModNum is set to be less than the total

number of modules in the system, only the module specified by ModNum will have its histogram run

started. But if ModNum is set to be equal to the total number of modules in the system, then all modules in

the system will have their runs started together.

Return values

Value Description Error Handling

0 Success None

-1 Invalid Pixie-16 module number Correct the ModNum

-2 Invalid run mode Correct the run mode

-3 Failed to start histogram run Reboot the module

Usage example

int retval;

unsigned short mode, ModNum;

double preset_run_time;

unsigned int ieee_preset_run_time;

mode = NEW_RUN; // to start a new run

// Assume there are 5 modules in the system

ModNum = 5; // start histogram run in all 5 modules

// Assume preset run time is 10 seconds

preset_run_time = 10.0;

http://www.xia.com/

Pixie-16 Programmer’s Manual

Version 3.07 www.xia.com 72

// Convert preset run time to IEEE 32-bit floating point number

ieee_preset_run_time = Decimal2IEEEFloating (preset_run_time);

// Download the preset run time to the DSP

retval = Pixie16WriteSglModPar("HOST_RT_PRESET", ieee_preset_run_time,

ModNum)

if(retval < 0)

{

 // Error handling

}

// Start the histogram run

retval = Pixie16StartHistogramRun (ModNum, mode);

if(retval < 0)

{

 // Error handling

}

http://www.xia.com/

Pixie-16 Programmer’s Manual

Version 3.07 www.xia.com 73

3.2.44 Pixie16StartListModeRun

Syntax

int Pixie16StartListModeRun (

 unsigned short ModNum, // module number

 unsigned short RunType, // run type

 unsigned short mode) // run mode

Description

Use this function to start a list mode data acquisition run in Pixie-16 modules. List mode runs are used

to collect data on an event-by-event basis, gathering energies, timestamps, pulse shape analysis values, and

waveforms for each event. Runs will continue until the user terminates the run by calling function

Pixie16EndRun. To start the data acquisition this function has to be called for every Pixie-16 module

in the system. If all modules are to run synchronously, the last module addressed will release all others and

the acquisition starts then. The first module to end the run will immediately stop the run in all other modules

if run synchronization has been set up among these modules.

Use mode=NEW_RUN (=1) to erase histograms and statistics information before launching the new run.

Note that this will cause a startup delay of up to 1 millisecond. Use mode=RESUME_RUN (=0) to resume

an earlier run. This mode has a startup delay of only a few microseconds.

There is only one list mode run type supported, that is, 0x100. However, different output data options

can be chosen by enabling or disabling different CHANCSRA bits, see section 4.2.4.

ModNum is the module number which starts counting at 0. If ModNum is set to be less than the total

number of modules in the system, only the module specified by ModNum will have its list mode run started.

But if ModNum is set to equal to the total number of modules in the system, then all modules in the system

will have their runs started together.

Return values

Value Description Error Handling

0 Success None

-1 Invalid Pixie-16 module number Correct the ModNum

-2 Invalid run mode Correct the run mode

-3 Failed to start list mode run Reboot the module

-4 Invalid run type Correct RunType

Usage example

int retval;

unsigned short mode, ModNum, RunType;

mode = NEW_RUN; // to start a new run

RunType = 0x100; // general purpose list mode run

// Assume there are 5 modules in the system

http://www.xia.com/

Pixie-16 Programmer’s Manual

Version 3.07 www.xia.com 74

ModNum = 5; // start list mode run in all 5 modules

retval = Pixie16StartListModeRun (ModNum, RunType, mode);

if(retval < 0)

{

 // Error handling

}

http://www.xia.com/

Pixie-16 Programmer’s Manual

Version 3.07 www.xia.com 75

3.2.45 Pixie16TauFinder

Syntax

void Pixie16TauFinder (

unsigned short ModNum, // module number

double *Tau) // Tau value

Description

Use this function to find the exponential decay time constants (Tau value) of the detector or preamplifier

signal that is connected to each of the 16 channels of a Pixie-16 module. The 16 found Tau values are

returned via pointer *Tau. A '-1.0' Tau value for a channel means the Tau_Finder was not successful for

such a channel. ModNum is the module number which starts counting at 0.

Return values

Value Description Error Handling

0 Success None

-1 Invalid Pixie-16 module number Correct the ModNum

-2 Invalid Pixie-16 channel number Correct the ChanNum

-3 Failed to acquire ADC traces Reboot the module

-4 Failed to read ADC traces Reboot the module

-5 Failed to find sufficient number of pulses Increase input count rate

Usage example

int retval;

unsigned short ModNum;

double Tau[16];

ModNum = 0; // the first module

retval = Pixie16TauFinder(ModNum, Tau);

if(retval < 0)

{

 // Error handling

}

http://www.xia.com/

Pixie-16 Programmer’s Manual

Version 3.07 www.xia.com 76

3.2.46 Pixie16WriteCSR

Syntax

void Pixie16WriteCSR (

unsigned short ModNum, // module number

unsigned int CSR) // CSR value to write

Description

Use this function to write a value to the host Control & Status Register (CSR). This register is unrelated

to the DSP parameters ModCSRA/B, ChanCSRA/B. It is used to control the operation of the module and

read directly by the host. Direct reading or writing by the host is not recommended, for example use

functions like Pixie16CheckRunStatus to poll the active bit. ModNum is the module number which

starts counting at 0.

See section 5.1 for CSR bit definitions

Return values

Value Description Error Handling

0 Success None

-1 Invalid Pixie-16 module number Correct the ModNum

Usage example

int retval;

unsigned short ModNum;

unsigned int CSR;

ModNum = 0; // the first module

retval = Pixie16ReadCSR(ModNum, &CSR);

if(retval < 0)

{

 // Error handling

}

CSR = APP32_ClrBit(3, CSR);

retval = Pixie16WriteCSR (ModNum, CSR);

if(retval < 0)

{

 // Error handling

}

http://www.xia.com/

Pixie-16 Programmer’s Manual

Version 3.07 www.xia.com 77

3.2.47 Pixie16WriteSglChanPar

Syntax

int Pixie16WriteSglChanPar (

char *ChanParName, // channel parameter name

double ChanParData, // channel parameter value

unsigned short ModNum, // channel number

unsigned short ChanNum) // module number

Description

Use this function to write a channel parameter to a Pixie-16 module. ModNum is the module number

which starts counting at 0. ChanNum is the channel number which starts counting at 0. The supported

channel parameters are listed below.

Channel Parameters Unit Type Corresponding DSP Variables

TRIGGER_RISETIME μs user set FASTLENGTH

TRIGGER_FLATTOP μs user set FASTGAP

TRIGGER_THRESHOLD ADC units user set FASTTHRESH

ENERGY_RISETIME μs user set SLOWLENGTH

ENERGY_FLATTOP μs user set SLOWGAP

TAU μs user set PREAMPTAU

TRACE_LENGTH μs user set TRACELENGTH

TRACE_DELAY μs user set TRIGGERDELAY, PAFLENGTH

VOFFSET V user set OFFSETDAC

XDT μs user set XWAIT

BASELINE_PERCENT % user set BASELINEPERCENT

EMIN None user set ENERGYLOW

BINFACTOR None user set LOG2EBIN

BASELINE_AVERAGE None user set LOG2BWEIGHT

CHANNEL_CSRA bit pattern user set CHANCSRA

CHANNEL_CSRB bit pattern user set CHANCSRB

BLCUT None user set/auto API BLCUT

INTEGRATOR None user set INTEGRATOR

FASTTRIGBACKLEN μs user set FASTTRIGBACKLEN

CFDDelay μs user set CFDDELAY

CFDScale None user set CFDSCALE

http://www.xia.com/

Pixie-16 Programmer’s Manual

Version 3.07 www.xia.com 78

CFDThresh ADC units user set CFDTHRESH

QDCLen0 μs user set QDCLEN0

QDCLen1 μs user set QDCLEN1

QDCLen2 μs user set QDCLEN2

QDCLen3 μs user set QDCLEN3

QDCLen4 μs user set QDCLEN4

QDCLen5 μs user set QDCLEN5

QDCLen6 μs user set QDCLEN6

QDCLen7 μs user set QDCLEN7

ExtTrigStretch μs user set EXTTRIGSTRETCH

VetoStretch μs user set VETOSTRETCH

MultiplicityMaskL bit pattern user set MULTIPLICITYMASKL

MultiplicityMaskH bit pattern user set MULTIPLICITYMASKH

ExternDelayLen μs user set EXTERNDELAYLEN

FtrigoutDelay μs user set FTRIGOUTDELAY

ChanTrigStretch μs user set CHANTRIGSTRETCH

Return values

Value Description Error Handling

0 Success None

-1 Invalid Pixie-16 module number Correct ModNum

-2 Invalid Pixie-16 channel number Correct ChanNum

-3 Invalid channel parameter name Correct *ChanParName

-4 Programing Fippi failed downloading channel parameter Reboot the module

-5 Failed to find BLcut after downloading channel parameter Reboot the module

-6 SetDACs failed downloading channel parameter Reboot the module

Usage example

int retval;

unsigned short ModNum, ChanNum;

double ChanParData;

