modified: Calibration.C

modified:   GainMatchQQQ.C
	modified:   GainMatchSX3.C
	modified:   GainMatchSX3Front.C trying out not doing back gainmatching to see if that improves fits.
This commit is contained in:
Vignesh Sitaraman 2025-09-30 15:17:00 -04:00
parent afef56df12
commit 265ebd3372
4 changed files with 284 additions and 363 deletions

View File

@ -53,13 +53,15 @@ const int MAX_BK = 4;
const int MAX_QQQ = 4;
const int MAX_RING = 16;
const int MAX_WEDGE = 16;
double backGain[MAX_SX3][MAX_BK][MAX_UP][MAX_DOWN] = {{{{0}}}};
bool backGainValid[MAX_SX3][MAX_BK][MAX_UP][MAX_DOWN] = {{{{false}}}};
// double backGain[MAX_SX3][MAX_BK][MAX_UP][MAX_DOWN] = {{{{0}}}};
// bool backGainValid[MAX_SX3][MAX_BK][MAX_UP][MAX_DOWN] = {{{{false}}}};
double frontGain[MAX_SX3][MAX_BK][MAX_UP][MAX_DOWN] = {{{{0}}}};
bool frontGainValid[MAX_SX3][MAX_BK][MAX_UP][MAX_DOWN] = {{{{false}}}};
double uvdslope[MAX_SX3][MAX_BK][MAX_UP][MAX_DOWN] = {{{{0}}}};
double qqqGain[MAX_QQQ][MAX_BK][MAX_UP] = {{{0}}};
bool qqqGainValid[MAX_QQQ][MAX_BK][MAX_UP] = {{{false}}};
TH1F *hSX3Spectra[MAX_SX3][MAX_BK][MAX_UP][MAX_DOWN];
TH1F *hQQQSpectra[MAX_QQQ][MAX_RING][MAX_WEDGE];
void Calibration::Begin(TTree * /*tree*/)
{
@ -82,26 +84,26 @@ void Calibration::Begin(TTree * /*tree*/)
sx3_contr.ConstructGeo();
pw_contr.ConstructGeo();
// ----------------------- Load Back Gains
{
std::string filename = "sx3_GainMatchback.txt";
std::ifstream infile(filename);
if (!infile.is_open())
{
std::cerr << "Error opening " << filename << "!" << std::endl;
}
else
{
int id, bk, u, d;
double gain;
while (infile >> id >> bk >> u >> d >> gain)
{
backGain[id][bk][u][d] = gain;
backGainValid[id][bk][u][d] = (gain > 0);
}
infile.close();
std::cout << "Loaded back gains from " << filename << std::endl;
}
}
// {
// std::string filename = "sx3_GainMatchback.txt";
// std::ifstream infile(filename);
// if (!infile.is_open())
// {
// std::cerr << "Error opening " << filename << "!" << std::endl;
// }
// else
// {
// int id, bk, u, d;
// double gain;
// while (infile >> id >> bk >> u >> d >> gain)
// {
// backGain[id][bk][u][d] = gain;
// backGainValid[id][bk][u][d] = (gain > 0);
// }
// infile.close();
// std::cout << "Loaded back gains from " << filename << std::endl;
// }
// }
// ----------------------- Load Front Gains
{
@ -147,19 +149,42 @@ void Calibration::Begin(TTree * /*tree*/)
}
}
for (int id = 0; id < MAX_SX3; id++)
{
for (int bk = 0; bk < MAX_BK; bk++)
{
for (int up = 0; up < MAX_UP; up++)
{
for (int dn = 0; dn < MAX_DOWN; dn++)
{
TString hname = Form("hCal_id%d_bk%d_up%d_dn%d", id, bk, up, dn);
TString htitle = Form("SX3 id%d bk%d up%d dn%d; Energy (arb); Counts", id, bk, up, dn);
hSX3Spectra[id][bk][up][dn] = new TH1F(hname, htitle, 4000, 0, 16000);
}
}
}
}
for (int det = 0; det < MAX_QQQ; det++)
{
for (int ring = 0; ring < MAX_RING; ring++)
{
for (int wedge = 0; wedge < MAX_WEDGE; wedge++)
{
TString hname = Form("hCal_qqq%d_ring%d_wedge%d", det, ring, wedge);
TString htitle = Form("QQQ det%d ring%d wedge%d; Energy (arb); Counts", det, ring, wedge);
hQQQSpectra[det][ring][wedge] = new TH1F(hname, htitle, 4000, 0, 16000);
}
}
}
SX3 sx3_contr;
}
Bool_t Calibration::Process(Long64_t entry)
{
// if ( entry > 100 ) return kTRUE;
hitPos.Clear();
HitNonZero = false;
// if( entry > 1) return kTRUE;
// printf("################### ev : %llu \n", entry);
// Load branches
