Compare commits

..

7 Commits

Author SHA1 Message Date
vs19g 20bf766dc5 modified: .gitignore
modified:   Analyzer.C
2025-01-17 11:09:46 -05:00
vs19g f5a4b750fc Your branch is ahead of 'origin/master' by 1 commit. 2025-01-16 11:29:18 -05:00
vs19g f18b51e334 modified: Analyzer.C added sections for crossover calculation
modified:   Armory/ClassPW.h
	modified:   ProcessRun.sh
2025-01-16 11:27:33 -05:00
vs19g 9bf83f8028 modified: .vscode/settings.json
modified:   Armory/ClassPW.h
2025-01-16 09:56:39 -05:00
vs19g d8b11bdcf3 modified: .vscode/c_cpp_properties.json 2024-06-27 14:57:59 -04:00
vs19g 7a8b64c805 deleted: archivist 2024-06-27 14:34:40 -04:00
vs19g 862c4012eb chore: Adjust range in Analysis() function 2024-06-27 14:26:47 -04:00
38 changed files with 1228 additions and 5299 deletions

12
.gitignore vendored
View File

@ -4,18 +4,10 @@ EventBuilder*
*.pcm
*.root
*.exe
*.txt
Mapper
AnasenMS
data/
data_proton/
Analyzer_C_ACLiC_dict0713aaa966_dictContent.h
.gitignore
Analyzer_C_ACLiC_dict5411fecd5c_dictUmbrella.h
gainmatch.C
gainmatch.h
MakePlotsQQQ.C
MakePlotsQQQ.h
MakePlotsSX3.C
MakePlotsSX3.h
root_data/

View File

@ -59,19 +59,7 @@
"includePath": [
"${workspaceFolder}/**",
"/usr/include/x86_64-linux-gnu/qt6/**",
"/usr/local/cern/root/include/**"
],
"defines": [],
"compilerPath": "/usr/bin/gcc",
"cStandard": "c17",
"cppStandard": "gnu++17",
"intelliSenseMode": "linux-gcc-x64"
},
{
"name": "VigneshROG",
"includePath": [
"${workspaceFolder}/**",
"/home/vsitaraman/root/include/**"
"/usr/local/cern/root/include/**",
],
"defines": [],
"compilerPath": "/usr/bin/gcc",

20
.vscode/settings.json vendored
View File

@ -100,25 +100,7 @@
"PCPulser_All_new.C": "cpp",
"PosCal_2.C": "cpp",
"AutoFit.C": "cpp",
"Fitting.C": "cpp",
"PCGainMatch.C": "cpp",
"Analyzer1.C": "cpp",
"FitHistogramsWithTSpectrum_Sequential_Improved.C": "cpp",
"PlotAndFitCentroids.C": "cpp",
"MatchAndPlotCentroids.C": "cpp",
"GainMatch.C": "cpp",
"GainMatchSX3.C": "cpp",
"RelBack_Fix_new.C": "cpp",
"SiRelativeGains_Step1_new.C": "cpp",
"charconv": "cpp",
"format": "cpp",
"GainMatchSX3Front.C": "cpp",
"GainMatchSX3Front1.C": "cpp",
"Calibration.C": "cpp",
"GainMatchQQQ.C": "cpp",
"UTF-8gainmatch.C": "cpp",
"MakePlotsQQQ.C": "cpp",
"MakePlotsSX3.C": "cpp"
"Fitting.C": "cpp"
},
"github-enterprise.uri": "https://fsunuc.physics.fsu.edu"
}

View File

@ -16,5 +16,5 @@ void Analysis(int start, int end) {
// Define a macro with the same name as the script
void Analysis() {
Analysis(72, 194); // Adjust the range if needed
Analysis(150, 194); // Adjust the range if needed
}

View File

@ -1,31 +1,26 @@
#define Analyzer_cxx
#include "Analyzer.h"
#include "Armory/ClassSX3.h"
#include "Armory/ClassPW.h"
#include <TH2.h>
#include <TStyle.h>
#include <TCanvas.h>