// Set energy filter rise time to 6.08 s for module 0 channel 0

ModNum = 0; // this is the first module

ChanNum = 0; // the first channel

ChanParData = 6.08; // energy filter rise time = 6.08 s

http://www.xia.com/

Pixie-16 Programmer’s Manual

Version 3.07 www.xia.com 79

retval = Pixie16WriteSglChanPar ("ENERGY_RISETIME”, ChanParData, ModNum,

ChanNum);

if(retval < 0)

{

 // Error handling

}

http://www.xia.com/

Pixie-16 Programmer’s Manual

Version 3.07 www.xia.com 80

3.2.48 Pixie16WriteSglModPar

Syntax

int Pixie16WriteSglModPar (

char *ModParName, // module parameter name

unsigned int ModParData, // module parameter value

unsigned short ModNum) // module number

Description

Use this function to write a module parameter to a Pixie-16 module. ModNum is the module number

which starts counting at 0. The supported module parameters are listed below.

Module Parameters Unit Type Corresponding DSP Variables

MODULE_CSRA bit pattern user set MODCSRA

MODULE_CSRB bit pattern user set MODCSRB

MODULE_FORMAT None auto DSP MODFORMAT

MAX_EVENTS None user set/auto DSP MAXEVENTS

SYNCH_WAIT logic (0, 1) user set SYNCHWAIT

IN_SYNCH logic (0, 1) user/DSP set INSYNCH

SLOW_FILTER_RANGE None user set SLOWFILTERRANGE

FAST_FILTER_RANGE None user set FASTFILTERRANGE

FastTrigBackplaneEna bit pattern user set FASTTRIGBACKPLANEENA

CrateID None user set CRATEID

SlotID None user set SLOTID

ModID None user set MODID

TrigConfig0 None user set TRIGCONFIG[0]

TrigConfig1 None user set TRIGCONFIG[1]

TrigConfig2 None user set TRIGCONFIG[2]

TrigConfig3 None user set TRIGCONFIG[3]

HOST_RT_PRESET seconds user set HOSTRUNTIMEPRESET

http://www.xia.com/

Pixie-16 Programmer’s Manual

Version 3.07 www.xia.com 81

Return values

Value Description Error Handling

0 Success None

-1 Invalid Pixie-16 module number Correct ModNum

-2 Invalid module parameter name Correct *ModParName

-3 Failed to program Fippi after downloading module parameter Reboot the module

-4 Failed to find BLcut after downloading module parameter Reboot the module

Usage example

int retval;

unsigned short ModNum;

unsigned int ModParData;

// Set SlowFilterRange in module 0 to 4

ModNum = 0; // this is the first module

ModParData = 4; // SlowFilterRange = 4

retval = Pixie16WriteSglModPar ("SLOW_FILTER_RANGE”, ModParData, ModNum);

if(retval < 0)

{

 // Error handling

}

http://www.xia.com/

Pixie-16 Programmer’s Manual

Version 3.07 www.xia.com 82

3.3 PIXIE-16 Utility Functions

There are a few utility functions that can also be used in users’ applications.

Utility Function Name Description

APP16_ClrBit Clear one bit of a 16-bit unsigned integer

APP16_SetBit Set one bit of a 16-bit unsigned integer

APP16_TstBit Test one bit of a 16-bit unsigned integer

APP32_ClrBit Clear one bit of a 32-bit unsigned integer

APP32_SetBit Set one bit of a 32-bit unsigned integer

APP32_TstBit Test one bit of a 32-bit unsigned integer

Decimal2IEEEFloating Convert a decimal into IEEE 32-bit floating point number

IEEEFloating2Decimal Convert an IEEE 32-bit floating point number to a decimal

Syntax

unsigned short APP16_ClrBit (

 unsigned short bit,

 unsigned short value)

unsigned short APP16_SetBit (

 unsigned short bit,

 unsigned short value)

unsigned short APP16_TstBit (

 unsigned short bit,

 unsigned short value)

unsigned int APP32_ClrBit (

 unsigned short bit,

 unsigned int value)

unsigned int APP32_SetBit (

 unsigned short bit,

 unsigned int value)

unsigned int APP32_TstBit (

 unsigned short bit,

 unsigned int value)

unsigned int Decimal2IEEEFloating (

 double DecimalNumber)

double IEEEFloating2Decimal (

 unsigned int IEEEFloatingNumber)

The return value of the setbit and clrbit functions is the input value with bit number bit-set or cleared.

The tstbit function returns logic 1 if bit number bit, is set in the input value, or returns logic 0 if bit

number bit, is not set in the input value. The return values of IEEE floating functions are either IEEE

floating values or decimal values, respectively.

http://www.xia.com/

Pixie-16 Programmer’s Manual

Version 3.07 www.xia.com 83

4 Control Parameters

4.1 User and DSP parameter overview

The host computer communicates with the Pixie-16 by setting and reading a set of variables

called DSP parameters. These parameters are divided into input and output parameters.

The exact location of any particular variable in the DSP memory could vary from one code

version to another. To facilitate writing robust user code, a reference table of variable

names and addresses with each DSP code version was provided. Included with the software

distribution is a file called Pixie16DSP_variant_version.var. It contains a two-column list

of variable names and their respective addresses. Further, the Pixie-16 API library

initializes the DSP parameters’ address at module’s boot up by calling function

Pixie_Init_DSPVarAddress in file utilities.c. Thus user code can be written

in such a way that it uses the DSP parameters’ address set by the Pixie-16 API, rather than

uses fixed locations.

Many of the DSP variables depend on the values of other variables. A complete description

of all interdependencies can be found in the following sections. All of these

interdependencies have been taken care of by the PIXIE-16 API, which calculates the DSP

parameter values from a number of user parameters with meaningful units. So instead of

directly setting DSP variables and their dependencies, users only need to set the values of

user parameters; for example instead of entering a filter time in DSP units and also

computing the dependent pileup inspection settings etc, users enter a filter time in

microseconds, which is converted into DSP units by the API.

Table 4.1: Descriptions of User and DSP parameters in PIXIE-16.