b_sx3Multi->GetEntry(entry);
b_sx3ID->GetEntry(entry);
b_sx3Ch->GetEntry(entry);
@ -177,46 +202,38 @@ Bool_t Calibration::Process(Long64_t entry)
qqq.CalIndex();
pc.CalIndex();
// sx3.Print();
// ########################################################### Raw data
// //======================= SX3
sx3ecut = false;
std::vector<std::pair<int, int>> ID; // first = id, 2nd = index
for (int i = 0; i < sx3.multi; i++)
{
ID.push_back(std::pair<int, int>(sx3.id[i], i));
ID.emplace_back(sx3.id[i], i);
hsx3IndexVE->Fill(sx3.index[i], sx3.e[i]);
if (sx3.e[i] > 100)
{
sx3ecut = true;
}
for (int j = i + 1; j < sx3.multi; j++)
{
hsx3Coin->Fill(sx3.index[i], sx3.index[j]);
}
}
// --- safe SX3 handling (replace your existing block that builds sx3ID) ---
if (ID.size() > 0)
// --- SX3 safe handling ---
if (!ID.empty())
{
std::sort(ID.begin(), ID.end(), [](const std::pair<int, int> &a, const std::pair<int, int> &b)
std::sort(ID.begin(), ID.end(), [](auto &a, auto &b)
{ return a.first < b.first; });
std::vector<std::pair<int, int>> sx3ID;
sx3ID.push_back(ID[0]);
bool found = false;
for (size_t i = 1; i < ID.size(); i++)
{
if (ID[i].first == sx3ID.back().first)
{
sx3ID.push_back(ID[i]);
if (sx3ID.size() >= 3)
{
found = true;
}
}
else
{
@ -224,141 +241,101 @@ Bool_t Calibration::Process(Long64_t entry)
{
sx3ID.clear();
sx3ID.push_back(ID[i]);
found = false;
}
}
}
if (found)
{
// initialize to sentinel values
int sx3ChUp = -1;
int sx3ChDn = -1;
int sx3ChBk = -1;
float sx3EUp = 0.0f;
float sx3EDn = 0.0f;
float sx3EBk = 0.0f;
int sx3ChUp = -1, sx3ChDn = -1, sx3ChBk = -1;
float sx3EUp = 0.0f, sx3EDn = 0.0f, sx3EBk = 0.0f;
// collect channels/energies
for (size_t i = 0; i < sx3ID.size(); i++)
for (auto &p : sx3ID)
{
int index = sx3ID[i].second;
int index = p.second;
int ch = sx3.ch[index];
float e = sx3.e[index];
if (ch < 8) // front channels
if (ch < 8)
{
// you used even/odd to denote down/up — keep that convention
if ((ch % 2) == 0) // down
if ((ch % 2) == 0) // even -> down
{
sx3ChDn = ch;
sx3EDn = e;
}
else // up
else // odd -> up
{
sx3ChUp = ch;
sx3EUp = e;
}
}
else // back channels (assuming back channels are 8..11 or so)
else
{
sx3ChBk = ch; // store as raw channel number; adapt if you index bk differently
sx3EBk = e; // if you want to track back energy too
sx3ChBk = ch;
sx3EBk = e;
}
}
// Basic sanity checks before using indices:
bool haveFrontPair = (sx3ChUp >= 0 && sx3ChDn >= 0);
bool haveFrontPair = (sx3ChUp >= 0 || sx3ChDn >= 0);
bool haveBack = (sx3ChBk >= 0);
int sx3Id = sx3ID[0].first;
// convert raw channel numbers to array indices if needed:
int bk_index = (haveBack ? (sx3ChBk - 8) : -1);
int up_index = (haveFrontPair ? sx3ChUp : -1);
int dn_index = (haveFrontPair ? sx3ChDn : -1);
auto sx3Id = sx3ID[0].first;
// CORRECTED: map channel (0..7) to front-index (0..3)
int bk_index = (haveBack ? sx3ChBk - 8 : -1);
int up_index = (sx3ChUp >= 0 ? sx3ChUp / 2 : -1); // <<-- IMPORTANT FIX
int dn_index = (sx3ChDn >= 0 ? sx3ChDn / 2 : -1); // <<-- IMPORTANT FIX
double calibEUp, calibEDn, calibEBack = 0.0;
double GM_EUp = 0.0, GM_EDn = 0.0, calibEBack = 0.0;
if (haveFrontPair && haveBack)
if (haveBack)
{
// If you stored front gains indexed by [id][bk][up][down]
// --- ALWAYS fill raw ADC for diagnostics
// (temporarily use the existing spectrum to confirm fills)
// If you don't want raw values mixed with calibrated later, create a separate _raw array.
