Precision Penning Ion Trap Mass Spectrometry

Publications

  1. Atomic masses of 32,33S, 84,86Kr, and 129,132Xe with uncertainties < 0.1ppb, W. Shi, M. Redshaw, and E.G. Myers, Phys. Rev. A72, 022510 (2005).
  2. Mass ratio of two ions in a Penning trap by alternating between the trap center and a large cyclotron orbit, M. Redshaw, J. McDaniel, W. Shi, and E.G. Myers, International Journal of Mass Spectrometry 251, 125 (2006).
  3. Dipole moments and orientation polarizabilities of diatomic molecular ions for precision atomic mass measurement, M. Cheng, J.M. Brown, P. Rosmus, R. Linguerri, N. Komiha, and E.G. Myers, Phys. Rev. A 75, 012502 (2007).
  4. Mass and double-beta-decay Q-value of 136Xe, M. Redshaw, E. Wingfield, J. McDaniel, and E.G. Myers, Phys. Rev. Lett. 98, 053003 (2007).
  5. Precision mass spectrometry and polarizability shifts with one and two ions in a Penning trap, M. Redshaw, W. Shi, J. McDaniel, E. Wingfield, and E.G. Myers, Hyperfine Interactions, 174, 65 (2007).
  6. Dipole moment of PH+ and atomic masses of 28Si and 31P by comparing cyclotron frequencies of two ions simultaneously trapped in a Penning trap, M. Redshaw, J. McDaniel and E.G. Myers, Phys. Rev. Lett. 100, 093002 (2008).
  7. Improved atomic masses of 84,86Kr and 129,132Xe, M. Redshaw, B.J. Mount, and E.G. Myers, Phys. Rev. A, 79, 012506 (2009).
  8. Penning-trap measurement of the atomic masses of 18O and 19F with uncertainties <0.1 parts per 109, M. Redshaw, B.J. Mount, and E.G. Myers, Phys. Rev. A. 79, 012507 (2009).
  9. Masses of 130Te and 130Xe and double-beta-decay Q value of 130Te, M. Redshaw, B.J. Mount, E.G. Myers, and F.T. Avignone, Phys. Rev. Lett. 102, 212502 (2009).
  10. Q-value of 115In→ 115Sn(3/2+): The lowest known energy beta-decay, B.J. Mount, M. Redshaw, and E.G. Myers, Phys. Rev. Lett. 103, 122502 (2009).
  11. Double-beta-decay Q-values of 74Se and 76Ge, B.J. Mount, M. Redshaw and E.G. Myers, Phys. Rev. C 81, 032501(R) (2010).
  12. Mass of 17O from Penning trap mass spectrometry and molecular spectroscopy: A precision test of the Dunham-Watson model in carbon monoxide, B.J. Mount, H.S.P. Mueller, M. Redshaw, and E.G. Myers, Phys. Rev. A 81, 064501 (2010).
  13. Atomic masses of 6Li, 23Na, 39,41K, 85,87Rb, and 133Cs, B.J. Mount, M. Redshaw, and E.G. Myers, Phys. Rev. A 82, 042513 (2010).
  14. Precision atomic mass spectrometry with applications to fundamental constants, neutrino physics and physical chemistry, B.J. Mount, M. Redshaw, and E.G. Myers, Hyperfine Interact. 199, 327 (2011).
  15. Not your usual NMR, E.G. Myers, Physics 4, 49 (2011) – Invited “Viewpoint”.
  16. Dipole moments of HCO+ and NH+ from cyclotron frequency polarizability shifts, B.J. Mount, M. Redshaw, and E.G. Myers, Phys. Rev. A 85, 012519 (2012).
  17. Atomic masses of strontium and ytterbium, R. Rana, M. Hoecker, and E.G. Myers, Phys. Rev. A 86, 050502(R) (2012).
  18. The most precise atomic mass measurements in Penning traps, E.G. Myers, International J. of Mass Spectrometry, 349-350, 107 (2013).
  19. Slow atoms make progress on the fine structure constant, E.G. Myers, Ann. Phys. (Berlin) 525, A138 (2013) – Invited “Expert Opinion”.
  20. Atomic masses of 82,83Kr and 131,134Xe, M. Hoecker, R. Rana, and E.G. Myers, Phys. Rev. A 88, 052502 (2013).
  21. Fundamental constants: The teamwork of precision, E.G. Myers, Nature 506, 440 (27 Feb 2014) – Invited “News and Views”.
  22. Atomic Masses of Tritium and Helium-3, E.G. Myers, A. Wagner, H. Kracke, and B.A. Wesson, Phys. Rev. Lett. 114, 013003 (2015).
  23. A tale of two masses, E.G. Myers, Nature Physics 12, 2 (Oct 2016) – Invited “Measure for Measure” contribution.
  24. Precision mass ratio of 3He+ to HD+, S. Hamzeloui, J.A. Smith, D.J. Fink, and E.G. Myers, Phys. Rev. A 96, 060501(R) (2017).
  25. Rotational energy as mass in H3+ and lower limits on the atomic masses of D and 3He, J.A. Smith, S. Hamzeloui, D.J. Fink, and E.G. Myers, Phys. Rev. Lett. 120, 143002 (2018).
  26. CPT tests with the antihydrogen molecular ion, E.G. Myers, Phys. Rev. A 98, 010101(R) (2018).
  27. Deuteron-to-proton mass ratio from the cyclotron frequency ratio of H2+ to D+ with H2+ in a resolved vibrational state, D.J. Fink and E.G. Myers, Phys. Rev. Lett. 124, 013001 (2020).
  28. Deuteron-to-proton mass ratio from simultaneous measurement of the cyclotron frequencies of H2+ and D+ , D.J. Fink and E.G. Myers, Phys. Rev. Lett. 127, 243001 (2021).
  29. Mass difference of tritium and helium-3, M. Medina-Restrepo and E.G. Myers, Phys. Rev. Lett. (in press).