ANASEN_analysis/Calibration.C
Vignesh Sitaraman 265ebd3372 modified: Calibration.C
modified:   GainMatchQQQ.C
	modified:   GainMatchSX3.C
	modified:   GainMatchSX3Front.C trying out not doing back gainmatching to see if that improves fits.
2025-09-30 15:17:00 -04:00

472 lines
16 KiB
C

#define Calibration_cxx
#include <TH2.h>
#include <TF1.h>
#include <TStyle.h>
#include <TCanvas.h>
#include <TMath.h>
#include <TCutG.h>
#include <fstream>
#include <utility>
#include <algorithm>
#include <TProfile.h>
#include <TVector3.h>
#include "Armory/ClassSX3.h"
#include "Armory/ClassPW.h"
#include "TGraphErrors.h"
#include "Calibration.h"
int padID = 0;
SX3 sx3_contr;
PW pw_contr;
PW pwinstance;
TVector3 hitPos;
// TVector3 anodeIntersection;
std::map<int, std::pair<double, double>> slopeInterceptMap;
bool HitNonZero;
bool sx3ecut;
bool qqqEcut;
TH2F *hSX3FvsB;
TH2F *hSX3FvsB_g;
TH2F *hSX3;
TH1F *hZProj;
TH2F *hsx3IndexVE;
TH2F *hsx3IndexVE_gm;
TH2F *hqqqIndexVE;
TH2F *hqqqIndexVE_gm;
TH2F *hsx3Coin;
TH2F *hqqqCoin;
TH2F *hqqqPolar;
TCutG *cut;
TCutG *cut1;
// Gain arrays
const int MAX_SX3 = 24;
const int MAX_UP = 4;
const int MAX_DOWN = 4;
const int MAX_BK = 4;
const int MAX_QQQ = 4;
const int MAX_RING = 16;
const int MAX_WEDGE = 16;
// double backGain[MAX_SX3][MAX_BK][MAX_UP][MAX_DOWN] = {{{{0}}}};
// bool backGainValid[MAX_SX3][MAX_BK][MAX_UP][MAX_DOWN] = {{{{false}}}};
double frontGain[MAX_SX3][MAX_BK][MAX_UP][MAX_DOWN] = {{{{0}}}};
bool frontGainValid[MAX_SX3][MAX_BK][MAX_UP][MAX_DOWN] = {{{{false}}}};
double uvdslope[MAX_SX3][MAX_BK][MAX_UP][MAX_DOWN] = {{{{0}}}};
double qqqGain[MAX_QQQ][MAX_BK][MAX_UP] = {{{0}}};
bool qqqGainValid[MAX_QQQ][MAX_BK][MAX_UP] = {{{false}}};
TH1F *hSX3Spectra[MAX_SX3][MAX_BK][MAX_UP][MAX_DOWN];
TH1F *hQQQSpectra[MAX_QQQ][MAX_RING][MAX_WEDGE];
void Calibration::Begin(TTree * /*tree*/)
{
TString option = GetOption();
hSX3FvsB = new TH2F("hSX3FvsB", "SX3 Front vs Back; Front E; Back E", 400, 0, 16000, 400, 0, 16000);
hSX3FvsB_g = new TH2F("hSX3FvsB_g", "SX3 Front vs Back; Front E; Back E", 400, 0, 16000, 400, 0, 16000);
hsx3IndexVE = new TH2F("hsx3IndexVE", "SX3 index vs Energy; sx3 index ; Energy", 24 * 12, 0, 24 * 12, 400, 0, 5000);
hSX3 = new TH2F("hSX3", "SX3 Front v Back; Fronts; Backs", 8, 0, 8, 4, 0, 4);
hsx3Coin = new TH2F("hsx3Coin", "SX3 Coincident", 24 * 12, 0, 24 * 12, 24 * 12, 0, 24 * 12);
hsx3IndexVE = new TH2F("hsx3IndexVE", "SX3 index vs Energy; sx3 index ; Energy", 24 * 12, 0, 24 * 12, 400, 0, 5000);
hsx3IndexVE_gm = new TH2F("hsx3IndexVE_cal", "SX3 index vs Energy (calibrated); SX3 index ; Energy", 24 * 12, 0, 24 * 12, 400, 0, 5000);
hqqqIndexVE = new TH2F("hqqqIndexVE", "QQQ index vs Energy; QQQ index ; Energy", 4 * 2 * 16, 0, 4 * 2 * 16, 400, 0, 5000);
hqqqIndexVE_gm = new TH2F("hqqqIndexVE_cal", "QQQ index vs Energy (calibrated); QQQ index ; Energy", 4 * 2 * 16, 0, 4 * 2 * 16, 400, 0, 5000);
hsx3Coin = new TH2F("hsx3Coin", "SX3 Coincident", 24 * 12, 0, 24 * 12, 24 * 12, 0, 24 * 12);
