added Monte Carlo simulation

This commit is contained in:
Ryan Tang 2024-02-01 18:47:10 -05:00
parent 18fe2ed62c
commit caff146185
8 changed files with 4956 additions and 37 deletions

View File

@ -24,6 +24,18 @@
"cStandard": "c17", "cStandard": "c17",
"cppStandard": "gnu++17", "cppStandard": "gnu++17",
"intelliSenseMode": "linux-gcc-x64" "intelliSenseMode": "linux-gcc-x64"
},
{
"name": "RyanUbuntu",
"includePath": [
"${workspaceFolder}/**",
"/opt/root/**"
],
"defines": [],
"compilerPath": "/usr/bin/gcc",
"cStandard": "c17",
"cppStandard": "gnu++17",
"intelliSenseMode": "linux-gcc-x64"
} }
], ],
"version": 4 "version": 4

View File

@ -69,15 +69,15 @@ private:
const int nWire = 24; const int nWire = 24;
const int wireShift = 3; const int wireShift = 3;
const int zLen = 380; //mm const float zLen = 380; //mm
const int radiusA = 37; const float radiusA = 37;
const int radiusC = 43; const float radiusC = 43;
std::vector<std::pair<TVector3,TVector3>> P1; // the anode wire position vector in space std::vector<std::pair<TVector3,TVector3>> P1; // the anode wire position vector in space
std::vector<std::pair<TVector3,TVector3>> Q1; // the cathode wire position vector in space std::vector<std::pair<TVector3,TVector3>> Q1; // the cathode wire position vector in space
std::vector<std::pair<TVector3,TVector3>> S1; // coners of the SX3 0-11, z = mid point std::vector<std::pair<TVector3,TVector3>> SD; // coners of the SX3 0-11, z = mid point
std::vector<std::pair<TVector3,TVector3>> S2; // coners of the SX3 12-23, z = mid point std::vector<std::pair<TVector3,TVector3>> SU; // coners of the SX3 12-23, z = mid point
std::vector<TVector3> SNorml; // normal of the SX3 (outward) std::vector<TVector3> SNorml; // normal of the SX3 (outward)
void CalGeometry(); void CalGeometry();
@ -92,14 +92,14 @@ private:
TVector3 trackVecErrorC; // error vector prependicular to the Cathode-Pos plan TVector3 trackVecErrorC; // error vector prependicular to the Cathode-Pos plan
const int nSX3 = 12; const int nSX3 = 12;
const int sx3Radius = 88; const float sx3Radius = 88;
const int sx3Width = 40; const float sx3Width = 40;
const int sx3Length = 75; const float sx3Length = 75;
const int sx3Gap = 46; const float sx3Gap = 46;
const int qqqR1 = 50; const float qqqR1 = 50;
const int qqqR2 = 100; const float qqqR2 = 100;
const int qqqZPos = sx3Gap/2 + sx3Length + 30; const float qqqZPos = sx3Gap/2 + sx3Length + 30;
// int geomID; // int geomID;
TGeoManager *geom; TGeoManager *geom;
@ -168,7 +168,7 @@ inline void ANASEN::CalGeometry(){
sa.RotateZ( TMath::TwoPi() / nSX3 * (i + 0.5) ); sa.RotateZ( TMath::TwoPi() / nSX3 * (i + 0.5) );
sb.RotateZ( TMath::TwoPi() / nSX3 * (i + 0.5) ); sb.RotateZ( TMath::TwoPi() / nSX3 * (i + 0.5) );
S1.push_back(std::pair(sa,sb)); SD.push_back(std::pair(sa,sb));
sc.SetXYZ( sx3Radius, -sx3Width/2, sx3Gap/2 ); sc.SetXYZ( sx3Radius, -sx3Width/2, sx3Gap/2 );
@ -182,7 +182,7 @@ inline void ANASEN::CalGeometry(){
sa.RotateZ( TMath::TwoPi() / nSX3 * (i + 0.5) ); sa.RotateZ( TMath::TwoPi() / nSX3 * (i + 0.5) );
sb.RotateZ( TMath::TwoPi() / nSX3 * (i + 0.5) ); sb.RotateZ( TMath::TwoPi() / nSX3 * (i + 0.5) );
S2.push_back(std::pair(sa,sb)); SU.push_back(std::pair(sa,sb));
} }
} }
@ -343,23 +343,48 @@ inline std::pair<int, int> ANASEN::FindWireID(TVector3 pos, TVector3 direction,
double minCathodeDis = 999999; double minCathodeDis = 999999;
double phi = direction.Phi(); double phi = direction.Phi();
for( int i = 0; i < nWire; i++){ for( int i = 0; i < nWire; i++){
double disA = 99999999; double disA = 99999999;
double disC = 99999999; double disC = 99999999;
if(P1[i].first.Phi()-TMath::PiOver2() < phi && phi < P1[i].second.Phi()+TMath::PiOver2()) { double phiS = P1[i].first.Phi() - TMath::PiOver4();
disA = Distance( pos, pos + direction, P1[i].first, P1[i].second); double phiL = P1[i].second.Phi() + TMath::PiOver4();
// printf("A%2d: %f %f | %f\n", i, phiS * TMath::RadToDeg(), phiL * TMath::RadToDeg(), phi * TMath::RadToDeg());