hSX3Spectra[sx3Id][bk_index][up_index][dn_index]->Fill(sx3EUp);
// --- If gain is available, also fill calibrated energy
if (frontGainValid[sx3Id][bk_index][up_index][dn_index])
{
calibEUp = frontGain[sx3Id][bk_index][up_index][dn_index] * sx3EUp;
// calibEDn = frontGain[sx3Id][bk_index][up_index][dn_index] * sx3EDn;
}
if (backGainValid[sx3Id][bk_index][up_index][dn_index])
{
calibEBack = backGain[sx3Id][bk_index][up_index][dn_index] * sx3EBk;
}
}
// Only call CalSX3Pos if we have reasonable energies (avoid calling with zeros/uninitialized)
if (haveFrontPair && (calibEUp > 50.0) && haveBack && (calibEBack > 50.0))
{
// find exact back energy value from sx3 entries if you tracked it above
float backEnergyRaw = 0.0f;
// locate the back index in sx3ID if needed
for (size_t k = 0; k < sx3ID.size(); ++k)
{
int idx = sx3ID[k].second;
if (sx3.ch[idx] >= 8)
{
backEnergyRaw = sx3.e[idx];
break;
}
GM_EUp = frontGain[sx3Id][bk_index][up_index][dn_index] * sx3EUp;
if (GM_EUp > 50.0)
hSX3Spectra[sx3Id][bk_index][up_index][dn_index]->Fill(GM_EUp); // optional: mixes raw+calib
}
hsx3IndexVE_gm->Fill(sx3.index[sx3ID[0].second], calibEUp);
// Keep the other diagnostic plots
hsx3IndexVE_gm->Fill(sx3.index[sx3ID[0].second], GM_EUp);
hSX3->Fill(sx3ChDn + 4, sx3ChBk);
hSX3->Fill(sx3ChUp, sx3ChBk);
hSX3FvsB->Fill(sx3EUp + sx3EDn, sx3EBk);
// Fill the histogram for the front vs back
hSX3FvsB->Fill(sx3EUp + sx3EDn, calibEBack);
sx3_contr.CalSX3Pos(sx3Id, sx3ChUp, sx3ChDn, sx3ChBk, static_cast<float>(calibEUp), static_cast<float>(calibEDn));
hitPos = sx3_contr.GetHitPos();
HitNonZero = true;
if (GM_EUp > 50.0 && sx3EBk > 50.0)
{
sx3_contr.CalSX3Pos(sx3Id, sx3ChUp, sx3ChDn, sx3ChBk, GM_EUp, sx3EDn);
hitPos = sx3_contr.GetHitPos();
HitNonZero = true;
}
}
} // found
else
{
// Debug print for channels that didn't pass validation -- helps find indexing problems
static int dbgCount = 0;
if (dbgCount < 20) // only print first few to avoid flood
{
std::cout << Form("DEBUG SX3 skip: id=%d chUp=%d chDn=%d chBk=%d -> up_idx=%d dn_idx=%d bk_idx=%d",
sx3Id, sx3ChUp, sx3ChDn, sx3ChBk, up_index, dn_index, bk_index)
<< std::endl;
dbgCount++;
}
}
}
}
// //======================= QQQ
// ======================= QQQ =======================
for (int i = 0; i < qqq.multi; i++)
{
int det = qqq.id[i]; // detector ID (03)
int ch = qqq.ch[i]; // raw channel (031)
// Separate ring vs wedge channel
int ring = -1;
int wedge = -1;
if (ch < 16)
{ // wedge
wedge = ch;
}
else
{ // ring
ring = ch - 16;
}
double Ecal = qqq.e[i]; // default = raw
if (ring >= 0 && wedge >= 0 && qqqGainValid[det][ring][wedge])
{
Ecal *= qqqGain[det][ring][wedge];
}
// for( int j = 0; j < pc.multi; j++){
// if(pc.index[j]==4){
hqqqIndexVE_gm->Fill(qqq.index[i], Ecal);
hqqqIndexVE->Fill(qqq.index[i], qqq.e[i]);
// }
// printf("QQQ ID : %d, ch : %d, e : %d \n", qqq.id[i], qqq.ch[i], qqq.e[i]);
int det = qqq.id[i];