hqqqCoin = new TH2F("hqqqCoin", "QQQ Coincident", 4 * 2 * 16, 0, 4 * 2 * 16, 4 * 2 * 16, 0, 4 * 2 * 16);
hqqqPolar = new TH2F("hqqqPolar", "QQQ Polar ID", 16 * 4, -TMath::Pi(), TMath::Pi(), 16, 10, 50);
sx3_contr.ConstructGeo();
pw_contr.ConstructGeo();
// ----------------------- Load Back Gains
// {
// std::string filename = "sx3_GainMatchback.txt";
// std::ifstream infile(filename);
// if (!infile.is_open())
// {
// std::cerr << "Error opening " << filename << "!" << std::endl;
// }
// else
// {
// int id, bk, u, d;
// double gain;
// while (infile >> id >> bk >> u >> d >> gain)
// {
// backGain[id][bk][u][d] = gain;
// backGainValid[id][bk][u][d] = (gain > 0);
// }
// infile.close();
// std::cout << "Loaded back gains from " << filename << std::endl;
// }
// }
// ----------------------- Load Front Gains
{
std::string filename = "sx3_GainMatchfront.txt";
std::ifstream infile(filename);
if (!infile.is_open())
{
std::cerr << "Error opening " << filename << "!" << std::endl;
}
else
{
int id, bk, u, d;
double gain;
while (infile >> id >> bk >> u >> d >> gain)
{
frontGain[id][bk][u][d] = gain;
frontGainValid[id][bk][u][d] = (gain > 0);
}
infile.close();
std::cout << "Loaded front gains from " << filename << std::endl;
}
}
// ----------------------- Load QQQ Gains
{
std::string filename = "qqq_GainMatch.txt";
std::ifstream infile(filename);
if (!infile.is_open())
{
std::cerr << "Error opening " << filename << "!" << std::endl;
}
else
{
int det, ring, wedge;
double gain;
while (infile >> det >> ring >> wedge >> gain)
{
qqqGain[det][ring][wedge] = gain;
qqqGainValid[det][ring][wedge] = (gain > 0);
}
infile.close();
std::cout << "Loaded QQQ gains from " << filename << std::endl;
}
}
for (int id = 0; id < MAX_SX3; id++)
{
for (int bk = 0; bk < MAX_BK; bk++)
{
for (int up = 0; up < MAX_UP; up++)
{
for (int dn = 0; dn < MAX_DOWN; dn++)
{
TString hname = Form("hCal_id%d_bk%d_up%d_dn%d", id, bk, up, dn);
TString htitle = Form("SX3 id%d bk%d up%d dn%d; Energy (arb); Counts", id, bk, up, dn);
hSX3Spectra[id][bk][up][dn] = new TH1F(hname, htitle, 4000, 0, 16000);
}
}
}
}
for (int det = 0; det < MAX_QQQ; det++)
{
for (int ring = 0; ring < MAX_RING; ring++)
{
for (int wedge = 0; wedge < MAX_WEDGE; wedge++)
{
TString hname = Form("hCal_qqq%d_ring%d_wedge%d", det, ring, wedge);
TString htitle = Form("QQQ det%d ring%d wedge%d; Energy (arb); Counts", det, ring, wedge);
hQQQSpectra[det][ring][wedge] = new TH1F(hname, htitle, 4000, 0, 16000);
}
}
}
SX3 sx3_contr;
}
Bool_t Calibration::Process(Long64_t entry)
{
hitPos.Clear();
HitNonZero = false;
// Load branches
b_sx3Multi->GetEntry(entry);
b_sx3ID->GetEntry(entry);
b_sx3Ch->GetEntry(entry);
b_sx3E->GetEntry(entry);
b_sx3T->GetEntry(entry);
b_qqqMulti->GetEntry(entry);
b_qqqID->GetEntry(entry);
b_qqqCh->GetEntry(entry);
b_qqqE->GetEntry(entry);
b_qqqT->GetEntry(entry);
b_pcMulti->GetEntry(entry);
b_pcID->GetEntry(entry);
sx3.CalIndex();
qqq.CalIndex();
pc.CalIndex();
// ########################################################### Raw data