#include <TMath.h>
#include "TVector3.h"
#include <fstream>
#include <iostream>
#include <sstream>
#include <map>
#include <utility>
#include <algorithm>
#include "Armory/ClassSX3.h"
#include "Armory/ClassPW.h"
#include "TVector3.h"
TH2F *hsx3IndexVE;
TH2F *hqqqIndexVE;
TH2F *hpcIndexVE;
TH2F *hpcIndexVE_GM;
TH2F *hsx3Coin;
TH2F *hqqqCoin;
TH2F *hpcCoin;
TH2F *hAVCcoin;
TH2F *hqqqPolar;
TH2F *hsx3VpcIndex;
@ -33,37 +28,15 @@ TH2F *hqqqVpcIndex;
TH2F *hqqqVpcE;
TH2F *hsx3VpcE;
TH2F *hanVScatsum;
TH2F *hanVScatsum_a[24];
TH1F *hPC_E[48];
TH1F *hCat4An;
TH1F *hCat0An;
TH1F *hAnodehits;
TH2F *hNosvAe;
int padID = 0;
SX3 sx3_contr;
PW pw_contr;
PW pwinstance;
TVector3 hitPos;
// TVector3 anodeIntersection;
std::map<int, std::pair<double, double>> slopeInterceptMap;
const int MAX_DET = 24;
const int MAX_UP = 4;
const int MAX_DOWN = 4;
const int MAX_BK = 4;
double backGain[MAX_DET][MAX_BK] = {{0}};
bool backGainValid[MAX_DET][MAX_BK] = {{false}};
double frontGain[MAX_DET][MAX_BK][MAX_UP][MAX_DOWN] = {{{{0}}}};
bool frontGainValid[MAX_DET][MAX_BK][MAX_UP][MAX_DOWN] = {{{{false}}}};
bool HitNonZero;
bool sx3ecut;
bool qqqEcut;
TH1F *hZProj;
TH1F *hPCZProj;
void Analyzer::Begin(TTree * /*tree*/)
{
@ -73,15 +46,12 @@ void Analyzer::Begin(TTree * /*tree*/)
hsx3IndexVE->SetNdivisions(-612, "x");
hqqqIndexVE = new TH2F("hqqqIndexVE", "QQQ index vs Energy; QQQ index ; Energy", 4 * 2 * 16, 0, 4 * 2 * 16, 400, 0, 5000);
hqqqIndexVE->SetNdivisions(-1204, "x");
hpcIndexVE = new TH2F("hpcIndexVE", "PC index vs Energy; PC index ; Energy", 2 * 24, 0, 2 * 24, 400, 0, 16000);
hpcIndexVE = new TH2F("hpcIndexVE", "PC index vs Energy; PC index ; Energy", 2 * 24, 0, 2 * 24, 400, 0, 4000);
hpcIndexVE->SetNdivisions(-1204, "x");
hpcIndexVE_GM = new TH2F("hpcIndexVE_GM", "PC index vs Energy; PC index ; Energy", 2 * 24, 0, 2 * 24, 400, 0, 16000);
hpcIndexVE_GM->SetNdivisions(-1204, "x");
hsx3Coin = new TH2F("hsx3Coin", "SX3 Coincident", 24 * 12, 0, 24 * 12, 24 * 12, 0, 24 * 12);
hqqqCoin = new TH2F("hqqqCoin", "QQQ Coincident", 4 * 2 * 16, 0, 4 * 2 * 16, 4 * 2 * 16, 0, 4 * 2 * 16);
hpcCoin = new TH2F("hpcCoin", "PC Coincident", 2 * 24, 0, 2 * 24, 2 * 24, 0, 2 * 24);
hAVCcoin = new TH2F("hAVCcoin", "Anode vs Cathode Coincident", 24, 0, 24, 24, 0, 24);
hqqqPolar = new TH2F("hqqqPolar", "QQQ Polar ID", 16 * 4, -TMath::Pi(), TMath::Pi(), 16, 10, 50);
@ -100,93 +70,11 @@ void Analyzer::Begin(TTree * /*tree*/)
hsx3VpcE->SetNdivisions(-612, "x");
hsx3VpcE->SetNdivisions(-12, "y");
hZProj = new TH1F("hZProj", "Z Projection", 1200, -600, 600);
hPCZProj = new TH1F("hPCZProj", "PC Z Projection", 600, -300, 300);
hZProj = new TH1F("hZProj", "Z Projection", 200, -600, 600);
hanVScatsum = new TH2F("hanVScatsum", "Anode vs Cathode Sum; Anode E; Cathode E", 400, 0, 16000, 400, 0, 20000);