if (qqq.e[i] > 100)
{
qqqEcut = true;
}
// }
for (int j = 0; j < qqq.multi; j++)
{
if (j == i)
@ -366,18 +343,11 @@ Bool_t Calibration::Process(Long64_t entry)
hqqqCoin->Fill(qqq.index[i], qqq.index[j]);
}
// }
for (int j = i + 1; j < qqq.multi; j++)
{
// if( qqq.used[i] == true ) continue;
// if( qqq.id[i] == qqq.id[j] && (16 - qqq.ch[i]) * (16 - qqq.ch[j]) < 0 ){ // must be same detector and wedge and ring
if (qqq.id[i] == qqq.id[j])
{ // must be same detector
int chWedge = -1;
int chRing = -1;
{
int chWedge = -1, chRing = -1;
if (qqq.ch[i] < qqq.ch[j])
{
chRing = qqq.ch[j] - 16;
@ -388,15 +358,29 @@ Bool_t Calibration::Process(Long64_t entry)
chRing = qqq.ch[i];
chWedge = qqq.ch[j] - 16;
}
// printf(" ID : %d , chWedge : %d, chRing : %d \n", qqq.id[i], chWedge, chRing);
double Ecal = qqq.e[i];
if (det >= 0 && det < MAX_QQQ &&
chRing >= 0 && chRing < MAX_RING &&
chWedge >= 0 && chWedge < MAX_WEDGE)
{
// ALWAYS fill raw energy for diagnostics
hQQQSpectra[det][chRing][chWedge]->Fill(qqq.e[i]);
// If calibrated gain is present, also fill calibrated energy
if (qqqGainValid[det][chRing][chWedge])
{
double Ecal = qqq.e[i] * qqqGain[det][chRing][chWedge];
hQQQSpectra[det][chRing][chWedge]->Fill(Ecal); // optional: mixes raw+calib
}
}
hqqqIndexVE_gm->Fill(qqq.index[i], Ecal);
hqqqIndexVE->Fill(qqq.index[i], qqq.e[i]);
double theta = -TMath::Pi() / 2 + 2 * TMath::Pi() / 16 / 4. * (qqq.id[i] * 16 + chWedge + 0.5);
double rho = 50. + 40. / 16. * (chRing + 0.5);
// if(qqq.e[i]>50){
hqqqPolar->Fill(theta, rho);
// }
// qqq.used[i] = true;
// qqq.used[j] = true;
if (!HitNonZero)
{
@ -413,4 +397,75 @@ Bool_t Calibration::Process(Long64_t entry)
}
void Calibration::Terminate()
{
}
const double AM241_ALPHA = 5486.0; // keV
// ----------------------- Summary Plots
TH2F *hSX3Summary = new TH2F("hSX3Summary", "SX3 Channel Means;Channel Index;Mean (ADC)",
MAX_SX3 * MAX_BK * MAX_UP * MAX_DOWN, 0, MAX_SX3 * MAX_BK * MAX_UP * MAX_DOWN,
200, 0, 10000);
TH2F *hQQQSummary = new TH2F("hQQQSummary", "QQQ Channel Means;Channel Index;Mean (ADC)",
MAX_QQQ * MAX_RING * MAX_WEDGE, 0, MAX_QQQ * MAX_RING * MAX_WEDGE,
200, 0, 10000);
// ----------------------- SX3 Calibration (quick check with mean)
for (int id = 0; id < MAX_SX3; id++)
{
for (int bk = 0; bk < MAX_BK; bk++)
{
for (int up = 0; up < MAX_UP; up++)
{
for (int dn = 0; dn < MAX_DOWN; dn++)
{
TH1F *hSpec = hSX3Spectra[id][bk][up][dn];
if (!hSpec || hSpec->GetEntries() < 200)
continue;
double mean = hSpec->GetMean();
int sx3Index = (((id * MAX_BK + bk) * MAX_UP + up) * MAX_DOWN + dn);
hSX3Summary->Fill(sx3Index, mean);
std::cout << Form("SX3 id%d bk%d up%d dn%d → mean %.1f",
id, bk, up, dn, mean)
<< std::endl;
}
}
}
}
// ----------------------- QQQ Calibration (quick check with mean)
for (int det = 0; det < MAX_QQQ; det++)
{
for (int ring = 0; ring < MAX_RING; ring++)
{
for (int wedge = 0; wedge < MAX_WEDGE; wedge++)