sx3ecut = false;
std::vector<std::pair<int, int>> ID; // first = id, 2nd = index
for (int i = 0; i < sx3.multi; i++)
{
ID.emplace_back(sx3.id[i], i);
hsx3IndexVE->Fill(sx3.index[i], sx3.e[i]);
if (sx3.e[i] > 100)
sx3ecut = true;
for (int j = i + 1; j < sx3.multi; j++)
hsx3Coin->Fill(sx3.index[i], sx3.index[j]);
}
// --- SX3 safe handling ---
if (!ID.empty())
{
std::sort(ID.begin(), ID.end(), [](auto &a, auto &b)
{ return a.first < b.first; });
std::vector<std::pair<int, int>> sx3ID;
sx3ID.push_back(ID[0]);
bool found = false;
for (size_t i = 1; i < ID.size(); i++)
{
if (ID[i].first == sx3ID.back().first)
{
sx3ID.push_back(ID[i]);
if (sx3ID.size() >= 3)
found = true;
}
else
{
if (!found)
{
sx3ID.clear();
sx3ID.push_back(ID[i]);
}
}
}
if (found)
{
int sx3ChUp = -1, sx3ChDn = -1, sx3ChBk = -1;
float sx3EUp = 0.0f, sx3EDn = 0.0f, sx3EBk = 0.0f;
for (auto &p : sx3ID)
{
int index = p.second;
int ch = sx3.ch[index];
float e = sx3.e[index];
if (ch < 8)
{
if ((ch % 2) == 0) // even -> down
{
sx3ChDn = ch;
sx3EDn = e;
}
else // odd -> up
{
sx3ChUp = ch;
sx3EUp = e;
}
}
else
{
sx3ChBk = ch;
sx3EBk = e;
}
}
bool haveFrontPair = (sx3ChUp >= 0 || sx3ChDn >= 0);
bool haveBack = (sx3ChBk >= 0);
int sx3Id = sx3ID[0].first;
// CORRECTED: map channel (0..7) to front-index (0..3)
int bk_index = (haveBack ? sx3ChBk - 8 : -1);
int up_index = (sx3ChUp >= 0 ? sx3ChUp / 2 : -1); // <<-- IMPORTANT FIX
int dn_index = (sx3ChDn >= 0 ? sx3ChDn / 2 : -1); // <<-- IMPORTANT FIX
double GM_EUp = 0.0, GM_EDn = 0.0, calibEBack = 0.0;
if (haveBack)
{
// --- ALWAYS fill raw ADC for diagnostics
// (temporarily use the existing spectrum to confirm fills)
// If you don't want raw values mixed with calibrated later, create a separate _raw array.
hSX3Spectra[sx3Id][bk_index][up_index][dn_index]->Fill(sx3EUp);
// --- If gain is available, also fill calibrated energy
if (frontGainValid[sx3Id][bk_index][up_index][dn_index])
{
GM_EUp = frontGain[sx3Id][bk_index][up_index][dn_index] * sx3EUp;
if (GM_EUp > 50.0)
hSX3Spectra[sx3Id][bk_index][up_index][dn_index]->Fill(GM_EUp); // optional: mixes raw+calib
}
// Keep the other diagnostic plots
hsx3IndexVE_gm->Fill(sx3.index[sx3ID[0].second], GM_EUp);
hSX3->Fill(sx3ChDn + 4, sx3ChBk);
hSX3->Fill(sx3ChUp, sx3ChBk);
hSX3FvsB->Fill(sx3EUp + sx3EDn, sx3EBk);
if (GM_EUp > 50.0 && sx3EBk > 50.0)
{
sx3_contr.CalSX3Pos(sx3Id, sx3ChUp, sx3ChDn, sx3ChBk, GM_EUp, sx3EDn);
hitPos = sx3_contr.GetHitPos();
HitNonZero = true;
}
}
else
{
// Debug print for channels that didn't pass validation -- helps find indexing problems
static int dbgCount = 0;
if (dbgCount < 20) // only print first few to avoid flood
{
std::cout << Form("DEBUG SX3 skip: id=%d chUp=%d chDn=%d chBk=%d -> up_idx=%d dn_idx=%d bk_idx=%d",
sx3Id, sx3ChUp, sx3ChDn, sx3ChBk, up_index, dn_index, bk_index)
<< std::endl;
dbgCount++;
}
}
}
}
// ======================= QQQ =======================
for (int i = 0; i < qqq.multi; i++)
{
int det = qqq.id[i];
if (qqq.e[i] > 100)
qqqEcut = true;
for (int j = 0; j < qqq.multi; j++)