if( phi > 0 && phiS > phiL ) {
phiL = phiL + TMath::TwoPi();
// printf("------ %f %f\n", phiS * TMath::RadToDeg(), phiL * TMath::RadToDeg());
}
if( phi < 0 && phiS > phiL ) {
phiS = phiS - TMath::TwoPi();
// printf("------ %f %f\n", phiS * TMath::RadToDeg(), phiL * TMath::RadToDeg());
}
if( phiS < phi && phi < phiL) {
disA = Distance( pos, pos + direction, P1[i].first, P1[i].second);
if( disA < minAnodeDis ){ if( disA < minAnodeDis ){
minAnodeDis = disA; minAnodeDis = disA;
anodeID = i; anodeID = i;
} }
} }
if(Q1[i].second.Phi() - TMath::PiOver2() < phi && phi < Q1[i].first.Phi() + TMath::PiOver2()) { phiS = Q1[i].second.Phi()- TMath::PiOver4();
phiL = Q1[i].first.Phi() + TMath::PiOver4();
// printf("C%2d: %f %f\n", i, phiS * TMath::RadToDeg(), phiL * TMath::RadToDeg());
if( phi > 0 && phiS > phiL ) {
phiL = phiL + TMath::TwoPi();
// printf("------ %f %f\n", phiS * TMath::RadToDeg(), phiL * TMath::RadToDeg());
}
if( phi < 0 && phiS > phiL ) {
phiS = phiS - TMath::TwoPi();
// printf("------ %f %f\n", phiS * TMath::RadToDeg(), phiL * TMath::RadToDeg());
}
if(phiS < phi && phi < phiL) {
disC = Distance( pos, pos + direction, Q1[i].first, Q1[i].second); disC = Distance( pos, pos + direction, Q1[i].first, Q1[i].second);
if( disC < minCathodeDis ){ if( disC < minCathodeDis ){
@ -383,7 +408,7 @@ inline SX3 ANASEN::FindSX3Pos(TVector3 pos, TVector3 direction, bool verbose){
for( int i = 0 ; i < nSX3; i++){ for( int i = 0 ; i < nSX3; i++){
if(verbose) printf(" %d ", i); if(verbose) printf(" %d ", i);
std::pair<double, double> frac = Intersect( pos, pos + direction, S1[i].first, S1[i].second, verbose); std::pair<double, double> frac = Intersect( pos, pos + direction, SD[i].first, SD[i].second, verbose);
if( frac.second < 0 || frac.second > 1 ) continue; if( frac.second < 0 || frac.second > 1 ) continue;
@ -394,7 +419,7 @@ inline SX3 ANASEN::FindSX3Pos(TVector3 pos, TVector3 direction, bool verbose){
if(verbose) { if(verbose) {
printf("reduced distance : %f\n", dis); printf("reduced distance : %f\n", dis);
printf(" %d*", (i+1)%nSX3); printf(" %d*", (i+1)%nSX3);
Intersect( pos, pos + direction, S1[(i+1)%nSX3].first, S1[(i+1)%nSX3].second, verbose); Intersect( pos, pos + direction, SD[(i+1)%nSX3].first, SD[(i+1)%nSX3].second, verbose);
} }
if( TMath::Abs(dis - sx3Radius) > 0.1 ) continue; if( TMath::Abs(dis - sx3Radius) > 0.1 ) continue;
@ -407,9 +432,9 @@ inline SX3 ANASEN::FindSX3Pos(TVector3 pos, TVector3 direction, bool verbose){
haha.id = zPos > 0 ? i : i + 12; haha.id = zPos > 0 ? i : i + 12;
haha.zFrac = zPos > 0 ? (zPos - sx3Gap/2 - sx3Length/2)/sx3Length : (zPos - ( - sx3Gap/2 - sx3Length/2) )/sx3Length ; haha.zFrac = zPos > 0 ? (zPos - sx3Gap/2. - sx3Length/2.)/sx3Length : (zPos - ( - sx3Gap/2. - sx3Length/2.) )/sx3Length ;
haha.chBack = TMath::Floor( haha.zFrac * 4 ) + 8; haha.chBack = TMath::Floor( (haha.zFrac + 0.5) * 4 ) + 8;
if( verbose) haha.Print(); if( verbose) haha.Print();
@ -443,7 +468,8 @@ inline void ANASEN::DrawTrack(TVector3 pos, TVector3 direction, bool drawEstima
int a1 = id.first - 1; if( a1 < 0 ) a1 += nWire; int a1 = id.first - 1; if( a1 < 0 ) a1 += nWire;
int b1 = id.second - 1; if( b1 < 0 ) b1 += nWire; int b1 = id.second - 1; if( b1 < 0 ) b1 += nWire;
Construct3DModel(a1, id.first+1, b1, id.second+1, false); //Construct3DModel(a1, id.first+1, b1, id.second+1, false);
Construct3DModel(id.first, id.first, id.second, id.second, false);
double theta = direction.Theta() * TMath::RadToDeg(); double theta = direction.Theta() * TMath::RadToDeg();
double phi = direction.Phi() * TMath::RadToDeg(); double phi = direction.Phi() * TMath::RadToDeg();
@ -534,13 +560,13 @@ inline TVector3 ANASEN::CalSX3Pos(unsigned short ID, unsigned short chUp, unsign
if( ID < nSX3 ){ //down if( ID < nSX3 ){ //down
sa = S1[reducedID].first; sa = SD[reducedID].first;
sb = S1[reducedID].second; sb = SD[reducedID].second;
}else{ }else{
sa = S2[reducedID].first; sa = SU[reducedID].first;
sb = S2[reducedID].second; sb = SU[reducedID].second;
} }