hCat4An = new TH1F("hCat4An", "Number of Cathodes/Anode", 24, 0, 24);
hCat0An = new TH1F("hCat0An", "Number of Cathodes without Anode", 24, 0, 24);
hAnodehits = new TH1F("hAnodehits", "Number of Anode hits", 24, 0, 24);
hNosvAe = new TH2F("hnosvAe", "Number of Cathodes/Anode vs Anode Energy", 20, 0, 20, 400, 0, 16000);
// for (int i = 0; i < 24; i++)
// {
// TString histName = Form("hAnodeVsCathode_%d", i);
// TString histTitle = Form("Anode %d vs Cathode Sum; Anode E; Cathode Sum E", i);
// hanVScatsum_a[i] = new TH2F(histName, histTitle, 400, 0, 16000, 400, 0, 20000);
// }
// for (int i = 0; i < 48; i++)
// {
// TString histName = Form("hCathode_%d", i);
// TString histTitle = Form("Cathode_E_%d;", i);
// hPC_E[i] = new TH1F(histName, histTitle, 3200, 0, 32000);
// }
hanVScatsum = new TH2F("hanVScatsum", "Anode vs Cathode Sum; Anode E; Cathode E", 400, 0, 10000, 400, 0, 16000);
sx3_contr.ConstructGeo();
pw_contr.ConstructGeo();
std::ifstream inputFile("slope_intercept_results.txt");
if (inputFile.is_open())
{
std::string line;
int index;
double slope, intercept;
while (std::getline(inputFile, line))
{
std::stringstream ss(line);
ss >> index >> slope >> intercept;
// wires 37, 39, 44 have fit data that is incorrect or not present, they have thus been set to 1,0 (slope, intercept) for convenience
// wire 19 the 4th point was genereated using the slope of the line produced uising the other 3 points from the wire 1 vs wire 19 plot
if (index >= 0 && index <= 47)
{
slopeInterceptMap[index] = std::make_pair(slope, intercept);
}
}
inputFile.close();
}
else
{
std::cerr << "Error opening slope_intercept.txt" << std::endl;
}
std::string filename = "sx3_GainMatchback.txt";
std::ifstream infile(filename);
if (!infile.is_open())
{
std::cerr << "Error opening " << filename << "!" << std::endl;
return;
}
int id, bk;
double gain;
while (infile >> id >> bk >> gain)
{
backGain[id][bk] = gain;
if (backGain[id][bk] > 0)
backGainValid[id][bk] = true;
else
backGainValid[id][bk] = false;
}
infile.close();
std::cout << "Loaded back gains from " << filename << std::endl;
std::string filename1 = "sx3_GainMatchfront.txt";
std::ifstream infile1(filename1);
if (!infile1.is_open())
{
std::cerr << "Error opening " << filename1 << "!" << std::endl;
return;
}
int idf, bkf, uf, df;
double fgain;
while (infile1 >> idf >> bkf >> uf >> df >> fgain)
{
frontGain[idf][bkf][uf][df] = fgain;
frontGainValid[idf][bkf][uf][df] = true;
}
}
Bool_t Analyzer::Process(Long64_t entry)
@ -224,17 +112,13 @@ Bool_t Analyzer::Process(Long64_t entry)
// ########################################################### Raw data
// //======================= SX3
sx3ecut = false;
std::vector<std::pair<int, int>> ID; // first = id, 2nd = index