{
TH1F *hSpec = hQQQSpectra[det][ring][wedge];
if (!hSpec || hSpec->GetEntries() < 200)
continue;
double mean = hSpec->GetMean();
int qqqIndex = ((det * MAX_RING + ring) * MAX_WEDGE + wedge);
hQQQSummary->Fill(qqqIndex, mean);
std::cout << Form("QQQ det%d ring%d wedge%d → mean %.1f",
det, ring, wedge, mean)
<< std::endl;
}
}
}
// ----------------------- Draw Summary
TCanvas *cSum = new TCanvas("cSum", "Calibration Summary (Means)", 1200, 600);
cSum->Divide(2, 1);
cSum->cd(1);
hSX3Summary->Draw("COLZ");
cSum->cd(2);
hQQQSummary->Draw("COLZ");
cSum->Update();
}

View File

@ -11,16 +11,13 @@
#include <utility>
#include <algorithm>
#include "Armory/ClassSX3.h"
#include "TVector3.h"
TH2F *hSX3FvsB;
TH2F *hQQQFVB;
int padID = 0;
SX3 sx3_contr;
TCutG *cut;
std::map<std::tuple<int, int, int>, std::vector<std::pair<double, double>>> dataPoints;
@ -28,10 +25,8 @@ void GainMatchQQQ::Begin(TTree * /*tree*/)
{
TString option = GetOption();
hSX3FvsB = new TH2F("hSX3FvsB", "SX3 Front vs Back; Front E; Back E", 400, 0, 16000, 400, 0, 16000);
hQQQFVB = new TH2F("hQQQFVB", "number of good QQQ vs QQQ id", 400, 0, 16000, 400, 0, 16000);
hQQQFVB = new TH2F("hQQQFVB", "QQQ Front vs Back; Front E; Back E", 400, 0, 16000, 400, 0, 16000);
sx3_contr.ConstructGeo();
// Load the TCutG object
TFile *cutFile = TFile::Open("qqqcorr.root");
@ -51,92 +46,13 @@ void GainMatchQQQ::Begin(TTree * /*tree*/)
Bool_t GainMatchQQQ::Process(Long64_t entry)
{
b_sx3Multi->GetEntry(entry);
b_sx3ID->GetEntry(entry);
b_sx3Ch->GetEntry(entry);
b_sx3E->GetEntry(entry);
b_sx3T->GetEntry(entry);
b_qqqMulti->GetEntry(entry);
b_qqqID->GetEntry(entry);
b_qqqCh->GetEntry(entry);
b_qqqE->GetEntry(entry);
b_qqqT->GetEntry(entry);
b_pcMulti->GetEntry(entry);
b_pcID->GetEntry(entry);
b_pcCh->GetEntry(entry);
b_pcE->GetEntry(entry);
b_pcT->GetEntry(entry);
sx3.CalIndex();
qqq.CalIndex();
pc.CalIndex();
std::vector<std::pair<int, int>> ID;
for (int i = 0; i < sx3.multi; i++)
{
ID.push_back(std::pair<int, int>(sx3.id[i], i));
}
if (ID.size() > 0)
{
std::sort(ID.begin(), ID.end(), [](const std::pair<int, int> &a, const std::pair<int, int> &b)
{ return a.first < b.first; });
std::vector<std::pair<int, int>> sx3ID;
sx3ID.push_back(ID[0]);
bool found = false;
for (size_t i = 1; i < ID.size(); i++)
{
if (ID[i].first == sx3ID.back().first)
{
sx3ID.push_back(ID[i]);
if (sx3ID.size() >= 3)
{
found = true;
}
}
else
{
if (!found)
{
sx3ID.clear();
sx3ID.push_back(ID[i]);
}
}
}
if (found)
{
int sx3ChUp = -1, sx3ChDn = -1, sx3ChBk = -1;
float sx3EUp = 0.0, sx3EDn = 0.0, sx3EBk = 0.0;
for (size_t i = 0; i < sx3ID.size(); i++)
{
int index = sx3ID[i].second;
if (sx3.ch[index] < 8)
{
if (sx3.ch[index] % 2 == 0)
{
sx3ChDn = sx3.ch[index];
sx3EDn = sx3.e[index];
}
else
{
sx3ChUp = sx3.ch[index];
sx3EUp = sx3.e[index];
}
}
else
{
sx3ChBk = sx3.ch[index];
sx3EBk = sx3.e[index];
}
}