System Parameters Unit Type Corresponding DSP Variables

NUMBER_MODULES None user set None

OFFLINE_ANALYSIS None user set None

PXI_SLOT_MAP None user set None

Module Parameters (Input) Unit Type Corresponding DSP Variables

MODULE_NUMBER None auto API MODNUM

MODULE_CSRA bit pattern user set MODCSRA

MODULE_CSRB bit pattern user set MODCSRB

MODULE_FORMAT None auto DSP MODFORMAT

RUN_TYPE None auto API RUNTASK, CONTROLTASK

MAX_EVENTS None user set/auto DSP MAXEVENTS

SYNCH_WAIT logic (0, 1) user set SYNCHWAIT

IN_SYNCH logic (0, 1) user/DSP set INSYNCH

SLOW_FILTER_RANGE None user set SLOWFILTERRANGE

http://www.xia.com/

Pixie-16 Programmer’s Manual

Version 3.07 www.xia.com 84

FAST_FILTER_RANGE None user set FASTFILTERRANGE

FastTrigBackplaneEna bit pattern user set FASTTRIGBACKPLANEENA

CrateID None user set CRATEID

SlotID None user set SLOTID

ModID None user set MODID

TrigConfig0 bit pattern user set TrigConfig[0]

TrigConfig1 bit pattern user set TrigConfig[1]

TrigConfig2 bit pattern user set TrigConfig[2]

TrigConfig3 bit pattern user set TrigConfig[3]

HOST_RT_PRESET seconds user set HOSTRUNTIMEPRESET

Module Parameters (Output) Unit Type Corresponding DSP Variables

RUN_TIME seconds DAQ result RUNTIMEA, B

NUMBER_EVENTS counts DAQ result NUMEVENTSA, B

BUFFER_HEAD_LENGTH None data format BUFHEADLEN

EVENT_HEAD_LENGTH None data format EVENTHEADLEN

CHANNEL_HEAD_LENGTH None data format CHANHEADLEN

OUTPUT_BUFFER_LENGTH None auto DSP LOUTBUFFER

HARDWARE_ID None auto DSP HARDWAREID

HARDWARE_VARIANT None auto DSP HARDVARIANT

FIFO_LENGTH None auto DSP FIFOLENGTH

FIPPI_ID None auto DSP FIPPIID

FIPPI_VARIANT None auto DSP FIPPIVARIANT

DSP_RELEASE None auto DSP DSPRELEASE

DSP_BUILD None auto DSP DSPBUILD

DSP_VARIANT None auto DSP DSPVARIANT

Channel Parameters (Input) Unit Type Corresponding DSP Variables

CHANNEL_CSRA bit pattern user set CHANCSRA

CHANNEL_CSRB bit pattern user set CHANCSRB

VOFFSET V user set OFFSETDAC

ENERGY_RISETIME μs user set SLOWLENGTH

ENERGY_FLATTOP μs user set SLOWGAP

PEAK_SAMPLE None auto API PEAKSAMPLE

PEAK_SEP None auto API PEAKSEP

http://www.xia.com/

Pixie-16 Programmer’s Manual

Version 3.07 www.xia.com 85

TRIGGER_RISETIME μs user set FASTLENGTH

TRIGGER_FLATTOP μs user set FASTGAP

TRIGGER_THRESHOLD ADC units user set FASTTHRESH

TRACE_LENGTH μs user set TRACELENGTH

TRACE_DELAY μs user set TRIGGERDELAY, PAFLENGTH

EMIN None user set ENERGYLOW

BINFACTOR None user set LOG2EBIN

BLCUT None user set/auto API BLCUT

BASELINE_PERCENT % user set BASELINEPERCENT

TAU μs user set PREAMPTAU

XDT μs user set XWAIT

BASELINE_AVERAGE None user set LOG2BWEIGHT

FASTTRIGBACKLEN μs user set FASTTRIGBACKLEN

INTEGRATOR None user set INTEGRATOR

CFDDelay μs user set CFDDELAY

CFDScale None user set CFDSCALE

CFDThresh ADC units user set CFDTHRESH

QDCLen0 μs user set QDCLEN0

QDCLen1 μs user set QDCLEN1

QDCLen2 μs user set QDCLEN2

QDCLen3 μs user set QDCLEN3

QDCLen4 μs user set QDCLEN4

QDCLen5 μs user set QDCLEN5

QDCLen6 μs user set QDCLEN6

QDCLen7 μs user set QDCLEN7

ExtTrigStretch μs user set EXTTRIGSTRETCH

VetoStretch μs user set VETOSTRETCH

MultiplicityMaskL bit pattern user set MULTIPLICITYMASKL

MultiplicityMaskH bit pattern user set MULTIPLICITYMASKH

ExternDelayLen μs user set EXTERNDELAYLEN

FtrigoutDelay μs user set FTRIGOUTDELAY

ChanTrigStretch μs user set CHANTRIGSTRETCH

Channel Parameters (Output) Unit I/O Type Corresponding DSP Variables

LIVE_TIME seconds DAQ result LIVETIMEA, B

http://www.xia.com/

Pixie-16 Programmer’s Manual

Version 3.07 www.xia.com 86

FAST_PEAKS number DAQ result FASTPEAKSA, B

INPUT_COUNT_RATE cps auto API LIVETIMEA, B, FASTPEAKSA, B

OUTPUT_COUNT_RATE cps auto API CHANEVENTSA, B, RUNTIMEA, B

http://www.xia.com/

Pixie-16 Programmer’s Manual

Version 3.07 www.xia.com 87

4.2 User Parameters

User parameters are input/output variables for the Pixie-16 API. In the Pixie-16 VB demo

interface, these parameters are displayed in variable fields and checkboxes. Custom

interfaces can set and read these variables in whatever form is most suitable. For all

parameters, also see the corresponding entry in DSP parameter section for details.

In most cases, the Pixie-16 API will adjust the input parameter to the closest value that

corresponds to a valid DSP parameter value, for example entering a filter time of 22ns will

be adjusted to 20ns.

4.2.1 System Parameters

NUMBER_MODULES: User specified number of modules in the system.

Valid range: 1-24.

OFFLINE_ANALYSIS: Set to 1 to run the Pixie-16 API on analysis-only mode, i.e.,

without a Pixie-16 module present.

Valid range: 0 and 1.

C_LIBRARY_RELEASE:

C_LIBRARY_BUILD: Currently not implemented. Output parameters indicating

 version of the Pixie-16 API.

PXI_SLOT_MAP: User specified array listing the occupied slots in the PXI chassis.

Valid range for slot numbers: 2-8 (for 8-slot chassis) or 2-14 (for 14-slot

chassis).

4.2.2 Module Parameters (Input)

MODULE_NUMBER: Number assigned to the module by the API during booting. The

number will be written in the module’s output data header for identification.

Also used to address individual modules in the API.

Valid range: 0 to (number of modules intended for booting – 1)

MODULE_CSRA: Bit pattern controlling data acquisition in this module.

Valid range: 0 – 232-1 (theoretical).

MODULE_CSRB: Bit pattern controlling data acquisition in this module.

Valid range: 0 – 232-1 (theoretical).

MODULE_FORMAT: Currently unused.

RUN_TYPE: Number specifying the data acquisition type. See entry for RUNTASK in

DSP parameter section for details.

Valid range: 0 (control run), 0x100 (list mode run), 0x301 (MCA run).

MAX_EVENTS: Currently not implemented. Number specifying the maximum numbers

of events the module will acquire in one list mode spill run.

Valid range: depends on Trace_Lengths selected.

SYNCH_WAIT: Number specifying if modules should start data acquisition runs

simultaneously.

Valid range: 0 (not simultaneously), 1 (simultaneously).

http://www.xia.com/

Pixie-16 Programmer’s Manual

Version 3.07 www.xia.com 88

IN_SYNCH: Number specifying if modules should reset their clock counters to zero at the

start of a data acquisition run. Set this number to 0 to reset clock counters to

zero at the start of the run. After synchronization, IN_SYNCH is set to one by

the DSP to indicate module clocks are synchronized simultaneously.

Valid range: 0 (simultaneously), 1 (not simultaneously).

SLOW_FILTER_RANGE: Number specifying the how many ADC samples will be

averaged for one step in the energy filters. Since the number of steps in the filter

is limited, this is used to extend the range of filter times.

Valid range: 1 to 6.

FAST_FILTER_RANGE: Number specifying the how many ADC samples will be

averaged for one step in the trigger filters. Since the number of steps in the filter

is limited, this is used to extend the range of filter times.

Valid range: 0 (i.e., currently no fast filter averaging is supported).