for (int i = 0; i < sx3.multi; i++)
{
ID.push_back(std::pair<int, int>(sx3.id[i], i));
hsx3IndexVE->Fill(sx3.index[i], sx3.e[i]);
if (sx3.e[i] > 100)
{
sx3ecut = true;
}
hsx3IndexVE->Fill(sx3.index[i], sx3.e[i]);
for (int j = i + 1; j < sx3.multi; j++)
{
@ -243,13 +127,10 @@ Bool_t Analyzer::Process(Long64_t entry)
for (int j = 0; j < pc.multi; j++)
{
if (pc.index[j] < 24 && pc.e[j] > 100)
{
hsx3VpcIndex->Fill(sx3.index[i], pc.index[j]);
// if( sx3.ch[index] > 8 ){
// hsx3VpcE->Fill( sx3.e[i], pc.e[j] );
// }
}
hsx3VpcIndex->Fill(sx3.index[i], pc.index[j]);
// if( sx3.ch[index] > 8 ){
// hsx3VpcE->Fill( sx3.e[i], pc.e[j] );
// }
}
}
@ -331,19 +212,12 @@ Bool_t Analyzer::Process(Long64_t entry)
}
// //======================= QQQ
qqqEcut = false;
for (int i = 0; i < qqq.multi; i++)
{
// for( int j = 0; j < pc.multi; j++){
// if(pc.index[j]==4){
hqqqIndexVE->Fill(qqq.index[i], qqq.e[i]);
// }
// printf("QQQ ID : %d, ch : %d, e : %d \n", qqq.id[i], qqq.ch[i], qqq.e[i]);
if (qqq.e[i] > 100)
{
qqqEcut = true;
}
// }
for (int j = 0; j < qqq.multi; j++)
{
@ -352,20 +226,18 @@ Bool_t Analyzer::Process(Long64_t entry)
hqqqCoin->Fill(qqq.index[i], qqq.index[j]);
}
for (int k = 0; k < pc.multi; k++)
{
if (pc.index[k] < 24 && pc.e[k] > 50)
{
hqqqVpcE->Fill(qqq.e[i], pc.e[k]);
// hpcIndexVE->Fill( pc.index[i], pc.e[i] );
hqqqVpcIndex->Fill(qqq.index[i], pc.index[k]);
}
}
// }
for (int j = i + 1; j < qqq.multi; j++)
{
for (int k = 0; k < pc.multi; k++)
{
if (pc.index[k] < 24 && pc.e[k] > 50)
{
hqqqVpcE->Fill(qqq.e[i], pc.e[k]);
// hpcIndexVE->Fill( pc.index[i], pc.e[i] );
hqqqVpcIndex->Fill(qqq.index[i], pc.index[j]);
}
// }
}
// if( qqq.used[i] == true ) continue;
// if( qqq.id[i] == qqq.id[j] && (16 - qqq.ch[i]) * (16 - qqq.ch[j]) < 0 ){ // must be same detector and wedge and ring
@ -384,10 +256,11 @@ Bool_t Analyzer::Process(Long64_t entry)
chRing = qqq.ch[i];
chWedge = qqq.ch[j] - 16;
}
// printf(" ID : %d , chWedge : %d, chRing : %d \n", qqq.id[i], chWedge, chRing);
double theta = -TMath::Pi() / 2 + 2 * TMath::Pi() / 16 / 4. * (qqq.id[i] * 16 + chWedge + 0.5);
double rho = 50. + 40. / 16. * (chRing + 0.5);
double rho = 10. + 40. / 16. * (chRing + 0.5);
// if(qqq.e[i]>50){
hqqqPolar->Fill(theta, rho);
// }
@ -406,292 +279,129 @@ Bool_t Analyzer::Process(Long64_t entry)
}
// //======================= PC
// Calculate the crossover points and put them into an array
ID.clear();
int counter = 0;
std::vector<std::pair<int, double>> E;
E.clear();
for (int i = 0; i < pc.multi; i++)
{
if (pc.e[i] > 100)
ID.push_back(std::pair<int, int>(pc.id[i], i));
if (pc.e[i] > 100)
E.push_back(std::pair<int, double>(pc.index[i], pc.e[i]));
hpcIndexVE->Fill(pc.index[i], pc.e[i]);
for (int j = i + 1; j < pc.multi; j++)
{
hpcCoin->Fill(pc.index[i], pc.index[j]);
}