468
ClassTransfer.h Normal file
View File

@ -0,0 +1,468 @@
#ifndef ClassTransfer_h
#define ClassTransfer_h
#include "TBenchmark.h"
#include "TLorentzVector.h"
#include "TVector3.h"
#include "TMath.h"
#include "TFile.h"
#include "TTree.h"
#include "TRandom.h"
#include "TMacro.h"
#include "TGraph.h"
#include <vector>
#include <fstream>
#include "Isotope.h"
class ReactionConfig{
public:
ReactionConfig(){}
~ReactionConfig(){}
int beamA, beamZ;
int targetA, targetZ;
int recoilLightA, recoilLightZ;
int recoilHeavyA, recoilHeavyZ;
float beamEnergy; ///MeV/u
float beamEnergySigma; ///beam-energy_sigma_in_MeV/u
float beamAngle; ///beam-angle_in_mrad
float beamAngleSigma; ///beam-emittance_in_mrad
float beamX; ///x_offset_of_Beam_in_mm
float beamY; ///y_offset_of_Beam_in_mm
int numEvents; ///number_of_Event_being_generated
bool isTargetScattering; ///isTargetScattering
float targetDensity; ///target_density_in_g/cm3
float targetThickness; ///targetThickness_in_cm
std::string beamStoppingPowerFile; ///stopping_power_for_beam
std::string recoilLightStoppingPowerFile; ///stopping_power_for_light_recoil
std::string recoilHeavyStoppingPowerFile; ///stopping_power_for_heavy_recoil
bool isDecay; ///isDacay
int heavyDecayA; ///decayNucleus_A
int heavyDecayZ; ///decayNucleus_Z
bool isRedo; ///isReDo
std::vector<float> beamEx; ///excitation_energy_of_A[MeV]
void SetReaction(int beamA, int beamZ,
int targetA, int targetZ,
int recoilA, int recoilZ, float beamEnergy_AMeV){
this->beamA = beamA;
this->beamZ = beamZ;
this->targetA = targetA;
this->targetZ = targetZ;
this->recoilLightA = recoilA;
this->recoilLightZ = recoilZ;
recoilHeavyA = this->beamA + this->targetA - recoilLightA;
recoilHeavyZ = this->beamZ + this->targetZ - recoilLightZ;
}
void LoadReactionConfig(TMacro * macro){
if( macro == NULL ) return ;
int numLine = macro->GetListOfLines()->GetSize();
for( int i = 0; i < numLine; i ++){
std::vector<std::string> str = SplitStr(macro->GetListOfLines()->At(i)->GetName(), " ");
///printf("%d | %s\n", i, str[0].c_str());
if( str[0].find_first_of("#") == 0 ) break;
if( i == 0 ) beamA = atoi(str[0].c_str());
if( i == 1 ) beamZ = atoi(str[0].c_str());
if( i == 2 ) targetA = atoi(str[0].c_str());
if( i == 3 ) targetZ = atoi(str[0].c_str());
if( i == 4 ) recoilLightA = atoi(str[0].c_str());
if( i == 5 ) recoilLightZ = atoi(str[0].c_str());
if( i == 6 ) beamEnergy = atof(str[0].c_str());
if( i == 7 ) beamEnergySigma = atof(str[0].c_str());
if( i == 8 ) beamAngle = atof(str[0].c_str());
if( i == 9 ) beamAngleSigma = atof(str[0].c_str());
if( i == 10 ) beamX = atof(str[0].c_str());
if( i == 11 ) beamY = atof(str[0].c_str());
if( i == 12 ) numEvents = atoi(str[0].c_str());
if( i == 13 ) {
if( str[0].compare("false") == 0 ) isTargetScattering = false;
if( str[0].compare("true") == 0 ) isTargetScattering = true;
}
if( i == 14 ) targetDensity = atof(str[0].c_str());
if( i == 15 ) targetThickness = atof(str[0].c_str());
if( i == 16 ) beamStoppingPowerFile = str[0];
if( i == 17 ) recoilLightStoppingPowerFile = str[0];
if( i == 18 ) recoilHeavyStoppingPowerFile = str[0];
if( i == 19 ) {
if( str[0].compare("false") == 0 ) isDecay = false;
if( str[0].compare("true") == 0 ) isDecay = true;
}
if( i == 20 ) heavyDecayA = atoi(str[0].c_str());
if( i == 21 ) heavyDecayZ = atoi(str[0].c_str());
if( i == 22 ) {
if( str[0].compare("false") == 0 ) isRedo = false;
if( str[0].compare("true" ) == 0 ) isRedo = true;
}
if( i >= 23) {
beamEx.push_back( atof(str[0].c_str()) );
}
}
recoilHeavyA = beamA + targetA - recoilLightA;
recoilHeavyZ = beamZ + targetZ - recoilLightZ;
}
void PrintReactionConfig(){
printf("=====================================================\n");
printf(" beam : A = %3d, Z = %2d \n", beamA, beamZ);
printf(" target : A = %3d, Z = %2d \n", targetA, targetZ);
printf(" light : A = %3d, Z = %2d \n", recoilLightA, recoilLightZ);
printf(" beam Energy : %.2f +- %.2f MeV/u, dE/E = %5.2f %%\n", beamEnergy, beamEnergySigma, beamEnergySigma/beamEnergy);
printf(" Angle : %.2f +- %.2f mrad\n", beamAngle, beamAngleSigma);
printf(" offset : (x,y) = (%.2f, %.2f) mmm \n", beamX, beamY);
printf("##### number of Simulation Events : %d \n", numEvents);
printf(" is target scattering : %s \n", isTargetScattering ? "Yes" : "No");
if(isTargetScattering){
printf(" target density : %.f g/cm3\n", targetDensity);
printf(" thickness : %.f cm\n", targetThickness);
printf(" beam stopping file : %s \n", beamStoppingPowerFile.c_str());
printf(" recoil light stopping file : %s \n", recoilLightStoppingPowerFile.c_str());
printf(" recoil heavy stopping file : %s \n", recoilHeavyStoppingPowerFile.c_str());
}
printf(" is simulate decay : %s \n", isDecay ? "Yes" : "No");
if( isDecay ){
printf(" heavy decay : A = %d, Z = %d \n", heavyDecayA, heavyDecayZ);
}
printf(" is Redo until hit array : %s \n", isRedo ? "Yes" : "No");
printf(" beam Ex : %.2f MeV \n", beamEx[0]);
for( int i = 1; i < (int) beamEx.size(); i++){
printf(" %.2f MeV \n", beamEx[i]);
}
printf("=====================================================\n");
}
};
//=======================================================
//#######################################################
// Class for Transfer Reaction
// reaction notation A(a,b)B
// A = incident particle
// a = target
// b = light scattered particle
// B = heavy scattered particle
//=======================================================
class TransferReaction {
public:
TransferReaction();
~TransferReaction();
void SetA(int A, int Z, double Ex);
void Seta(int A, int Z);
void Setb(int A, int Z);
void SetB(int A, int Z);
void SetIncidentEnergyAngle(double KEA, double theta, double phi);
void SetExA(double Ex);
void SetExB(double Ex);
void SetReactionFromFile(string settingFile);
TString GetReactionName();
TString GetReactionName_Latex();