FastTrigBackplaneEna: Bit mask pattern to specify whether a channel should send its fast

trigger to its nearest neighboring module: bits [15:0] of FastTrigBackplaneEna

indicating whether sending (1) or not sending (0) each of the 16 channels’ fast

trigger to nearest neighboring module on its left; bits [31:16] of

FastTrigBackplaneEna indicating whether sending (1) or not sending (0) each of

the 16 channels’ fast trigger to nearest neighboring module on its right.

CrateID: The ID of the crate.

Valid range: 0 to (Number of Crates – 1).

SlotID: The ID of the slot in the crate.

Valid range: 2 to 8 (8-slot crate) or 2 to 14 (14-slot crate).

ModID: The ID of the Pixie-16 module.

Valid range: 0 to (Number of Modules – 1).

TrigConfig0: The first trigger configuration registers. Please refer to the user’s manual for

its detailed usage.

TrigConfig1: The second trigger configuration registers. Please refer to the user’s manual

for its detailed usage.

TrigConfig2: The third trigger configuration registers. Please refer to the user’s manual for

its detailed usage.

TrigConfig3: The fourth trigger configuration registers. Please refer to the user’s manual for

its detailed usage.

HOST_RT_PRESET: The preset run time requested by the host. It is only used by MCA

histogram mode run. Its corresponding DSP parameter is

HOSTRUNTIMEPRESET, which is a 32-bit IEEE standard floating point

number. This is the only Module level parameter that needs to use this special

data format. The reason for this is that preset run time can be non-integer, e.g.

run for 30.5 seconds. All other Module Level parameters are integers. To set its

value correctly, Pixie-16 c-library function Decimal2IEEEFloating has to

be called to convert a decimal value into an IEEE 32-bit floating point number

in the form of unsigned integer. Then that converted unsigned integer can be

used in the function Pixie16WriteSglModPar to set the preset MCA run

http://www.xia.com/

Pixie-16 Programmer’s Manual

Version 3.07 www.xia.com 89

time with ModParName 'HOST_RT_PRESET'.

Valid range: 0 – infinite (theoretical)

4.2.3 Module Parameters (Output)

RUN_TIME: Duration of the data acquisition in seconds.

NUMBER_EVENTS: Currently not implemented.

BUFFER_HEAD_LENGTH: Currently not implemented.

EVENT_HEAD_LENGTH: Currently not implemented.

CHANNEL_HEAD_LENGTH: Currently not implemented.

OUTPUT_BUFFER_LENGTH: Currently not implemented.

HARDWARE_ID: Currently not implemented.

HARDWARE_VARIANT: Currently not implemented.

FIFO_LENGTH: Length of the trace buffer in the signal processing FPGAs.

FIPPI_ID: Currently not implemented.

FIPPI_VARIANT: Currently not implemented.

DSP_RELEASE: DSP code release number.

DSP_BUILD: DSP code build number.

DSP_VARIANT: Currently not implemented.

4.2.4 Channel Parameters (Input)

CHANNEL_CSRA: Bit pattern controlling data acquisition in this channel

Valid range: 0 – 232-1 (theoretical).

CHANNEL_CSRB: Bit pattern controlling data acquisition in this channel

Valid range: 0 – 232-1 (theoretical).

VOFFSET: Voltage offset in V.

Valid range: -1.5V - +1.5V.

ENERGY_RISETIME: Energy filter (trapezoidal) rise time in µs.

Valid range: 2*2SLOWFILTERRANGE*10ns – 124*2SLOWFILTERRANGE*10ns (100 MHz

or 500 MHz modules) or 2*2SLOWFILTERRANGE*8ns – 124*2SLOWFILTERRANGE*8ns

(250 MHz modules).

ENERGY_FLATTOP: Energy filter (trapezoidal) flat top time in µs.

Valid range: 3*2SLOWFILTERRANGE*10ns – 125*2SLOWFILTERRANGE*10ns (100 MHz

or 500 MHz modules) or 3*2SLOWFILTERRANGE*8ns – 125*2SLOWFILTERRANGE*8ns

(250 MHz modules).

TRIGGER_RISETIME: Trigger filter (trapezoidal) rise time in µs.

Valid range: 2*10ns – 127*10ns (100 MHz or 500 MHz modules) or 2*8ns –

127*8ns (250 MHz modules).

http://www.xia.com/

Pixie-16 Programmer’s Manual

Version 3.07 www.xia.com 90

TRIGGER_FLATTOP: Trigger filter (trapezoidal) flat top time in µs.

Valid range: 0ns – 125*10ns (100 MHz or 500 MHz modules) or 0ns – 125*8ns

(250 MHz modules).

TRIGGER_THRESHOLD: Threshold of the trigger filter in ADC steps. When the trigger

filter output is greater than this number, a trigger is issued.

Valid range: 1 – 65535.

TRACE_LENGTH: Length of waveform acquired in microseconds.

Valid range: 0 – 81.92 µs, 10ns steps (Rev B/C/D modules); 0 – 163.8 µs, 10ns

steps (Rev F, 100 MHz modules); 0 – 131 µs, 8ns steps (Rev F, 250 MHz

modules); 0 – 40.94 µs, 2ns steps (Rev F, 500 MHz modules).

TRACE_DELAY: Length of pre-trigger time of waveform acquired in microseconds.

Valid range: 0 – 10.24 µs, 10ns steps (Rev B/C/D, or Rev F-100 MHz, or Rev F-

500 MHz modules); 0 – 8.192 µs, 8ns steps (Rev F-250 MHz modules).

EMIN: An energy cutoff value which is used to determine whether or not to record trace in

list mode data runs, i.e. the "no trace for large pulses" feature: 1) if the computed

energy is above EMIN (or EnergyLow in the DSP code), trace will not be

recorded; 2) if the computed energy is equal to or smaller than EMIN, trace will

be recorded. This feature is only effective if bit 17 of ChanCSRA is set to 1. In

other words, if bit 17 of ChanCSRA is set to 0, the value of EMIN has no effect

on trace recording.

Valid Range: 0 – 65535.

BINFACTOR: This variable controls the binning of the histogram. Energy values are

calculated to 16 bits precision. The LSB corresponds to 1/16th of a 12-bit ADC.

The Pixie-16s, however, do not have enough histogram memory available to

record 64K spectra, nor would this always be desirable. The user is therefore

free to choose the binning control. Observe the following formula to find to

which MCA bin a value of Energy will contribute:

MCAbin = Energy * 2(-BINFACTOR)

Valid Range: 1 – 16.

BLCUT: This variable sets the cutoff value for baselines in baseline measurements. If

BLCUT is not set to zero, the DSP checks continuously each baseline value to

see if it is outside of the limit set by BLCUT. If the baseline value is within the

limit, it will be used to calculate the average baseline value. Otherwise, it will be

discarded. Set BLCUT to zero to not check baselines, therefore reduce

processing time, but with the risk of worse energy resolution.

ControlTask 6 can be used to measure baselines. Host computer can then

histogram these baseline values and determine the appropriate value for BLCUT

for each channel according to the standard deviation SIGMA for the averaged

baseline value. BLCUT could be set to be three times SIGMA.

BASELINE_PERCENT: This variable sets the DC-offset level in terms of the percentage

of the ADC range during automatic offset adjustments.

http://www.xia.com/

Pixie-16 Programmer’s Manual

Version 3.07 www.xia.com 91

TAU: Preamplifier exponential decay time. This variable is used to store the preamplifier

decay time. The time  is measured in µs. The DSP uses this variable to compute

coefficients for the energy calculation.

XDT: Time interval between ADC samples acquired for the oscilloscope view.

BASELINE_AVERAGE: This variable sets the value of DSP parameter LOG2BWEIGHT

for averaging baseline values during baseline computations in the DSP.

FASTTRIGBACKLEN: This variable sets the fast trigger backplane length.

INTEGRATOR: Currently not implemented

CFDDELAY: This variable sets the CFD delay value.

CFDSCALE: This variable sets the CFD scaling factor.

CFDTHRESH: Threshold for arming the search for CFD zero crossing point.

QDCLEN0: This variable sets the QDC length #0.