}
// for( size_t i = 0; i < E.size(); i++) printf("%zu | %d %d \n", i, E[i].first, E[i].second );
pwinstance.ConstructGeo();
Coord Crossover[24][24][2];
Coord Crossover[24][24];
TVector3 a, c, diff;
double a2, ac, c2, adiff, cdiff, denom, alpha, beta;
int index = 0;
for (int i = 0; i < pwinstance.An.size(); i++)
{
a = pwinstance.An[i].first - pwinstance.An[i].second;
for (int j = 0; j < pwinstance.Ca.size(); j++)
{
// Ok so this method uses what is essentially the solution of 2 equations to find the point of intersection between the anode and cathode wires
// here a and c are the vectors of the anode and cathode wires respectively
// diff is the perpendicular vector between the anode and cathode wires
// The idea behind this is to then find the scalars alpha and beta that give a ratio between 0 and -1,
c = pwinstance.Ca[j].first - pwinstance.Ca[j].second;
diff = pwinstance.An[i].first - pwinstance.Ca[j].first;
a2 = a.Dot(a);
c2 = c.Dot(c);
ac = a.Dot(c);
c2 = c.Dot(c);
adiff = a.Dot(diff);
cdiff = c.Dot(diff);
denom = a2 * c2 - ac * ac;
alpha = (ac * cdiff - c2 * adiff) / denom;
beta = (a2 * cdiff - ac * adiff) / denom;
Crossover[i][j][0].x = pwinstance.An[i].first.X() + alpha * a.X();
Crossover[i][j][0].y = pwinstance.An[i].first.Y() + alpha * a.Y();
Crossover[i][j][0].z = pwinstance.An[i].first.Z() + alpha * a.Z();
if (Crossover[i][j][0].z < -190 || Crossover[i][j][0].z > 190)
Crossover[i][j].x = pwinstance.An[i].first.X() + alpha * a.X();
Crossover[i][j].y = pwinstance.An[i].first.Y() + alpha * a.Y();
Crossover[i][j].z = pwinstance.An[i].first.Z() + alpha * a.Z();
if (i == 23)
{
Crossover[i][j][0].z = 9999999;
}
// placeholder variable Crossover[i][j][1].x has nothing to do with the geometry of the crossover and is being used to store the alpha value-
//-so that it can be used to sort "good" hits later
Crossover[i][j][1].x = alpha;
Crossover[i][j][1].y = 0;
// if(i==0){
// printf("CID, Crossover z and alpha are : %d %f %f \n", j, Crossover[i][j][0].z, Crossover[i][j][1].x /*this is alpha*/);
// }
// }
// }
}
}
// printf("Anode and cathode indices, alpha, denom, andiff, cndiff : %d %d %f %f %f %f\n", i, j, alpha, denom, adiff, cdiff);
// anodeIntersection.Clear();
for (int i = 0; i < pc.multi; i++)
{
if (pc.e[i] > 100)
{
hpcIndexVE->Fill(pc.index[i], pc.e[i]); // non gain matched energy
}
// Gain Matching of PC wires
if (pc.index[i] >= 0 && pc.index[i] < 48)
{
// printf("index: %d, Old cathode energy: %d \n", pc.index[i],pc.e[i]);
auto it = slopeInterceptMap.find(pc.index[i]);
if (it != slopeInterceptMap.end())
{
double slope = it->second.first;
double intercept = it->second.second;
// printf("slope: %f, intercept:%f\n" ,slope, intercept);
pc.e[i] = slope * pc.e[i] + intercept;