ReactionConfig GetRectionConfig() { return reaction;}
double GetMass_A(){return mA + ExA;}
double GetMass_a(){return ma;}
double GetMass_b(){return mb;}
double GetMass_B(){return mB + ExB;}
double GetCMTotalKE() {return Etot - mA - ma;}
double GetQValue() {return mA + ExA + ma - mb - mB - ExB;}
double GetMaxExB() {return Etot - mb - mB;}
TLorentzVector GetPA(){return PA;}
TLorentzVector GetPa(){return Pa;}
TLorentzVector GetPb(){return Pb;}
TLorentzVector GetPB(){return PB;}
void CalReactionConstant();
TLorentzVector * Event(double thetaCM, double phiCM);
double GetEx(){return Ex;}
double GetThetaCM(){return thetaCM;}
double GetMomentumbCM() {return p;}
double GetReactionBeta() {return beta;}
double GetReactionGamma() {return gamma;}
double GetCMTotalEnergy() {return Etot;}
private:
ReactionConfig reaction;
string nameA, namea, nameb, nameB;
double thetaIN, phiIN;
double mA, ma, mb, mB;
double TA, T; // TA = KE of A pre u, T = total energy
double ExA, ExB;
double Ex, thetaCM; //calculated Ex using inverse mapping from e and z to thetaCM
bool isReady;
bool isBSet;
double k; // CM Boost momentum
double beta, gamma; //CM boost beta
double Etot;
double p; // CM frame momentum of b, B
TLorentzVector PA, Pa, Pb, PB;
TString format(TString name);
};
TransferReaction::TransferReaction(){
thetaIN = 0.;
phiIN = 0.;
SetA(12, 6, 0);
Seta(2,1);
Setb(1,1);
SetB(13,6);
TA = 6;
T = TA * reaction.beamA;
ExA = 0;
ExB = 0;
Ex = TMath::QuietNaN();
thetaCM = TMath::QuietNaN();
CalReactionConstant();
TLorentzVector temp (0,0,0,0);
PA = temp;
Pa = temp;
Pb = temp;
PB = temp;
}
TransferReaction::~TransferReaction(){
}
void TransferReaction::SetA(int A, int Z, double Ex = 0){
Isotope temp (A, Z);
mA = temp.Mass;
reaction.beamA = A;
reaction.beamZ = Z;
ExA = Ex;
nameA = temp.Name;
isReady = false;
isBSet = true;
}
void TransferReaction::Seta(int A, int Z){
Isotope temp (A, Z);
ma = temp.Mass;
reaction.targetA = A;
reaction.targetZ = Z;
namea = temp.Name;
isReady = false;
isBSet = false;
}
void TransferReaction::Setb(int A, int Z){
Isotope temp (A, Z);
mb = temp.Mass;
reaction.recoilLightA = A;
reaction.recoilLightZ = Z;
nameb = temp.Name;
isReady = false;
isBSet = false;
}
void TransferReaction::SetB(int A, int Z){
Isotope temp (A, Z);
mB = temp.Mass;
reaction.recoilHeavyA = A;
reaction.recoilHeavyZ = Z;
nameB = temp.Name;
isReady = false;
isBSet = true;
}
void TransferReaction::SetIncidentEnergyAngle(double KEA, double theta, double phi){
this->TA = KEA;
this->T = TA * reaction.beamA;
this->thetaIN = theta;
this->phiIN = phi;
isReady = false;
}
void TransferReaction::SetExA(double Ex){
this->ExA = Ex;
isReady = false;
}
void TransferReaction::SetExB(double Ex){
this->ExB = Ex;
isReady = false;
}
void TransferReaction::SetReactionFromFile(string settingFile){
TMacro * haha = new TMacro();
if( haha->ReadFile(settingFile.c_str()) > 0 ) {
reaction.LoadReactionConfig(haha);
SetA(reaction.beamA, reaction.beamZ);
Seta(reaction.targetA, reaction.targetZ);
Setb(reaction.recoilLightA, reaction.recoilLightZ);
SetB(reaction.recoilHeavyA, reaction.recoilHeavyZ);
SetIncidentEnergyAngle(reaction.beamEnergy, 0, 0);
CalReactionConstant();
}else{
printf("cannot read file %s.\n", settingFile.c_str());
isReady = false;
}
}
TString TransferReaction::GetReactionName(){
TString rName;
rName.Form("%s(%s,%s)%s", nameA.c_str(), namea.c_str(), nameb.c_str(), nameB.c_str());
return rName;
}
TString TransferReaction::format(TString name){
if( name.IsAlpha() ) return name;
int len = name.Length();
TString temp = name;
TString temp2 = name;
if( temp.Remove(0, len-2).IsAlpha()){
temp2.Remove(len-2);
}else{
temp = name;
temp.Remove(0, len-1);
temp2.Remove(len-1);
}
return "^{"+temp2+"}"+temp;
}
TString TransferReaction::GetReactionName_Latex(){
TString rName;
rName.Form("%s(%s,%s)%s", format(nameA).Data(), format(namea).Data(), format(nameb).Data(), format(nameB).Data());
return rName;
}
void TransferReaction::CalReactionConstant(){
if( !isBSet){
reaction.recoilHeavyA = reaction.beamA + reaction.targetA - reaction.recoilLightA;
reaction.recoilHeavyZ = reaction.beamZ + reaction.targetZ - reaction.recoilLightZ;
Isotope temp (reaction.recoilHeavyA, reaction.recoilHeavyZ);
mB = temp.Mass;
isBSet = true;
}
k = TMath::Sqrt(TMath::Power(mA + ExA + T, 2) - (mA + ExA) * (mA + ExA));
beta = k / (mA + ExA + ma + T);
gamma = 1 / TMath::Sqrt(1- beta * beta);
Etot = TMath::Sqrt(TMath::Power(mA + ExA + ma + T,2) - k * k);
p = TMath::Sqrt( (Etot*Etot - TMath::Power(mb + mB + ExB,2)) * (Etot*Etot - TMath::Power(mb - mB - ExB,2)) ) / 2 / Etot;
PA.SetXYZM(0, 0, k, mA + ExA);
PA.RotateY(thetaIN);
PA.RotateZ(phiIN);
Pa.SetXYZM(0,0,0,ma);
isReady = true;
}
TLorentzVector * TransferReaction::Event(double thetaCM, double phiCM)
{
if( isReady == false ){
CalReactionConstant();
}
//TLorentzVector Pa(0, 0, 0, ma);
//---- to CM frame
TLorentzVector Pc = PA + Pa;
TVector3 b = Pc.BoostVector();
TVector3 vb(0,0,0);
if( b.Mag() > 0 ){
TVector3 v0 (0,0,0);
TVector3 nb = v0 - b;
TLorentzVector PAc = PA;
PAc.Boost(nb);
TVector3 vA = PAc.Vect();
TLorentzVector Pac = Pa;
Pac.Boost(nb);
TVector3 va = Pac.Vect();
//--- construct vb
vb = va;
vb.SetMag(p);
TVector3 ub = vb.Orthogonal();
vb.Rotate(thetaCM, ub);
vb.Rotate(phiCM + TMath::PiOver2(), va); // somehow, the calculation turn the vector 90 degree.
//vb.Rotate(phiCM , va); // somehow, the calculation turn the vector 90 degree.
}
//--- from Pb
TLorentzVector Pbc;
Pbc.SetVectM(vb, mb);
//--- from PB
TLorentzVector PBc;
//PBc.SetVectM(vB, mB + ExB);
PBc.SetVectM(-vb, mB + ExB);
//---- to Lab Frame
TLorentzVector Pb = Pbc;
Pb.Boost(b);
TLorentzVector PB = PBc;
PB.Boost(b);
TLorentzVector * output = new TLorentzVector[4];
output[0] = PA;
output[1] = Pa;
output[2] = Pb;
output[3] = PB;
this->Pb = Pb;
this->PB = PB;
return output;
}
#endif