{
if (j == i)
continue;
hqqqCoin->Fill(qqq.index[i], qqq.index[j]);
}
for (int j = i + 1; j < qqq.multi; j++)
{
if (qqq.id[i] == qqq.id[j])
{
int chWedge = -1, chRing = -1;
if (qqq.ch[i] < qqq.ch[j])
{
chRing = qqq.ch[j] - 16;
chWedge = qqq.ch[i];
}
else
{
chRing = qqq.ch[i];
chWedge = qqq.ch[j] - 16;
}
double Ecal = qqq.e[i];
if (det >= 0 && det < MAX_QQQ &&
chRing >= 0 && chRing < MAX_RING &&
chWedge >= 0 && chWedge < MAX_WEDGE)
{
// ALWAYS fill raw energy for diagnostics
hQQQSpectra[det][chRing][chWedge]->Fill(qqq.e[i]);
// If calibrated gain is present, also fill calibrated energy
if (qqqGainValid[det][chRing][chWedge])
{
double Ecal = qqq.e[i] * qqqGain[det][chRing][chWedge];
hQQQSpectra[det][chRing][chWedge]->Fill(Ecal); // optional: mixes raw+calib
}
}
hqqqIndexVE_gm->Fill(qqq.index[i], Ecal);
hqqqIndexVE->Fill(qqq.index[i], qqq.e[i]);
double theta = -TMath::Pi() / 2 + 2 * TMath::Pi() / 16 / 4. * (qqq.id[i] * 16 + chWedge + 0.5);
double rho = 50. + 40. / 16. * (chRing + 0.5);
hqqqPolar->Fill(theta, rho);
if (!HitNonZero)
{
double x = rho * TMath::Cos(theta);
double y = rho * TMath::Sin(theta);
hitPos.SetXYZ(x, y, 23 + 75 + 30);
HitNonZero = true;
}
}
}
}
return kTRUE;
}
void Calibration::Terminate()
{
const double AM241_ALPHA = 5486.0; // keV
// ----------------------- Summary Plots
TH2F *hSX3Summary = new TH2F("hSX3Summary", "SX3 Channel Means;Channel Index;Mean (ADC)",
MAX_SX3 * MAX_BK * MAX_UP * MAX_DOWN, 0, MAX_SX3 * MAX_BK * MAX_UP * MAX_DOWN,
200, 0, 10000);
TH2F *hQQQSummary = new TH2F("hQQQSummary", "QQQ Channel Means;Channel Index;Mean (ADC)",
MAX_QQQ * MAX_RING * MAX_WEDGE, 0, MAX_QQQ * MAX_RING * MAX_WEDGE,
200, 0, 10000);
// ----------------------- SX3 Calibration (quick check with mean)
for (int id = 0; id < MAX_SX3; id++)
{
for (int bk = 0; bk < MAX_BK; bk++)
{
for (int up = 0; up < MAX_UP; up++)
{
for (int dn = 0; dn < MAX_DOWN; dn++)
{
TH1F *hSpec = hSX3Spectra[id][bk][up][dn];
if (!hSpec || hSpec->GetEntries() < 200)
continue;
double mean = hSpec->GetMean();
int sx3Index = (((id * MAX_BK + bk) * MAX_UP + up) * MAX_DOWN + dn);
hSX3Summary->Fill(sx3Index, mean);
std::cout << Form("SX3 id%d bk%d up%d dn%d → mean %.1f",
id, bk, up, dn, mean)
<< std::endl;
}
}
}
}
// ----------------------- QQQ Calibration (quick check with mean)
for (int det = 0; det < MAX_QQQ; det++)
{
for (int ring = 0; ring < MAX_RING; ring++)
{
for (int wedge = 0; wedge < MAX_WEDGE; wedge++)
{
TH1F *hSpec = hQQQSpectra[det][ring][wedge];
if (!hSpec || hSpec->GetEntries() < 200)
continue;
double mean = hSpec->GetMean();
int qqqIndex = ((det * MAX_RING + ring) * MAX_WEDGE + wedge);
hQQQSummary->Fill(qqqIndex, mean);
std::cout << Form("QQQ det%d ring%d wedge%d → mean %.1f",
det, ring, wedge, mean)
<< std::endl;
}
}
}
// ----------------------- Draw Summary
TCanvas *cSum = new TCanvas("cSum", "Calibration Summary (Means)", 1200, 600);
cSum->Divide(2, 1);
cSum->cd(1);
hSX3Summary->Draw("COLZ");
cSum->cd(2);
hQQQSummary->Draw("COLZ");
cSum->Update();
}