// printf("index: %d, New cathode energy: %d \n",pc.index[i], pc.e[i]);
}
hpcIndexVE_GM->Fill(pc.index[i], pc.e[i]);
// hPC_E[pc.index[i]]->Fill(pc.e[i]); // gain matched energy per channel
}
}
std::vector<std::pair<int, double>> anodeHits = {};
std::vector<std::pair<int, double>> cathodeHits = {};
std::vector<std::pair<int, double>> corrcatMax = {};
std::vector<std::pair<int, double>> corrcatnextMax = {};
std::vector<std::pair<int, double>> commcat = {};
int aID = 0;
int cID = 0;
float aE = 0;
float cE = 0;
float aESum = 0;
float cESum = 0;
float aEMax = 0;
float cEMax = 0;
float aEnextMax = 0;
float cEnextMax = 0;
int aIDMax = 0;
int cIDMax = 0;
int aIDnextMax = 0;
int cIDnextMax = 0;
// Define the excluded SX3 and QQQ channels
// std::unordered_set<int> excludeSX3 = {34, 35, 36, 37, 61, 62, 67, 73, 74, 75, 76, 77, 78, 79, 80, 93, 97, 100, 103, 108, 109, 110, 111, 112};
// std::unordered_set<int> excludeQQQ = {0, 17, 109, 110, 111, 112, 113, 119, 127, 128};
// inCuth=false;
// inCutl=false;
// inPCCut=false;
for (int i = 0; i < pc.multi; i++)
{
if (pc.e[i] > 100 /*&& pc.multi < 7*/)
{
// creating a vector of pairs of anode and cathode hits
if (pc.index[i] < 24)
{
anodeHits.push_back(std::pair<int, double>(pc.index[i], pc.e[i]));
}
else if (pc.index[i] >= 24)
{
cathodeHits.push_back(std::pair<int, double>(pc.index[i] - 24, pc.e[i]));
}
for (int j = i + 1; j < pc.multi; j++)
{
// if(PCCoinc_cut1->IsInside(pc.index[i], pc.index[j]) || PCCoinc_cut2->IsInside(pc.index[i], pc.index[j])){
// // hpcCoin->Fill(pc.index[i], pc.index[j]);
// inPCCut = true;
// }
hpcCoin->Fill(pc.index[i], pc.index[j]);
}
}
}
// sorting the anode and cathode hits in descending order of energy
std::sort(anodeHits.begin(), anodeHits.end(), [](const std::pair<int, double> &a, const std::pair<int, double> &b)
{ return a.second > b.second; });
std::sort(cathodeHits.begin(), cathodeHits.end(), [](const std::pair<int, double> &a, const std::pair<int, double> &b)
{ return a.second > b.second; });
bool SiPCflag;
corrcatMax.clear();
if (anodeHits.size() >= 1 && cathodeHits.size() > 1)
{
if (((TMath::TanH(hitPos.Y() / hitPos.X())) > (TMath::TanH(a.Y() / a.X()) - TMath::PiOver4())) || ((TMath::TanH(hitPos.Y() / hitPos.X())) < (TMath::TanH(a.Y() / a.X()) + TMath::PiOver4())))
{
for (const auto &anode : anodeHits)
{
aID = anode.first;
aE = anode.second;
aESum += aE;
if (aE > aEMax)
if (abs(i - j) < 7 || abs(i - j) > 17)
{
aEMax = aE;
aIDMax = aID;
}
if (aE > aEnextMax && aE < aEMax)
{
aEnextMax = aE;
aIDnextMax = aID;
}
// for(const auto &cat : cathodeHits){
// hAVCcoin->Fill(aID, cat.first);
// }
}
// std::cout << " Anode iD : " << aIDMax << " Energy : " << aEMax << std::endl;
// printf("aID : %d, aE : %f, cE : %f\n", aID, aE, cE);
for (const auto &cathode : cathodeHits)
{
cID = cathode.first;