523
Isotope.h Normal file
View File

@ -0,0 +1,523 @@
/***********************************************************************
*
* This is Isotope.h, To extract the isotope mass from massXX.txt
*
*-------------------------------------------------------
* created by Ryan (Tsz Leung) Tang, Nov-18, 2018
* email: goluckyryan@gmail.com
* ********************************************************************/
#ifndef ISOTOPE_H
#define ISOTOPE_H
#include <iostream>
#include <fstream>
#include <sstream>
#include <string>
#include <stdio.h>
#include <stdlib.h>
#include "constant.h" // amu
#include <stdlib.h> //atoi
#include <algorithm>
using namespace std;
string massData="mass20.txt";
// about the mass**.txt
// Mass Excess = (ATOMIC MASS - A)*amu | e.g. n : (1.088664.91585E-6-1)*amu
// mass excess uncertaintly
// BEA = (Z*M(1H) + N*M(1n) - Me(A,Z))/A , Me is the mass with electrons
// BEA = (Z*mp + N*mn - M(A,Z))/A , M is the mass without electrons
class Isotope {
public:
int A, Z;
double Mass, MassError, BEA;
string Name, Symbol;
string dataSource;
Isotope(){ dataSource = massData; };
Isotope(int a, int z){ dataSource = massData; SetIso(a,z); };
Isotope(string name){ dataSource = massData; SetIsoByName(name); };
void SetIso(int a, int z);
void SetIsoByName(string name);
double CalSp(int Np, int Nn); // this for the Np-proton, Nn-neutron removal
double CalSp2(int a, int z); // this is for (a,z) nucleus removal
double CalBeta(double T){
double Etot = Mass + T;
double gamma = 1 + T/Mass;
double beta = sqrt(1 - 1 / gamma / gamma ) ;
return beta;
}
void Print();
void ListShell();
private:
void FindMassByAZ(int a, int z); // give mass, massError, BEA, Name, Symbol;
void FindMassByName(string name); // give Z, mass, massError, BEA;
int TwoJ(int nShell);
string Orbital(int nShell);
int magic(int i){
switch (i){
case 0: return 2; break;
case 1: return 8; break;
case 2: return 20; break;
case 3: return 28; break;
case 4: return 40; break;
case 5: return 50; break;
case 6: return 82; break;
case 7: return 128; break;
}
return 0;
}
int magicShellID(int i){
switch (i){
case 0: return 0; break;
case 1: return 2; break;
case 2: return 5; break;
case 3: return 6; break;
case 4: return 9; break;
case 5: return 10; break;
case 6: return 15; break;
case 7: return 21; break;
}
return 0;
}
int fileStartLine;
int fileEndLine;
int lineMass050_099;
int lineMass100_149;
int lineMass150_199;
int lineMass200;
void setFileLines(){
fileStartLine = 37;
fileEndLine = 3594;
lineMass050_099 = 466;
lineMass100_149 = 1160;
lineMass150_199 = 1994;
lineMass200 = 2774;
}
char * heliosPath;
bool isFindOnce;
};
void Isotope::SetIso(int a, int z){
this->A = a;
this->Z = z;
FindMassByAZ(a,z);
}
void Isotope::SetIsoByName(string name){
FindMassByName(name);
}
void Isotope::FindMassByAZ(int A, int Z){
string line;
int lineNum=0;
int list_A, list_Z;
ifstream myfile;
int flag=0;
setFileLines();
int numLineStart = fileStartLine;
int numLineEnd = fileEndLine;
if ( A >= 50 && A < 100) numLineStart = lineMass050_099;
if ( A >=100 && A < 150) numLineStart = lineMass100_149;
if ( A >=150 && A < 200) numLineStart = lineMass150_199;
if ( A >=200 ) numLineStart = lineMass200;
myfile.open(dataSource.c_str());
if (myfile.is_open()) {
while (/*! myfile.eof() &&*/ flag == 0 && lineNum <numLineEnd){
lineNum ++ ;
//printf("%3d ",lineNum);
getline (myfile,line);
if (lineNum >= numLineStart ){
list_Z = atoi((line.substr(10,5)).c_str());
list_A = atoi((line.substr(15,5)).c_str());
if ( A == list_A && Z == list_Z) {
this->BEA = atof((line.substr(54,11)).c_str());
this->Mass = list_Z*mp + (list_A-list_Z)*mn - this->BEA/1000*list_A;
this->MassError = atof((line.substr(65,7)).c_str());
string str = line.substr(20,2);
str.erase(remove(str.begin(), str.end(), ' '), str.end());
this->Symbol = str;
ostringstream ss;
ss << A << this->Symbol;
this->Name = ss.str();
flag = 1;
}else if ( list_A > A) {
this->BEA = -404;
this->Mass = -404;
this->MassError = -404;
this->Symbol = "non";
this->Name = "non";
break;
}
}
}
if( this->Name == "1H" ) this->Name = "p";
if( this->Name == "2H" ) this->Name = "d";
if( this->Name == "3H" ) this->Name = "t";
if( this->Name == "4He" ) this->Name = "a";
myfile.close();
}else {
printf("Unable to open %s\n", dataSource.c_str());
}
}
void Isotope::FindMassByName(string name){
// done seperate the Mass number and the name
if( name == "n" ) {
this->Name = "1n";
this->BEA = 0;
this->Mass = mn;
this->MassError = 0;
this->Name = "n";
this->A = 1;
this->Z = 0;
return;
}
if( name == "p" ) name = "1H";
if( name == "d" ) name = "2H";
if( name == "t" ) name = "3H";
if( name == "a" ) name = "4He";
string temp = name;
int lastDigit = 0;
for(int i=0; temp[i]; i++){
if(temp[i] == '0') lastDigit = i;
if(temp[i] == '1') lastDigit = i;
if(temp[i] == '2') lastDigit = i;
if(temp[i] == '3') lastDigit = i;
if(temp[i] == '4') lastDigit = i;
if(temp[i] == '5') lastDigit = i;
if(temp[i] == '6') lastDigit = i;
if(temp[i] == '7') lastDigit = i;
if(temp[i] == '8') lastDigit = i;
if(temp[i] == '9') lastDigit = i;
}
this->Symbol = temp.erase(0, lastDigit +1);
//check is Symbol is 2 charaters, if not, add " " at the end
if( this->Symbol.length() == 1 ){
this->Symbol = this->Symbol + " ";
}
temp = name;
int len = temp.length();
temp = temp.erase(lastDigit+1, len);
this->A = atoi(temp.c_str());
//printf(" Symbol = |%s| , Mass = %d\n", this->Symbol.c_str(), this->A);
// find the nucleus in the data
string line;
int lineNum=0;
int list_A;
string list_symbol;
ifstream myfile;
int flag=0;
setFileLines();
int numLineStart = fileStartLine;
int numLineEnd = fileEndLine;
if ( A >= 50 && A < 100) numLineStart = lineMass050_099;
if ( A >=100 && A < 150) numLineStart = lineMass100_149;
if ( A >=150 && A < 200) numLineStart = lineMass150_199;
if ( A >=200 ) numLineStart = lineMass200;
myfile.open(dataSource.c_str());
if (myfile.is_open()) {
while (/*! myfile.eof() &&*/ flag == 0 && lineNum <numLineEnd){
lineNum ++ ;
//printf("%3d ",lineNum);
getline (myfile,line);
if (lineNum >= numLineStart ){
list_symbol = line.substr(20,2);
list_A = atoi((line.substr(15,5)).c_str());
//printf(" A = %d, Sym = |%s| \n", list_A, list_symbol.c_str());
