1
0
Fork 0
mirror of https://github.com/gwm17/catima.git synced 2024-11-26 20:18:51 -05:00
catima/docs/pycatima.md
2021-06-22 00:47:38 +02:00

185 lines
5.5 KiB
Markdown

Usage
=====
Installation
------------
Easiest way is to install pycatima on Linux and Windows is using pip:
```
pip install pycatima
```
note: python 3.7-3.9 is required
Pojectile
---------
Projectile is defined by __pycatima.Projectile__ class. It is initialized using:
**Projectile(A, Z, Q=Z, T=0)**
where __A__ is mass in u units, __Z__ is proton number, __Q__ is charge state
and __T__ is energy in Mev/u units.
```python
import pycatima
p = pycatima.Projectile(238.00032 ,92) # 238U92+ at 0 Mev/u
p = pycatima.Projectile(238.00702 ,92,90,1000) # 238U90+ at 1000 Mev/u
# following methods are defined:
mass = p.A() # get mass of the nucleus us u units
z = p.Z() # get proton number
q = p.Q() # get charge state
energy = p.T() # get energy
p.T(1000) # set energy
```
Material
--------
Material is defined by __pycatima.Material__ class. The recommended way of
initialization is usign the following init signature:
**Material(elements, density, thickness, i_potential, mass)**
* elements - list of elements, where element is defined as list of [A, Z, STN]
A is atomic mass of the element, if 0 natural abundance atomic mass is taken,
Z is the proton number of the element, STN is the stoichiometric if >=1.0 or
weight fraction if < 1.0
* density - optional, defaults to 0
* thickness - optional, if not defined 0
* i_potential - optional, if <=0 it will be calulated using Bragg rule from elemental ionization potentials
* mass - optional, if <=0 it will be calculated from elements masses and STN number.
__Material__ class has following methods:
* **add_element(a, z, stn)** - adds another element to the material, see initialization comments for details about, a,z, stn
* **ncomponents()** - returns number of elements in the material
* **density()** - returns density
* **density(value)** - set density
* **thickness()** - get thickness in g/cm^2
* **thickness(value)** - set thickness in g/cm^2
* **thickness_cm(value)** - set thickness in cm
* **I()** - get mean ionization potential
* **I(value)** - set mean ionization potential
### Default Materials
The material with predefined density and atomic weights can be obtained for elemental targets and some compounds using:
**pycatima.get_material(id)**
id is integer which identifies material, For elements use 1-99 for elemental targets and >200 for compounds. See available pre-defined compounds in __predefined material__ section in manual./
### Example
```python
import pycatima
#H2O with natural atomic masses and Ipot=78eV
h2o = pycatima.Material([[0,1,2],[0,8,1]],density=1.0, i_potential=78)
h2o.thickness_cm(1.0) # 1cm of water
# C target
c_mat = pycatima.get_material(6)
c_mat.thickness(0.1) # set to 0.1g/cm2
```
Layers
------
Layers are sequential layers of __Material__ which __Projectile__ passes.
The __pycatima.Layers__ class is defined using following signature:
**Layers()**
This creates empty layers which needs to be filled by __Material__ class.
__Layers__ clas has following methods:
* **add(material)** - add material to the layers, material must be __Material__ class
* **add_layers(other)** - add all material from __Layers__ class __other__
* **num()** - returns number of layers
* **__get_item__(i)** returns i-th Material class
* **__get(i)** returns i-th Material class
### Example
```python
import pycatima
layers = pycatima.Layers()
# define some materials
graphite = pycatima.get_material(6)
graphite.thickness(0.2)
p10 = pycatima.get_material(pycatima.material.P10)
p10.thickness_cm(2.0)
air = pycatima.get_material(pycatima.material.Air)
air.thickness_cm(2.0)
# now add materials to layers
layers.add(graphite)
layers.add(air)
graphite.thickness(0.1) # change thickness for next layer
layers.add(graphite)
layers.add(p10)
```
Calculation
-----------
Calculations are done using mainly via functions:
* **calculate(Projectile, Material)**
* **calculate_layers(Projectile, Layers)**
The __calculate__ function returns __Result__ class and __calculate_layers__ returns __MultiResult_class__
### Example
```python
import pycatima
water = catima.get_material(catima.material.Water)
water.thickness(1.0)
p = catima.Projectile(1,1)
p.T(1000) # set projectile energy to 1000MeV/u
res = catima.calculate(p,water) # now res contains results
d = res.get_dict() # get results as dictionary
```
```python
p = catima.Projectile(12,6)
water = catima.get_material(catima.material.Water)
water.thickness(10.0)
graphite = catima.get_material(6)
graphite.thickness(1.0)
graphite.density(2.0)
mat = catima.Layers()
mat.add(water)
mat.add(graphite)
# now calculate results for projectile at 1000MeV/u
res = catima.calculate_layers(p(1000),mat)
```
Results
-------
__Results__ class stores results for 1 layer of __Material__. It has following variables:
* Ein - Energy at entrance of the material in MeV/u
* Eloss - Energy loss in material in MeV
* Eout - Energy at the end of material in MeV/i
* dEdxi - Stopping power at entrance
* dEdxo - Stopping power at exit
* range - range in the material in g/cm^2
* sigma_E - Energy straggling in MeV/u
* sigma_a - Angular straggling in rad
* sigma_r - range straggling in g/cm^2
* sigma_x - position straggling in cm
* sp - non-reaction probability
* tof - time of flight through the material
__MultiResults__ class stores the results for multiple layers. It consists of following variables:
* total_result - __Result__ class with total results for projectile passing all layers.
* results - list of __Result__ classes, one for each layer in __Layers__
Config
------
TODO