hSX3FvsB->Fill(sx3EUp + sx3EDn, sx3EBk);
}
}
for (int i = 0; i < qqq.multi; i++)
{

View File

@ -35,14 +35,13 @@ const int MAX_UP = 4;
const int MAX_DOWN = 4;
const int MAX_BK = 4;
// double frontGain[MAX_DET][MAX_BK][MAX_UP][MAX_DOWN] = {{{{0}}}};
// bool frontGainValid[MAX_DET][MAX_BK][MAX_UP][MAX_DOWN] = {{{{false}}}};
double frontGain[MAX_DET][MAX_BK][MAX_UP][MAX_DOWN] = {{{{0}}}};
bool frontGainValid[MAX_DET][MAX_BK][MAX_UP][MAX_DOWN] = {{{{false}}}};
// ==== Configuration Flags ====
const bool interactiveMode = false; // If true: show canvas + wait for user
const bool verboseFit = true; // If true: print fit summary and chi²
const bool drawCanvases = false; // If false: canvases won't be drawn at all
const bool drawCanvases = false; // If false: canvases won't be drawn at all
void GainMatchSX3::Begin(TTree * /*tree*/)
{
@ -100,13 +99,6 @@ void GainMatchSX3::Begin(TTree * /*tree*/)
// frontGain[id][bk][u][d] = gain;
// frontGainValid[id][bk][u][d] = true;
// }
// int id, bk, u, d;
// double gain;
// while (infile >> id >> bk >> u >> d >> gain)
// {
// frontGain[id][bk][u][d] = gain;
// frontGainValid[id][bk][u][d] = true;
// }
}
Bool_t GainMatchSX3::Process(Long64_t entry)
@ -135,6 +127,12 @@ Bool_t GainMatchSX3::Process(Long64_t entry)
std::vector<std::pair<int, int>> ID;
for (int i = 0; i < sx3.multi; i++)
{
// for (int j = i + 1; j < sx3.multi; j++)
// {
// if (sx3.id[i] == 3)
// hsx3Coin->Fill(sx3.index[i], sx3.index[j]);
// }
if (sx3.e[i] > 100)
{
ID.push_back(std::pair<int, int>(sx3.id[i], i));
@ -204,52 +202,37 @@ Bool_t GainMatchSX3::Process(Long64_t entry)
}
}
}
for (int i = 0; i < sx3.multi; i++)
// Only if we found all three channels do we proceed
if (sx3ChUp >= 0 && sx3ChDn >= 0 && sx3ChBk >= 0)
{
auto key = std::make_tuple(sx3.id[i], sx3ChBk, sx3ChUp, sx3ChDn);
comboCounts[key]++;
// If we have a valid front and back channel, fill the histograms
// Fill once per correlated set
hSX3->Fill(sx3ChDn + 4, sx3ChBk);
hSX3->Fill(sx3ChUp, sx3ChBk);
// Fill the histogram for the front vs back
hSX3FvsB->Fill(sx3EUp + sx3EDn, sx3EBk);
}
for (int i = 0; i < sx3.multi; i++)
{
// if (sx3.id[i] == 4)
// Pick detector ID from one of the correlated hits (all same detector)
int detID = sx3ID[0].first;
TString histName = Form("hSX3FVB_id%d_U%d_D%d_B%d",
detID, sx3ChUp, sx3ChDn, sx3ChBk);
TH2F *hist2d = (TH2F *)gDirectory->Get(histName);
if (!hist2d)
{
auto key = std::make_tuple(sx3.id[i], sx3ChBk, sx3ChUp, sx3ChDn);
// Only continue if this combo has enough entries
if (comboCounts[key] < 100 || sx3EBk < 100 || sx3EUp < 100 || sx3EDn < 100)
continue;
// Fill the histogram for the front vs back with gain correction
hSX3FvsB_g->Fill(sx3EUp + sx3EDn, sx3EBk);
// Fill the index vs energy histogram
hsx3IndexVE_g->Fill(sx3.index[i], sx3.e[i]);
// }
// {
TString histName = Form("hSX3FVB_id%d_U%d_D%d_B%d", sx3.id[i], sx3ChUp, sx3ChDn, sx3ChBk);