QDCLEN1: This variable sets the QDC length #1.

QDCLEN2: This variable sets the QDC length #2.

QDCLEN3: This variable sets the QDC length #3.

QDCLEN4: This variable sets the QDC length #4.

QDCLEN5: This variable sets the QDC length #5.

QDCLEN6: This variable sets the QDC length #6.

QDCLEN7: This variable sets the QDC length #7.

EXTTRIGSTRETCH: This variable sets the stretched length of the external trigger.

VETOSTRETCH: This variable sets the stretched length of the veto signal.

MULTIPLICITYMASKL: This variable sets the lower 32-bit of the Multiplicity mask.

MULTIPLICITYMASKH: This variable sets the upper 32-bit of the Multiplicity mask.

EXTERNDELAYLEN: This variable sets the external delay length.

FTRIGOUTDELAY: This variable sets the delay value for outputting fast trigger to the

System FPGA.

CHANTRIGSTRETCH: This variable sets the stretched length of the channel validation

trigger.

4.2.5 Channel Parameters (Output)

LIVE_TIME: Time in seconds the channel was active.

FAST_PEAKS: Number of fast triggers seen in this channel.

INPUT_COUNT_RATE: Input count rate for this channel.

OUTPUT_COUNT_RATE: Output count rate for this channel.

http://www.xia.com/

Pixie-16 Programmer’s Manual

Version 3.07 www.xia.com 92

4.3 DSP Parameters

Below we describe the module and channel parameters in turn. Where appropriate, we show how a

variable can be viewed using the Pixie-16 VB demo interface. Note that even though there are functions

available to simply read and write these parameters to and from DSP memory, in some cases the variables

have to be applied to the FPGAs by starting a CONTROLTASK in the DSP. Other variables are only stored

in the DSP parameter space and used by higher level functions.

4.3.1 Module input parameters

MODNUM: Logical number of the module. This number can be used to be part of the list

mode binary data file name to aid offline event reconstruction. It is assigned by

the C driver API at time of booting.

Valid range: 0 to (number of modules intended for booting – 1).

MODCSRA: Currently not implemented.

Bits 0-31: Reserved.

MODCSRB: The Module Control and Status Register B:

Bit 0: If set, wired-OR trigger lines on the backplane connect to a pullup resistor. This bit

should be set for only one module in the backplane segment.

Bit 1-3: Reserved.

Bit 4: Set this module as the Director module (1) or non-Director module (0).

Bit 5: Reserved.

Bit 6: Control chassis master module: 1: chassis master module; 0: chassis non-master module

Bit 7: Select global fast trigger source

Bit 8: Select external trigger source

Bit 9: Reserved.

Bit 10: Control external INHIBIT signal: use INHIBIT (1) or don't use INHIBIT (0)

Bit 11: Distribute clock and triggers in multiple crates: multiple crates (1) or only single crate (0)

Bit 12: Sort (1) or don't sort events based on their timestamps

Bit 13: Enable connection of fast triggers to backplane

Bits 14-31: Reserved.

http://www.xia.com/

Pixie-16 Programmer’s Manual

Version 3.07 www.xia.com 93

MODFORMAT: List mode data format descriptor. Currently it is not in use.

RUNTASK: This variable tells the Pixie-16 what kind of run to start in response to a run start

request. Three run tasks are currently supported.

RunTask 0 is used to request slow control tasks. These include programming the

trigger/filter FPGAs, setting the DACs in the system, transfers to/from the

external memory, and calibration tasks.

RunTask 256 (0x100) requests a standard list mode run. In this run type triggered

waveforms together with time of arrival (trigger time), event energy, and other

event information are written into the External FIFO for each channel and

module. The raw data stream is always sent to the intermediate buffer in the

signal processing FPGAs. The data-gathering routine in the DSP reads the raw

data from the FPGAs, computes the event energy, and then writes those data to

the external FIFO. If the intermediate buffer in the FPGA is full, newly arrived

events will be ignored until there is room again in the buffer.

RunTask 769 (0x301) requests a MCA run. Similar to RunTask 256, the event

raw data stream is always sent to the intermediate buffer in the signal processing

FPGAs. The data-gathering routine in the DSP reads the raw data from the

FPGAs, computes the event energy, and then writes the energy value to the

External Histogram Memory. If the intermediate buffer in the FPGA is full, newly

arrived events will be ignored until there is room again in the buffer. This run type

does not write data to the External FIFO.

The RunTask can be chosen as the run type in the Run tab of the VB interface.

CONTROLTASK: Use this variable to select a control task. Consult the control tasks section of

this manual for detailed information. The control task will be launched when a run

start command is issued with RUNTASK=0.

MAXEVENTS: currently not implemented

COINCPATTERN: currently not implemented.

COINCWAIT: currently not implemented

SYNCHWAIT: Controls run start behavior. When set to 0 the module simply starts or

resumes a run in response to the corresponding host request. When set to 1,

RunTask Mode Trace

Capture

0 Slow control run N/A

256 (0x100) Standard list mode Yes

769 (0x301) MCA mode No

http://www.xia.com/

Pixie-16 Programmer’s Manual

Version 3.07 www.xia.com 94

modules will run synchronously through the backplane. This will ensure that the

last module ready to actually begin data taking will start the run in all modules

and the first module to end the run will stop the run in all modules. This way it

never happens that a multi-Pixie system is only partially active.

INSYNCH: InSynch is an input/output variable. It is used in multi-Pixie systems in which the

modules are driven by a common clock. When InSynch is 1, the module assumes

it is in synch with the other modules and no particular action is taken at run start.

If this variable is 0, then all system timers are cleared at the beginning of the next

data acquisition run (RunTask>0). The timers are reset when the entire system

actually starts the run. After run start, InSynch is automatically set to 1 by the

DSP.

RESUME: Set this variable to 1 to resume a data run; otherwise, set it to 0.

SLOWFILTERRANGE: The energy filter range downloaded from the host to the DSP and

FPGA. It sets the number of ADC samples (2SLOWFILTERRANGE) to be averaged

before entering the energy filtering logic. The currently supported filer range in

the signal processing FPGA includes 1, 2, 3, 4, 5, and 6.

FASTFILTERRANGE: The trigger filter range downloaded from the host to the DSP and

FPGA. It sets the number of ADC samples (2FASTFILTERRANGE) to be averaged

before entering the trigger filtering logic. The currently supported filer range in

the signal processing FPGA is only 0.

CHANNUM: The chosen channel number of a Pixie module. Mainly used by the host to set the

designated channel.

HOSTIO: A 16 word data block that is used to specify command options.

USERIN: A block of 16 input variables used by user-written DSP code.

FASTTRIGBACKPLANEENA: Enables sending fast trigger to backplane

CRATEID: ID number for chassis. Reported in list mode data for purposes of event

 building. Limited to 0..15.

SLOTID: ID number for physical slot in chassis. Reported in list mode data for

 purposes of event building. Limited to 0..15.

MODID: ID number for module. Unused

TRIGCONFIG[3:0]: Four bit pattern words used to configure various trigger options.

 See user manual for details

U00: unused, reserved

http://www.xia.com/

Pixie-16 Programmer’s Manual

Version 3.07 www.xia.com 95

HOSTRUNTIMEPRESET: Used to set exact run time in MCA mode.

 A 32-bit IEEE standard floating point number in seconds.

POWERUPINITDONE: Indicates whether routine to initialize DSP on RESET is

done (1) or not (0).

4.3.2 Channel input parameters

All channel-0 variables end with "[00]", channel-1 variables end with "[01]", etc.

In the following explanations the numerical suffix has been removed. Thus, e.g.,

CHANCSRA[00] becomes CHANCSRA, etc.

Once a new variable has been written to DSP memory, it has to be activated by

starting a run with RunTask 0 (Set DACs) and ControlTask 5 (Program FiPPI).

Strictly speaking, not all variables require this activation, but it is easiest to apply

this to them all.

CHANCSRA: The control and status register bits switch on/off various aspects of the PIXIE-16

operation.