cE = cathode.second;
// std::cout << "Cathode ID : " << cID << " Energy : " << cE << std::endl;
hAVCcoin->Fill(aIDMax, cID);
// This section of code is used to find the cathodes are correlated with the max and next max anodes, as well as to figure out if there are any common cathodes
// the anodes are correlated with the cathodes +/-3 from the anode number in the reverse order
for (int j = -4; j < 3; j++)
{
if ((aIDMax + 24 + j) % 24 == 23 - cID)
/* the 23-cID is used to accomodate for the fact that the order of the cathodes was reversed relative top the physical geometry */
// if (Crossover[aIDMax][cID][0].z != 9999999)
if (alpha < 0 && alpha > -1)
{
corrcatMax.push_back(std::pair<int, double>(cID, cE));
cESum += cE;
// printf("Max Anode : %d Correlated Cathode : %d Anode Energy : %f z value : %f \n", aIDMax, cID, cESum, Crossover[aIDMax][cID][1].z /*prints alpha*/);
// std::cout << " Cathode iD : " << cID << " Energy : " << cE << std::endl;
printf("Anode and cathode indices and coord : %d %d %f %f %f %f\n", i, j, pwinstance.Ca[j].first.X(), pwinstance.Ca[j].first.Y(), pwinstance.Ca[j].first.Z(), alpha);
printf("Crossover wires, points and alpha are : %f %f %f %f \n", Crossover[i][j].x, Crossover[i][j].y, Crossover[i][j].z, alpha);
}
}
}
}
}
TVector3 anodeIntersection;
anodeIntersection.Clear();
// Implementing a method for PC reconstruction using a single Anode event
// if (anodeHits.size() == 1)
if (E.size() >= 3)
{
float x, y, z = 0;
for (const auto &corr : corrcatMax)
int aID = 0;
int cID = 0;
float aE = 0;
float cE = 0;
// if( ID[0].first < 1 ) {
// aID = pc.ch[ID[0].second];
// cID = pc.ch[ID[1].second];
// }else{
// cID = pc.ch[ID[0].second];
// aID = pc.ch[ID[1].second];
// }
// printf("anode= %d, cathode = %d\n", aID, cID);
for (int k = 0; k < qqq.multi; k++)
{
if (cESum > 0)
if (qqq.index[k] == 75 && pc.index[k] == 2 && pc.e[k] > 100)
{
x += (corr.second) / cESum * Crossover[aIDMax][corr.first][0].x;
y += (corr.second) / cESum * Crossover[aIDMax][corr.first][0].y;
z += (corr.second) / cESum * Crossover[aIDMax][corr.first][0].z;
// printf("Max Anode : %d Correlated Cathode : %d cathode Energy : %f cESum Energy : %f z value : %f \n", aIDMax, corr.first, corr.second, cESum, Crossover[aIDMax][corr.first][1].z /*prints alpha*/);
}
else
{
printf("Warning: No valid cathode hits to correlate with anode %d! \n", aIDMax);
}
// printf("EventID : %llu, Max Anode : %d Cathode: %d PC X and Y : (%f, %f) \n", entry, aIDMax, cID, Crossover[aIDMax][cID][0].x, Crossover[aIDMax][cID][0].y);
// for (int i = 0; i < sx3.multi; i++)
// {
// printf("EventID : %llu, HitPos X, Y, Z: %f %f %f SX3ID : %d %d \n", entry, hitPos.X(), hitPos.Y(), hitPos.Z(), sx3.id[i], sx3.ch[i]);
// }
// for (int i = 0; i < qqq.multi; i++)
// {