if ( this->A == list_A && this->Symbol == list_symbol) {
this->Z = atoi((line.substr(10,5)).c_str());
this->BEA = atof((line.substr(54,11)).c_str());
this->Mass = this->Z*mp + (list_A-this->Z)*mn - this->BEA/1000*list_A;
this->MassError = atof((line.substr(65,7)).c_str());
string str = line.substr(20,2);
str.erase(remove(str.begin(), str.end(), ' '), str.end());
this->Symbol = str;
ostringstream ss;
ss << this->A << this->Symbol;
this->Name = ss.str();
flag = 1;
}else if ( list_A > this->A) {
this->BEA = -404;
this->Mass = -404;
this->MassError = -404;
this->Symbol = "non";
this->Name = "non";
break;
}
}
}
myfile.close();
}else {
printf("Unable to open %s\n", dataSource.c_str());
}
}
double Isotope::CalSp(int Np, int Nn){
Isotope nucleusD(A - Np - Nn, Z - Np);
if( nucleusD.Mass != -404){
return nucleusD.Mass + Nn*mn + Np*mp - this->Mass;
}else{
return -404;
}
}
double Isotope::CalSp2(int a, int z){
Isotope nucleusD(A - a , Z - z);
Isotope nucleusS(a,z);
if( nucleusD.Mass != -404 && nucleusS.Mass != -404){
return nucleusD.Mass + nucleusS.Mass - this->Mass;
}else{
return -404;
}
}
int Isotope::TwoJ(int nShell){
switch(nShell){
case 0: return 1; break; // 0s1/2
case 1: return 3; break; // 0p3/2
case 2: return 1; break; // 0p1/2 -- 8
case 3: return 5; break; // 0d5/2
case 4: return 1; break; // 1s1/2
case 5: return 3; break; // 0d3/2 -- 20
case 6: return 7; break; // 0f7/2 -- 28
case 7: return 3; break; // 1p3/2
case 8: return 1; break; // 1p1/2
case 9: return 5; break; // 0f5/2 -- 40
case 10: return 9; break; // 0g9/2 -- 50
case 11: return 7; break; // 0g7/2
case 12: return 5; break; // 1d5/2
case 13: return 11; break; // 0h11/2
case 14: return 3; break; // 1d3/2
case 15: return 1; break; // 2s1/2 -- 82
case 16: return 9; break; // 0h9/2
case 17: return 7; break; // 1f7/2
case 18: return 13; break; // 0i13/2
case 19: return 3; break; // 2p3/2
case 20: return 5; break; // 1f5/2
case 21: return 1; break; // 1p1/2 -- 126
case 22: return 9; break; // 1g9/2
case 23: return 11; break; // 0i11/2
case 24: return 15; break; // 0j15/2
case 25: return 5; break; // 2d5/2
case 26: return 1; break; // 3s1/2
case 27: return 3; break; // 2d3/2
case 28: return 7; break; // 1g7/2
}
return 0;
}
string Isotope::Orbital(int nShell){
switch(nShell){
case 0: return "0s1 "; break; //
case 1: return "0p3 "; break; //
case 2: return "0p1 "; break; //-- 8
case 3: return "0d5 "; break; //
case 4: return "1s1 "; break; //
case 5: return "0d3 "; break; //-- 20
case 6: return "0f7 "; break; //-- 28
case 7: return "1p3 "; break; //
case 8: return "1p1 "; break; //
case 9: return "0f5 "; break; //-- 40
case 10: return "0g9 "; break; //-- 50
case 11: return "0g7 "; break; //
case 12: return "1d5 "; break; //
case 13: return "0h11"; break; //
case 14: return "1d3 "; break; //
case 15: return "2s1 "; break; //-- 82
case 16: return "0h9 "; break; //
case 17: return "1f7 "; break; //
case 18: return "0i13"; break; //
case 19: return "2p3 "; break; //
case 20: return "1f5 "; break; //
case 21: return "1p1 "; break; //-- 126
case 22: return "1g9 "; break; //
case 23: return "0i11"; break; //
case 24: return "0j15"; break; //
case 25: return "2d5 "; break; //
case 26: return "3s1 "; break; //
case 27: return "2d3 "; break; //
case 28: return "1g7 "; break; //
}
return "nan";
}
void Isotope::ListShell(){
if( Mass < 0 ) return;
int n = A-Z;
int p = Z;
int k = min(n,p);
int nMagic = 0;
for( int i = 0; i < 7; i++){
if( magic(i) < k && k <= magic(i+1) ){
nMagic = i;
break;
}
}
int coreShell = magicShellID(nMagic-1);
int coreZ1 = magic(nMagic-1);
int coreZ2 = magic(nMagic);
Isotope core1( 2*coreZ1, coreZ1);
Isotope core2( 2*coreZ2, coreZ2);
printf("------------------ Core:%3s, inner Core:%3s \n", (core2.Name).c_str(), (core1.Name).c_str());
printf(" || ");
int t = max(n,p);
int nShell = 0;
do{
int occ = TwoJ(nShell)+1;
if( nShell > coreShell) {
printf("%4s", Orbital(nShell).c_str());
if( nShell == 0 || nShell == 2 || nShell == 5 || nShell ==6 || nShell == 9 || nShell == 10 || nShell == 15 || nShell == 21){
printf("|");
}else{
printf(",");
}
}
t = t - occ;
nShell++;
}while( t > 0 && nShell < 29);
for( int i = 1; i <= 6; i++){
if (nShell < 28) {
printf("%4s,", Orbital(nShell).c_str());
}else if( nShell == 28 ) {
printf("%4s", Orbital(nShell).c_str());
}
nShell ++;
}
if (nShell < 29) printf("%4s", Orbital(nShell).c_str());
printf("\n");
printf(" Z = %3d || ", p);
nShell = 0;
do{
int occ = TwoJ(nShell)+1;
if( nShell > coreShell ){
if( p > occ ) {
printf("%-4d", occ);
if( nShell == 0 || nShell == 2 || nShell == 5 || nShell ==6 || nShell == 9 || nShell == 10 || nShell == 15 || nShell == 21){
printf("|");
}else{
printf(",");
}
}else{
printf("%-4d", p);
}
}
p = p - occ;
nShell++;
}while( p > 0 && nShell < 29);
printf("\n");
printf(" N = %3d || ", n);
nShell = 0;
do{
int occ = TwoJ(nShell)+1;
if ( nShell > coreShell ){
if( n > occ ) {
printf("%-4d", occ);
if( nShell == 0 || nShell == 2 || nShell == 5 || nShell ==6 || nShell == 9 || nShell == 10 || nShell == 15 || nShell == 21){
printf("|");
}else{
printf(",");
}
}else{
printf("%-4d", n);
}
}
n = n - occ;
nShell++;
}while( n > 0 && nShell < 29);
printf("\n");
printf("------------------ \n");
}
void Isotope::Print(){
if (Mass > 0){
dataSource = massData;
printf(" using mass data : %s \n", dataSource.c_str());
printf(" mass of \e[47m\e[31m%s\e[m nucleus (Z,A)=(%3d,%3d) is \e[47m\e[31m%12.5f\e[m MeV, BE/A=%7.5f MeV\n", Name.c_str(), Z, A, Mass, BEA/1000.);
printf(" total BE : %12.5f MeV\n",BEA*A/1000.);
printf(" mass in amu : %12.5f u\n",Mass/amu);
printf(" mass excess : %12.5f MeV\n", Mass + Z*0.510998950 - A*amu);
printf("-------------- Seperation energy \n");
printf(" S1p: %8.4f| S1n: %8.4f| S(2H ): %8.4f| S1p1n : %8.4f\n", CalSp(1, 0), CalSp(0, 1), CalSp2(2, 1), CalSp(1, 1));
printf(" S2p: %8.4f| S2n: %8.4f| S(3He): %8.4f| S(3H) : %8.4f\n", CalSp(2, 0), CalSp(0, 2), CalSp2(3, 2), CalSp2(3, 1));
printf(" S3p: %8.4f| S3n: %8.4f| S(4He): %8.4f|\n", CalSp(3, 0), CalSp(0, 3), CalSp2(4, 2));
printf(" S4p: %8.4f| S4n: %8.4f| \n", CalSp(4, 0), CalSp(0, 4));
}else{
printf("Error %6.0f, no nucleus with (Z,A) = (%3d,%3d). \n", Mass, Z, A);
}
}
#endif