Bit 0: Fast trigger selection - 1: select external fast trigger; 0: select local fast trigger

Bit 1: Module validation signal selection - 1: select module gate signal; 0: select global

validation signal

Bit 2: Good channel.

Only channels marked as good will contribute to spectra and list mode data.

Bit 3: Channel validation signal selection - 1: select channel gate signal; 0: select channel

validation signal

Bit 4: Block data acquisition if trace or header DPMs are full - 1: enable; 0: disable.

Bit 5: Trigger positive.

Set this bit to trigger on a positive slope; clear it for triggering on a negative slope. The

trigger/filter FPGA can only handle positive signals. The PIXIE-16 handles negative

signals by inverting them immediately after entering the FPGA.

Bit 6: Veto channel trigger - 1: enable; 0: disable

Bit 7: Histogram energies.

Set this bit to histogram energies from this channel in the on-board MCA memory.

 NOTE: in the current DSP code implementation, the DSP always histograms event

energies in the on-board MCA memory. So the value of this bit has no effect.

http://www.xia.com/

Pixie-16 Programmer’s Manual

Version 3.07 www.xia.com 96

Bit 8: Enable trace capture.

Set to 1 to enable trace capture for this channel. Set to 0 to disable trace capture.

Bit 9: Enable QDC sums capture.

Set to 1 to enable QDC sums capture for this channel. Set to 0 to disable QDC sums

capture.

Bit 10: Enable CFD trigger mode.

Set to 1 to enable CFD trigger mode for this channel. Set to 0 to disable CFD trigger.

Bit 11: Enable the requirement for module validation trigger.

Set to 1 to require module validation trigger for events validation for this channel. Set to

0 to disable the requirement for module validation trigger.

Bit 12: Enable capture raw energy sums and baselines.

Set to 1 to store raw energy sums and baselines for events captured in this channel. Set to

0 to not capture raw energy sums and baselines.

Bit 13: Enable the requirement for channel validation trigger.

Set to 1 to require channel validation trigger for events validation for this channel. Set to

0 to disable the requirement for channel validation trigger.

Bit 14: Enable input relay.

This bit controls the ON or OFF position switching of the input relay of each channel of

the Pixie-16, resulting in two discrete fixed gains for the input signal: one high and one

low. The actual gain value depends on the input design of each particular Pixie-16

hardware variant.

Bit 15,16: Pileup rejection control. Set bits [16:15] to

00: record all events (trace, timestamps, etc., but no energy for piled-up events)

01: only record single events (trace, energy, timestamps, etc.) (i.e., reject piled-up events)

10: record trace, timestamps, etc. for piled-up events but do not record trace for single events

11: only record trace, timestamps, etc., for piled-up events (i.e., reject single events)

Bit 17: Enable "no trace for large pulses" feature - 1: enable; 0: disable

Bit 18: Group trigger selection - 1: external group trigger; 0: local fast trigger.

Bit 19: Channel veto selection - 1: channel validation trigger; 0: front panel channel veto.

Bit 20: Module veto selection - 1: module validation trigger; 0: front panel module veto.

Bit 21: External timestamps in event header - 1: enable; 0: disable.

CHANCSRB: Control and status register B.

Bit0..31: are reserved. Set to 0.

GAINDAC: Reserved and not supported.

http://www.xia.com/

Pixie-16 Programmer’s Manual

Version 3.07 www.xia.com 97

OFFSETDAC: This DAC determines the DC-offset voltage. The offset can be calculated

using the following formula:

Offset [V] = 1.5 * ((OFFSETDAC – 32768) / 32768)

DIGGAIN: Unused. The digital gain factor for compensating the difference between the user-

desired voltage gain and the SGA gain.

SLOWLENGTH: The rise time of the energy filter depends on SlowLength:

RiseTime = SlowLength * 2SlowFilterRange * 10 ns (100 MHz or 500 MHz modules)

or

RiseTime = SlowLength * 2SlowFilterRange * 8 ns (250 MHz modules)

Note the constraint: SlowLength > 2

SLOWGAP: The flat top of the energy filter depends on SlowGap:

FlatTop = SlowGap * 2SlowFilterRange * 10 ns (100 MHz or 500 MHz modules)

or

FlatTop = SlowGap * 2SlowFilterRange * 8 ns (250 MHz modules)

Note the constraint: SlowGap > 2

There is a constraint concerning the sum value of the two parameters:

SlowLength + SlowGap < 127

FASTLENGTH: The rise time of the trigger filter depends on FastLength:

RiseTime = FastLength * 2FastFilterRange * 10 ns (100 MHz or 500 MHz modules)

or

RiseTime = FastLength * 2FastFilterRange * 8 ns (250 MHz)

Note the constraint: FastLength > 2

FASTGAP: The flat top of the trigger filter depends on FastGap:

FlatTop = FastGap * 2FastFilterRange * 10 ns (100 MHz or 500 MHz modules)

or

FlatTop = FastGap * 2FastFilterRange * 8 ns (250 MHz modules)

There is a constraint concerning the sum value of the two parameters: FastLength

+ FastGap < 127

http://www.xia.com/

Pixie-16 Programmer’s Manual

Version 3.07 www.xia.com 98

PEAKSAMPLE: This variable determines at what time the value from the energy filter will

be sampled. Its value is set according to the value of SlowFilterRange:

SlowFilterRange PeakSample

1 PeakSample = SlowLength + Slow Gap – 3

2 PeakSample = SlowLength + Slow Gap – 2

3 PeakSample = SlowLength + Slow Gap – 2

4 PeakSample = SlowLength + Slow Gap – 1

5 PeakSample = SlowLength + Slow Gap

6 PeakSample = SlowLength + Slow Gap + 1

If the sampling point is chosen poorly, the resulting spectrum will show energy

resolutions of 10% and wider rather than the expected fraction of a percent. For

some parameter combinations PeakSample needs to be varied by one or two units

in either direction, due to the pipelined architecture of the trigger/filter FPGA.

Do not set manually, it is computed by the DSP and/or C driver library from

the filter.

PEAKSEP: This value governs the minimum time separation between two pulses. Two pulses

that arrive within a time span shorter than determined by PeakSep will be rejected

as piled up.

The recommended value is:

PeakSep = SlowLength + Slow Gap

Do not set manually, it is computed by the DSP and/or C driver library from

the filter.

CFDTHRESH: This sets the threshold of the constant fraction discriminator (CFD) trigger

that is implemented in the trigger/filter FPGA.

FASTTHRESH: This is the trigger threshold used by the trigger/filter FPGA. The value

relates to a trigger threshold through the formula:

FASTTHRESH = TriggerThreshold * FASTLENGTH

Note the constraint FASTTHRESH < 65535

THRESHWIDTH: Unused.

Reserved for width for trigger above threshold

PAFLENGTH: PAFLENGTH and the next parameter TRIGGERDELAY are legacy

parameters used by obsolete designs. They are kept only for setting the value of

TraceDelay, which is the length of the trace prior to the trigger. The acquired

http://www.xia.com/

Pixie-16 Programmer’s Manual

Version 3.07 www.xia.com 99

waveform will start rising from the baseline at a time delay (TraceDelay) after the

beginning of the trace. This delay is a quantity that the user will want to set. In the

PIXIE-16 interface the TraceDelay (measured in microseconds) is available

through the Settings tab.

The PafLength computed as follows:

PafLength = TriggerDelay / 2FASTFILTERRANGE + TraceDelay/10ns (100 MHz or

500 MHz modules) or

 PafLength = TriggerDelay / 2FASTFILTERRANGE + TraceDelay/8ns (250 MHz

modules)

Note the constraint: PafLength < FifoLength.

Do not set manually, it is computed by the DSP and/or C driver library from

the filter and trace settings.

TRIGGERDELAY: This is a partner variable to PafLength. For all filter ranges,

TriggerDelay = (PeakSep -1)*2SlowFilterRange

Do not set manually, it is computed by the DSP and/or C driver library from

the filter and trace settings.