TH2F *hist2d = (TH2F *)gDirectory->Get(histName);
if (!hist2d)
{
hist2d = new TH2F(histName, Form("hSX3FVB_id%d_U%d_D%d_B%d", sx3.id[i], sx3ChUp, sx3ChDn, sx3ChBk), 400, 0, 16000, 400, 0, 16000);
}
hist2d->Fill(sx3EUp + sx3EDn, sx3EBk);
// if (cut && cut->IsInside(sx3EUp + sx3EDn, sx3EBk))// && cut1 && cut1->IsInside(sx3EUp / sx3EBk, sx3EDn / sx3EBk))
{
// Accumulate data for gain matching
// if (frontGainValid[sx3.id[i]][sx3ChBk][sx3ChUp][sx3ChDn])
// {
// sx3EUp *= frontGain[sx3.id[i]][sx3ChBk][sx3ChUp][sx3ChDn];
// }
dataPoints[{sx3.id[i], sx3ChBk, sx3ChUp, sx3ChDn}].emplace_back(sx3EBk, sx3EUp, sx3EDn);
}
hist2d = new TH2F(histName, histName,
400, 0, 16000, 400, 0, 16000);
}
if (sx3EBk > 100 || sx3EUp > 100 || sx3EDn > 100)
{
hSX3FvsB_g->Fill(sx3EUp + sx3EDn, sx3EBk);
// Use the correlated triplet directly
dataPoints[{detID, sx3ChBk, sx3ChUp, sx3ChDn}]
.emplace_back(sx3EBk, sx3EUp, sx3EDn);
}
hist2d->Fill(sx3EUp + sx3EDn, sx3EBk);
}
}
}
@ -260,67 +243,52 @@ Bool_t GainMatchSX3::Process(Long64_t entry)
const double GAIN_ACCEPTANCE_THRESHOLD = 0.3;
void GainMatchSX3::Terminate()
{
double gainArray[MAX_DET][MAX_BK][MAX_UP][MAX_DOWN] = {{{{0}}}};
bool gainValid[MAX_DET][MAX_BK][MAX_UP][MAX_DOWN] = {{{{false}}}};
std::map<int, double> upCorrFactor;
double backSlope[MAX_DET][MAX_BK] = {{0}};
bool backSlopeValid[MAX_DET][MAX_BK] = {{false}};
// === Gain matching ===
std::ofstream outFile("sx3_GainMatchback.txt");
std::ofstream outFile("sx3_BackGains.txt");
if (!outFile.is_open())
{
std::cerr << "Error opening sx3_BackGains.txt for writing!" << std::endl;
return;
}
// Gain fit using up+dn vs bk
for (const auto &kv : dataPoints)
// === Gain fit: (Up+Dn) vs Back, grouped by [id][bk] ===
for (int id = 0; id < MAX_DET; id++)
{
// kv.first is a tuple of (id, up, bk)
// kv.second is a vector of tuples (bkE, upE, dnE)
auto [id, bk, u, d] = kv.first;
const auto &pts = kv.second;
// Check if we have enough points for fitting
if (pts.size() < 5)
continue;
std::vector<double> bkE, udE;
for (const auto &pr : pts)
for (int bk = 0; bk < MAX_BK; bk++)
{
double eUp, eDn, eBk;
std::tie(eBk, eUp, eDn) = pr;
std::vector<double> bkE, udE;
if ((eBk < 100) || (eUp < 100) || (eDn < 100))
continue; // Skip if any energy is less than 100
// Collect all (Up+Dn, Back) for this id,bk
for (const auto &kv : dataPoints)
{
auto [cid, cbk, u, d] = kv.first;
if (cid != id || cbk != bk)
continue;
bkE.push_back(eBk);
udE.push_back(eUp + eDn);
}
for (const auto &pr : kv.second)
{
double eBk, eUp, eDn;
std::tie(eBk, eUp, eDn) = pr;
if ((eBk < 100) || (eUp < 100) || (eDn < 100))
continue;
// Fill the TGraph with bkE and udE
// TGraph g(bkE.size(), bkE.data(), udE.data());
// Fit the graph to a linear function
if (bkE.size() < 5)
continue; // Ensure we have enough points for fitting
bkE.push_back(eBk);
udE.push_back(eUp + eDn);
}
}
const double fixedError = 10.0; // in ADC channels