View File

@ -1,5 +1,3 @@
#include "ClassAnasen.h"
#include "TRandom.h" #include "TRandom.h"
#include "TFile.h" #include "TFile.h"
#include "TTree.h" #include "TTree.h"
@ -7,26 +5,218 @@
#include "TH2.h" #include "TH2.h"
#include "TStyle.h" #include "TStyle.h"
#include "TCanvas.h" #include "TCanvas.h"
#include "TBenchmark.h"
#include "ClassTransfer.h"
#include "ClassAnasen.h"
//======== Gerneate light particle based on reaction //======== Gerneate light particle based on reaction
// find out the CalTrack and the real track // find out the CalTrack and the real track
// find out the Q-value uncertaintly // find out the Q-value uncertaintly
std::pair<TVector3, TVector3> Transfer(){
}
void anasenMS(){ void anasenMS(){
const int numEvent = 100000;
//Reaction //Reaction
TransferReaction transfer;
transfer.SetA(12, 6, 0);
transfer.SetIncidentEnergyAngle(10, 0, 0);
transfer.Seta( 2, 1);
transfer.Setb( 1, 1);
std::vector<float> ExAList = {0};
std::vector<float> ExList = {0, 1, 2};
double vertexXRange[2] = { 0, 0};
double vertexYRange[2] = { 0, 0};
double vertexZRange[2] = { 0, 0};
//###################################################
transfer.CalReactionConstant();
int nExA = ExAList.size();
int nEx = ExList.size();
ANASEN anasen;
TString saveFileName = "msAnasen.root";
printf("\e[32m#################################### building Tree in %s\e[0m\n", saveFileName.Data());
TFile * saveFile = new TFile(saveFileName, "recreate");
TTree * tree = new TTree("tree", "tree");
double KEA;
tree->Branch("beamKEA", &KEA, "beamKEA/D");
double thetaCM, phiCM;
tree->Branch("thetaCM", &thetaCM, "thetaCM/D");
tree->Branch("phiCM", &phiCM, "phiCM/D");
double thetab, phib, Tb;
double thetaB, phiB, TB;
tree->Branch("thetab", &thetab, "thetab/D");
tree->Branch("phib", &phib, "phib/D");
tree->Branch("Tb", &Tb, "Tb/D");
tree->Branch("thetaB", &thetaB, "thetaB/D");
tree->Branch("phiB", &phiB, "phiB/D");
tree->Branch("TB", &TB, "TB/D");
int ExAID;
double ExA;
tree->Branch("ExAID", &ExAID, "ExAID/I");
tree->Branch("ExA", &ExA, "ExA/D");
int ExID;
double Ex;
tree->Branch("ExID", &ExID, "ExID/I");
tree->Branch("Ex", &Ex, "Ex/D");
double vertexX, vertexY, vertexZ;
tree->Branch("vX", &vertexX, "VertexX/D");
tree->Branch("vY", &vertexY, "VertexY/D");
tree->Branch("vZ", &vertexZ, "VertexZ/D");
double sx3X, sx3Y, sx3Z;
tree->Branch("sx3X", &sx3X, "sx3X/D");
tree->Branch("sx3Y", &sx3Y, "sx3Y/D");
tree->Branch("sx3Z", &sx3Z, "sx3Z/D");
int anodeID, cathodeID;
tree->Branch("aID", &anodeID, "anodeID/I");
tree->Branch("cID", &cathodeID, "cathodeID/I");
int sx3ID, sx3Up, sx3Down, sx3Back;
double sx3ZFrac;
tree->Branch("sx3ID", &sx3ID, "sx3ID/I");
tree->Branch("sx3Up", &sx3Up, "sx3Up/I");
tree->Branch("sx3Down", &sx3Down, "sx3Down/I");
tree->Branch("sx3Back", &sx3Back, "sx3Back/I");
tree->Branch("sx3ZFrac", &sx3ZFrac, "sx3ZFrac/D");
double reTheta, rePhi;
tree->Branch("reTheta", &reTheta, "reconstucted_theta/D");
tree->Branch("rePhi", &rePhi, "reconstucted_phi/D");
//========timer
TBenchmark clock;
bool shown ;
clock.Reset();
clock.Start("timer");
shown = false;
//================================= Calculate event
for( int i = 0; i < numEvent ; i++){
ExAID = gRandom->Integer(nExA);
ExA = ExAList[ExAID];
transfer.SetExA(ExA);
ExID = gRandom->Integer(nEx);
Ex = ExList[ExID];
transfer.SetExB(Ex);
thetaCM = TMath::ACos(2 * gRandom->Rndm() - 1) ;
phiCM = (gRandom->Rndm() - 0.5) * TMath::TwoPi();
//==== Calculate reaction
TLorentzVector * output = transfer.Event(thetaCM, phiCM);
TLorentzVector Pb = output[2];
TLorentzVector PB = output[3];
thetab = Pb.Theta() * TMath::RadToDeg();
thetaB = PB.Theta() * TMath::RadToDeg();
Tb = Pb.E() - Pb.M();
TB = PB.E() - PB.M();
phib = Pb.Phi() * TMath::RadToDeg();
phiB = PB.Phi() * TMath::RadToDeg();
vertexX = (vertexXRange[1]- vertexXRange[0])*gRandom->Rndm() + vertexXRange[0];
vertexY = (vertexYRange[1]- vertexYRange[0])*gRandom->Rndm() + vertexYRange[0];
vertexZ = (vertexZRange[1]- vertexZRange[0])*gRandom->Rndm() + vertexZRange[0];
TVector3 vertex(vertexX, vertexY, vertexZ);
TVector3 dir(1, 0, 0);
dir.SetTheta(thetab * TMath::DegToRad());
dir.SetPhi(phib * TMath::DegToRad());
std::pair<int, int> wireID = anasen.FindWireID(vertex, dir, false);
SX3 sx3 = anasen.FindSX3Pos(vertex, dir, false);
anodeID = wireID.first;
cathodeID = wireID.second;
sx3ID = sx3.id;
if( sx3.id >= 0 ){
sx3Up = sx3.chUp;
sx3Down = sx3.chDown;
sx3Back = sx3.chBack;
sx3ZFrac = sx3.zFrac;
sx3X = sx3.hitPos.X();
sx3Y = sx3.hitPos.Y();
sx3Z = sx3.hitPos.Z();
// for( int i = 0; i < 12; i++){
// sx3Index[i] = -1;
// if( i == sx3Up ) sx3Index[i] = sx3ID * 12 + sx3Up;
// if( i == sx3Down ) sx3Index[i] = sx3ID * 12 + sx3Down;
// if( i == sx3Back ) sx3Index[i] = sx3ID * 12 + sx3Back;
// }
anasen.CalTrack(sx3.hitPos, wireID.first, wireID.second, false);
reTheta = anasen.GetTrackTheta() * TMath::RadToDeg();
rePhi = anasen.GetTrackPhi() * TMath::RadToDeg();
}else{
sx3Up = -1;
sx3Down = -1;
sx3Back = -1;
sx3ZFrac = TMath::QuietNaN();
sx3X = TMath::QuietNaN();
sx3Y = TMath::QuietNaN();
sx3Z = TMath::QuietNaN();
// for( int i = 0; i < 12; i++){
// sx3Index[i] = -1;
// }
reTheta = TMath::QuietNaN();
rePhi = TMath::QuietNaN();
}
tree->Fill();
//#################################################################### Timer
clock.Stop("timer");
Double_t time = clock.GetRealTime("timer");
clock.Start("timer");
if ( !shown ) {
if (fmod(time, 10) < 1 ){
printf( "%10d[%2d%%]| %8.2f sec | expect: %5.1f min \n", i, TMath::Nint((i+1)*100./numEvent), time , numEvent*time/(i+1)/60);
shown = 1;
}
}else{
if (fmod(time, 10) > 9 ){
shown = 0;
}
}
}
tree->Write();
int count = tree->GetEntries();
saveFile->Close();
printf("=============== done. saved as %s. count(hit==1) : %d\n", saveFileName.Data(), count);
} }