RESETDELAY: Unused. This variable controls the restarting of the FIFO after it was halted to

read the waveform. When triggers are distributed across channels and modules, a

halted FIFO is automatically restarted if the trigger/filter FPGA does not receive

the distributed event trigger within RESETDELAY 10ns clock ticks after the

internal event trigger. The default value written by the PIXIE module should not

be changed by the user.

CHANTRIGSTRETCH: The “channel validation trigger” from the system FPGA is extended

by this value (in clock cycles). See section 3.3.10 in the user manual.

TRACELENGTH: This tells the DSP how many words of trace data to read for each event. The

action taken depends on FIFOlength, whose value depends on hardware variants

and specific firmware implementations. If TraceLength < FIFOlength, the DSP

will read from the FIFO. In that case individual samples are either 10 ns

(100 MHz or 500 MHz modules) or 8 ns (250 MHz) apart. If FIFOlength <=

TraceLength, the PIXIE-16 code will force the TraceLength to be equal to

FIFOlength.

XWAIT: This parameter controls the number of clock cycles between untriggered ADC

traces in control run with ControlTask = 4. The time between recorded samples is

T = XWAIT*10ns.

http://www.xia.com/

Pixie-16 Programmer’s Manual

Version 3.07 www.xia.com 100

TRIGOUTLEN: unused

ENERGYLOW: An energy cutoff value which is used to determine whether or not to

record trace in list mode data runs, i.e. the "no trace for large pulses" feature: 1) if the computed

energy is above EnergyLow (or EMIN as described in section 4.2.4), trace will not be recorded;

2) if the computed energy is equal to or smaller than EnergyLow, trace will be recorded. This

feature is only effective if bit 17 of ChanCSRA is set to 1. In other words, if bit 17 of

ChanCSRA is set to 0, the value of EnergyLow has no effect on trace recording.

LOG2EBIN: This variable controls the binning of the histogram. Energy values are calculated

to 16 bits precision. The LSB corresponds to 1/16th of a 12-bit ADC. The PIXIEs,

however, do not have enough histogram memory available to record 64K spectra,

nor would this always be desirable. The user is therefore free to control the

binning. Observe the following formula to find to which MCA bin a value of

Energy will contribute:

MCAbin = Energy * 2Log2Ebin

As can be seen, Log2Ebin should be a negative number to achieve the correct

behaviour. At run start the DSP program ensures that Log2Ebin is indeed negative

by replacing the stored value by -abs(Log2Ebin).

MULTIPLICITYMASKL:

MULTIPLICITYMASKH: bit patterns controlling the coincidence logic. See user manual for

details.

PSAOFFSET:

PSALENGTH: currently not implemented

When recording traces and requiring any pulse shape analysis by the DSP, these

two parameters govern the range over which the analysis will be applied. The

analysis begins at a point PSAOFFSET sampling clock ticks into the trace, and is

applied over a piece of the trace with a total length of PSALENGTH clock ticks.

INTEGRATOR: currently not implemented

 This variable controls the energy reconstruction in the DSP.

INTEGRATOR == 0: normal trapezoidal filtering

INTEGRATOR == 1: use gap sum only; good for scintillator signals

INTEGRATOR == 2: ignore gap sum; pulse height=leading sum – trailing

 sum; good for step-like pulses.

BLCUT: This variable sets the cutoff value for baselines in baseline measurements. If

BLCUT is not set to zero, the DSP checks continuously each baseline value to see

if it is outside of the limit set by BLCUT. If the baseline value is within the limit,

it will be used to calculate the average baseline value. Otherwise, it will be

discarded. Set BLCUT to zero to not check baselines, therefore reduce processing

time.

http://www.xia.com/

Pixie-16 Programmer’s Manual

Version 3.07 www.xia.com 101

ControlTask 6 can be used to measure baselines. Host computer can then

histogram these baseline values and determine the appropriate value for BLCUT

for each channel according to the standard deviation SIGMA for the averaged

baseline value. BLCUT could be set to be three times SIGMA.

BASELINEPERCENT: This variable sets the DC-offset level in terms of the percentage of

the ADC range. The DSP uses this variable to set the DC-offset level when it is

executing the ADJUST OFFSET control task.

FTRIGOUTDELAY: Delay for sending trigger to system FPGA for coincidence logic. See user

manual section 3.3.10 for details.

LOG2BWEIGHT: The PIXIE measures baselines continuously and effectively extracts DC-

offsets from these measurements. The DC-offset value is needed to apply a

correction to the computed energies. To reduce the noise contribution from this

correction baseline samples are averaged in a geometric weight scheme. The

averaging depends on LOG2BWEIGHT:

DC_avg = DC_avg + (DC - DC_avg) * 2LOG2BWEIGHT

DC is the latest measurement and DC_avg is the average that is continuously

being updated. At the beginning, and at the resuming, of a run, DC_avg is seeded

with the first available DC measurement.

As before, the DSP ensures that LOG2BWEIGHT will be negative. The noise

contribution from the DC-offset correction falls with increased averaging. The

standard deviation of DC_avg falls in proportion to sqrt(2^LOG2BWEIGHT).

When using a BLCUT value from a noise measurement (cf control task 6) the

PIXIE will internally adjust the effective LOG2BWEIGHT for best energy

resolution, up to the maximum value given by LOG2BWEIGHT. Hence, the

Log2Bweight setting should be chosen at low count rates (dead time < 10%). Best

energy resolutions are typically obtained at values of -3 to -4, and this parameter

does not need to be adjusted afterwards.

PREAMPTAU: Preamplifier exponential decay time.

 This variable is used to store the preamplifier decay time. It is stored in the DSP

as a 32-bit floating point number (IEEE standard floating point format). The DSP

uses this variable to compute coefficients for the event energy calculations.

XAVG: unused

FASTTRIGBACKLEN: Length of trigger for coincidence logic in system FPGA. See user

manual section 3.3.10 for details.

http://www.xia.com/

Pixie-16 Programmer’s Manual

Version 3.07 www.xia.com 102

CFDDELAY: The CFD algorithm builds the difference of original and delayed/scaled ADC

signal. This variable defines the delay. See user manual for details.

CFDSCALE: The CFD algorithm builds the difference of original and delayed/scaled ADC

signal. This variable defines the scale. See user manual for details.

EXTTRIGSTRETCH: This parameter is used to stretch the module validation trigger pulse.

Only relevant when module validation is required by setting bit 11

CCSRA_GLOBTRIG

VETOSTRETCH: This parameter is used to stretch the veto pulse for this channel.

EXTERNDELAYLEN: This parameter is used to delay the incoming ADC waveform and the

local fast trigger in order to compensate for the delayed arrival of the external

trigger pulses, e.g., module validation trigger, channel validation trigger, etc.

QDCLEN0-7: Length of the QDC sums.

http://www.xia.com/

Pixie-16 Programmer’s Manual

Version 3.07 www.xia.com 103

4.3.3 Module output parameters

REALTIMEA:

REALTIMEB: The 64-bit real time clock. A, B are the high and low word, respectively.

The clock is zeroed on power up, and also in response to a synchronous

data acquisition start when InSynch was set to 0 prior to the run start.

RealTime = (RealTimeA * 232 + RealTimeB) * 10ns

RUNTIMEA:

RUNTIMEB: The 64-bit run time clock. A, B words are as for the RealTime clock. This

time counter is active only while a data acquisition run is in progress and

thus counts the elapsed run time. Compute the run time using the

following formula:

RunTime = (RunTimeA * 232 + RunTimeB) * 10ns

SYNCHDONE: This variable is used to indicate whether the synchronization interrupt has

successfully occurred in the DSP when a run start request was issued with

SYNCHWAIT=1. If the DSP is stuck in an infinite loop caused by a

malfunctioning Busy-Synch loop, indicated by the value of SynchDone

being always 0, the module should be rebooted and then the reason which

caused the malfunctioning Busy-Synch loop should be investigated.