if (bkE.size() < 5)
continue; // not enough statistics
std::vector<double> xVals, yVals, exVals, eyVals;
// Build graph with errors
const double fixedError = 10.0; // ADC channels
std::vector<double> exVals(udE.size(), 0.0); // no x error
std::vector<double> eyVals(udE.size(), fixedError); // constant y error
// Build data with fixed error
for (size_t i = 0; i < udE.size(); ++i)
{
double x = udE[i]; // front energy
double y = bkE[i]; // back energy
xVals.push_back(x);
yVals.push_back(y);
exVals.push_back(fixedError); // error in front energy
// eyVals.push_back(fixedError); // error in back energy
}
// Build TGraphErrors with errors
TGraphErrors g(xVals.size(), xVals.data(), yVals.data(), exVals.data(), eyVals.data());
TGraphErrors g(udE.size(), udE.data(), bkE.data(),
exVals.data(), eyVals.data());
TF1 f("f", "[0]*x", 0, 16000);
f.SetParameter(0, 1.0); // initial slope
@ -361,39 +329,21 @@ void GainMatchSX3::Terminate()
g.Fit(&f, "QNR");
}
gainArray[id][bk][u][d] = f.GetParameter(0);
gainValid[id][bk][u][d] = true;
// }
// // Output results
// for (int id = 0; id < MAX_DET; ++id)
// {
// for (int bk = 0; bk < MAX_BK; ++bk)
// {
// for (int u = 0; u < MAX_UP; ++u)
// {
// for (int d = 0; d < MAX_DOWN; ++d)
// {
// // Check if the gain is valid for this detector, back, up, and down
// if (gainValid[id][bk][u][d])
// {
// if (TMath::Abs(gainArray[id][u][d][bk] - 1) < 0.3)
{
printf("Gain match Det%d Up%dDn%d Backs%d → %.4f \n", id, u, d, bk, gainArray[id][u][d][bk]);
outFile << id << " " << bk << " " << u << " " << d << " " << gainArray[id][u][d][bk] << std::endl;
double slope = f.GetParameter(0);
if (std::abs(slope - 1.0) < 0.3) // sanity check
{
backSlope[id][bk] = slope;
backSlopeValid[id][bk] = true;
outFile << id << " " << bk << " " << slope << "\n";
printf("Back slope Det%d Bk%d → %.4f\n", id, bk, slope);
}
else
{
std::cerr << "Warning: Bad slope for Det" << id << " Bk" << bk
<< " slope=" << slope << std::endl;
}
}
// else if (gainArray[id][u][d][bk] != 0)
// {
// std::cerr << "Warning: Gain value out of range for Det " << id << " Up " << u << " Dn " << d << " Back " << bk << ": "
// << gainArray[id][u][d][bk] << std::endl;
// outFile << id << " " << bk << " " << u << " " << d << " " << gainArray[id][u][d][bk] << std::endl;
// }
}
// }
// }
// }
// }
// }
outFile.close();
std::cout << "Back gain matching complete." << std::endl;

View File

@ -254,10 +254,10 @@ Bool_t GainMatchSX3Front::Process(Long64_t entry)
if (cut && cut->IsInside(sx3EUp + sx3EDn, sx3EBk) && cut1 && cut1->IsInside(sx3EUp / sx3EBk, sx3EDn / sx3EBk))
{
if (backGainValid[sx3.id[i]][sx3ChBk])
{
sx3EBk *= backGain[sx3.id[i]][sx3ChBk];
}
// if (backGainValid[sx3.id[i]][sx3ChBk])
// {
// sx3EBk *= backGain[sx3.id[i]][sx3ChBk];
// }
// Accumulate data for gain matching
dataPoints[{sx3.id[i], sx3ChBk, sx3ChUp, sx3ChDn}].emplace_back(sx3EBk, sx3EUp, sx3EDn);
}