106
constant.h Normal file
View File

@ -0,0 +1,106 @@
/***********************************************************************
*
* This is constant.h, to provide various physical constants.
*
*-------------------------------------------------------
* created by Ryan (Tsz Leung) Tang, Nov-18, 2018
* email: goluckyryan@gmail.com
* ********************************************************************/
#ifndef constant
#define constant
#include <cmath>
const double pi = acos(-1.0);
const double E = 2.718281828459 ;
const double hbar_SI = 1.054571628e-34; //Js
const double kB = 1.3806504e-23; //JK^-1
const double e = 1.602176487e-19; //C
const double c_SI = 299792458; //ms^-1
const double me_SI = 9.10938215e-31 ; //kg
const double mp_SI = 1.672621637e-27 ; //kg
const double mn_SI = 1.67492729e-27 ; //kg
const double NA = 6.022141e+23 ; //mol^-1
const double deg2rad = pi/180 ;
const double rad2deg = 180/pi ;
//======================================================================
const double amu = 931.49432; // MeV/c^2
const double hbarc = 197.326979; // MeV fm;
const double c = 299.792458; // mm/ns;
const double ee = 1.439964454; // MeV.fm
//======================================================================
double kg2MeV(double m){
return m*c_SI*c_SI/e/1e6;
}
double T2Brho(double mass, int Z, int A, double T){
//mass in MeV
// Z in e
// T in MeV/A
double gamma = (T*A + mass)/mass;
double beta = sqrt(1-1/gamma/gamma);
return mass*beta*gamma/Z/c;
}
double Brho2T(double mass, int Z, int A, double Brho){
//mass in MeV
// Z in e
return (sqrt(pow(Brho*Z*c,2)+mass*mass)-mass)/A;
}
double T2beta(double mass, int A, double T){
double gamma = 1.0 + T*A/mass;
return sqrt(1-1/gamma/gamma);
}
double ev2nm(double eV){
// photon energy to nm
return hbarc/2/pi/eV;
}
//======================================================================
const double mp = kg2MeV(mp_SI);
const double mn = kg2MeV(mn_SI);
const double hbar = 197.326979;
//======================================================================
std::vector<std::string> SplitStr(std::string tempLine, std::string splitter, int shift = 0){
std::vector<std::string> output;
size_t pos;
do{
pos = tempLine.find(splitter); /// fine splitter
if( pos == 0 ){ ///check if it is splitter again
tempLine = tempLine.substr(pos+1);
continue;
}
std::string secStr;
if( pos == std::string::npos ){
secStr = tempLine;
}else{
secStr = tempLine.substr(0, pos+shift);
tempLine = tempLine.substr(pos+shift);
}
///check if secStr is begin with space
while( secStr.substr(0, 1) == " ") secStr = secStr.substr(1);
///check if secStr is end with space
while( secStr.back() == ' ') secStr = secStr.substr(0, secStr.size()-1);
output.push_back(secStr);
///printf(" |%s---\n", secStr.c_str());
}while(pos != std::string::npos );
return output;
}
#endif

3594
mass20.txt Normal file

File diff suppressed because it is too large Load Diff

View File

@ -253,7 +253,7 @@ void script(TString fileName = "", int maxEvent = -1){
int xRan = gRandom->Integer(20) - 10; int xRan = gRandom->Integer(20) - 10;
int yRan = gRandom->Integer(20) - 10; int yRan = gRandom->Integer(20) - 10;
int zRan = gRandom->Integer(20) - 10; int zRan = gRandom->Integer(20) - 10;
int pRan = gRandom->Integer(360); // phi deg int pRan = gRandom->Integer(10) + 175; // phi deg
int tRan = 0 ; int tRan = 0 ;
do{ do{