Below follow the addresses and lengths of a number of data buffers used by the DSP program. The

addresses are generated by the assembler/linker when creating the executable. On power up the

DSP code makes these values accessible to the user. Note that the addresses will typically change

with every new compilation. Therefore your code should never assume to find any given buffer at

a fixed address.

USEROUT: 16 words of user output data, which may be used by the user written DSP

code.

HARDWAREID: ID of the hardware version.

HARDVARIANT: Variant of the hardware.

FIFOLENGTH: Length of the onboard FIFOs, measured in storage locations.

DSPRELEASE: DSP software release number.

DSPBUILD: DSP software build number.

http://www.xia.com/

Pixie-16 Programmer’s Manual

Version 3.07 www.xia.com 104

4.3.4 Channel output parameters

The following channel variables contain run statistics. Again the variable names carry the

channel number as a suffix. For example the LIVETIME words for channel 2 are

LIVETIMEA[2], LIVETIMEB[2]. Channel number runs from 0 to 15.

LIVETIMEA:

LIVETIMEB: Total live time as measured by the trigger/filter FPGA of that channel. It

excludes times during which the input signal is out of the ADC’s voltage

range, or when the run was stopped. Convert the two LiveTime words into

a live time using the formula:

LiveTime = (LiveTimeA * 232 + LiveTimeB) *10ns (100 MHz or 500 MHz modules)

or

LiveTime = (LiveTimeA * 232 + LiveTimeB) *8ns (250 MHz modules)

FASTPEAKSA: The number of events detected by the fast filter is:

FASTPEAKSB: NumEvents = FASTPEAKSA* 232 + FASTPEAKSB

CHANEVENTSA:

CHANEVENTSB: Total number of events that have been processed by the DSP for a given

channel:

 ChanEvents = (ChanEventsA * 232 + ChanEventsB)

http://www.xia.com/

Pixie-16 Programmer’s Manual

Version 3.07 www.xia.com 105

4.4 DSP Control Tasks

The DSP can execute a number of control tasks, which are necessary to control hardware

blocks that are not directly accessible from the host computer. The most prominent tasks

are those to set the DACs and program the trigger/filter FPGAs. The following is a list of

control tasks that will be of interest to the programmer.

To start a control task, set RUNTASK=0 and choose a CONTROLTASK value from the

list below. Then start a run by setting bit 0 in the control and status register (CSR).

Control tasks respond within a few hundred nanoseconds by setting the RUNACTIVE bit

(#13) in the CSR. The host can poll the CSR and watch for the RUNACTIVE bit to be

deasserted. All control tasks indicate task completion by clearing this bit.

Execution times vary considerably from task to task, ranging from under a microsecond to

10 seconds. Hence, polling the CSR is the most effective way to check for completion of a

control task.

Control Task 0: SetDACs
Write the OFFSETDAC values of all channels into the respective DACs.

Reprogramming the DACs is required to make effective changes in the values of

the variables OFFSETDAC{0…15}.

Control Task 1: Enable Input
This control task was declared in pixie16app_defs.h, but it was not implemented

in the DSP code nor it is being used.

Control Task 3: Ramp offset DAC
Ramp offset DACs of a module from 0 to 65535 at a step size of 64. Baseline

values are captured at each offset DAC level, and a plot of baseline values versus

offset DAC levels can then be used to find the appropriate offset DAC value for a

given baseline level. The number of baseline values for each channel that are

available after calling this control task is 1024. So for 16 channels, there will be a

total of 16384 baseline values to read out from the DSP internal memory.

Control Task 4: Untriggered ADC Traces
This task provides ADC values measured on all 16 channels and gives the user an

idea of what the noise and the DC-levels in the system are. This function samples

8192 ADC words (16-bit) for each of the 16 channels. The XWAIT variable

determines the time between successive ADC samples (samples are XWAIT *

10ns apart). In the Pixie-16 VB demo interface XWAIT can be adjusted through

the dT variable in the ADC Trace Display panel. The results are written to the

65536 words (32-bit) long I/O buffer. Use this function to check if the offset

adjustment was successful.

Control Task 5: ProgramFiPPI
This task writes all relevant data to the FiPPI registers in the FPGA, for example,

the fast filter rise time and flat top, etc. These data have already been converted

to FPGA recognizable values by the APP DLL/Clib functions before they are

downloaded to the DSP, e.g. slow filter rise time has been converted from units

of s to units of FPGA clock cycles.

http://www.xia.com/

Pixie-16 Programmer’s Manual

Version 3.07 www.xia.com 106

Control Task 6: Measure Baselines
This routine is used to collect baseline values. Currently, DSP collects three

words, time stamp (low 32-bit word), time stamp (high 16-bit word), and

baseline value, for each baseline. 3640 baselines are collected until the 65536-

word (32-bit) I/O buffer is almost completely filled. The host computer can then

read the I/O buffer and retrieve the baseline values. Please note, the baseline

values retrieved from the DSP are 32-bit IEEE floating point numbers, and they

have to be converted to decimal values first before they can be used for analysis.

Baseline values can then be statistically analyzed to determine the standard

deviation associated with the averaged baseline value and to set the BLCUT.

BLCUT should be about 3 times the standard deviation. Baseline values can also

be plotted against time stamp to explore the detector performance. BLCUT

should be set to zero while running Control Task 6.

Control Task 7: Automatically adjust DC offsets
This task automatically adjusts the DC offsets of each of the 16 channels of a

Pixie-16 module through setting Offset DACs to appropriate values. The signal

baseline levels after the adjustment will be determined by DSP parameter

BaselinePercent. For instance, if the BaselinePercent is set to 10% on a Pixie-16

module installed with 14-bit ADCs, the DC offset will be about 1640 after

successful DC offset adjustment.

Control Task 8: Find decay time Tau
This task tries to find the single exponential decay time constant of the input

analog signals of each channel. It uses the untrigged ADC traces to find and fit

the input pulses, so reasonably high count rate for the input signals is required to

find the decay time successfully.

Control Task 23: Reset ADCs (Rev. F modules only)
This task resets the ADCs of a Pixie-16 module, and is applicable to Rev. F

modules only. This task is only used while booting the Rev. F modules.

http://www.xia.com/

Pixie-16 Programmer’s Manual

Version 3.07 www.xia.com 107

5 Control Registers

A Pixie-16 module has several control registers that are used to activate runs, download

DSP code or reset DSP, control pullup resistor for the trigger lines on the backplane, and/or

indicate module status to the host computer. Software on the host computer can set and/or

read bits in these registers to control the operation of the Pixie-16 module or monitor its

internal status.

5.1 PCI Host Control Register

Bit name Bit # Direction Description

RUNENABLE 0 Read/Write
Enable run:

=1: start a run;

=0: stop a run

Download DSP code 1 Read/Write
Enable DSP code download:

=1: Download DSP code;

=0: DSP code is running

PCI Active read or write 2 Read/Write
Indicate PCI I/O is active:

=1: PCI is reading or writing memory;

=0: no PCI read or write

Pull-up resistor control 3 Read/Write

Control pull-up for the SYNC lines:

=1: wired-OR trigger lines on the backplane

connect to a pullup resistor;

=0: not connected

Reset DSP 4 Read/Write

Generate a pulse to reset DSP:

calling function Pixie_ReadCSR to read the value

of this control register, and then set this bit to 1,

and finally write the control register back to the

System FPGA by calling function Pixie_WrtCSR

Reserved 5

EXTFIFO_WML 6 Read only

External FIFO watermark level indicator:

=1: number of data words in the external FIFO

exceeds the watermark level, so the external FIFO

is ready to be read out;

=0: number of data words in the external FIFO is

still below the watermark level, so the external

FIFO is not yet ready to be read out

Reserved [12:7]

RUNACTIVE 13 Read only
Run active indicator:

=1: run is active;

=0: run has ended

Reserved 14

CLREXTMEM_ACTIVE 15 Read only
Clearing external memory active indicator:

=1: clearing external memory is still ongoing;

=0: clearing external memory has completed

http://www.xia.com/