// printf("Max Anode : %d Cathode: %d PC X and Y : %f %f \n", aIDMax, cID, Crossover[aIDMax][cID][0].x, Crossover[aIDMax][cID][0].y);
// printf("HitPos X, Y, Z, QQQID : %f %f %f %d \n", hitPos.X(), hitPos.Y(), hitPos.Z(), qqq.id[i]);
// }
int multi_an = 0;
for (int l = 0; l < E.size(); l++)
{
if (E[l].first < 24)
{
multi_an++;
}
}
if (multi_an >= 1)
{
for (int l = 0; l < E.size(); l++)
{
if (E[l].first < 24 && E[l].first != 19 && E[l].first != 12)
{
aE = E[l].second;
}
else if (E[l].first > 24)
{
cE = E[l].second;
}
}
}
}
}
anodeIntersection = TVector3(x, y, z);
// std::cout << "Anode Intersection " << anodeIntersection.Z() << " " << x << " " << y << " " << z << std::endl;
}
hanVScatsum->Fill(aE, cE);
if (anodeIntersection.Z() != 0)
{
hPCZProj->Fill(anodeIntersection.Z());
}
// Filling the PC Z projection histogram
// std::cout << anodeIntersection.Z() << std::endl;
// hPCZProj->Fill(anodeIntersection.Z());
if (ID[0].first < 1)
{
aID = pc.ch[ID[0].second];
cID = pc.ch[ID[1].second];
}
else
{
cID = pc.ch[ID[0].second];
aID = pc.ch[ID[1].second];
}
// }
// inCuth = false;
// inCutl = false;
// inPCCut = false;
// for(int j=i+1;j<pc.multi;j++){
// if(PCCoinc_cut1->IsInside(pc.index[i], pc.index[j]) || PCCoinc_cut2->IsInside(pc.index[i], pc.index[j])){
// // hpcCoin->Fill(pc.index[i], pc.index[j]);
// inPCCut = true;
// }
// hpcCoin->Fill(pc.index[i], pc.index[j]);
// }
// Check if the accumulated energies are within the defined ranges
// if (AnCatSum_high && AnCatSum_high->IsInside(aESum, cESum)) {
// inCuth = true;
// }
// if (AnCatSum_low && AnCatSum_low->IsInside(aESum, cESum)) {
// inCutl = true;
// }
// Fill histograms based on the cut conditions
// if (inCuth && inPCCut) {
// hanVScatsum_hcut->Fill(aESum, cESum);
// }
// if (inCutl && inPCCut) {
// hanVScatsum_lcut->Fill(aESum, cESum);
// }
// for(auto anode : anodeHits){
// float aE = anode.second;
// aESum += aE;
// if(inPCCut){
hanVScatsum->Fill(aEMax, cESum);
// }
// if (sx3ecut)
// {
hCat4An->Fill(corrcatMax.size());
hNosvAe->Fill(corrcatMax.size(), aEMax);
hAnodehits->Fill(anodeHits.size());
// }
// }
if (anodeHits.size() < 1)
{
hCat0An->Fill(cathodeHits.size());
}
if (HitNonZero && anodeIntersection.Z() != 0)
{
pw_contr.CalTrack2(hitPos, anodeIntersection);
hZProj->Fill(pw_contr.GetZ0());
if (HitNonZero)
{
pw_contr.CalTrack(hitPos, aID, cID);
hZProj->Fill(pw_contr.GetZ0());
}
}
// ########################################################### Track constrcution
@ -704,99 +414,80 @@ Bool_t Analyzer::Process(Long64_t entry)
void Analyzer::Terminate()
{
// gStyle->SetOptStat("neiou");
// TCanvas *canvas = new TCanvas("cANASEN", "ANASEN", 2000, 2000);
// canvas->Divide(3, 3);
gStyle->SetOptStat("neiou");
TCanvas *canvas = new TCanvas("cANASEN", "ANASEN", 2000, 2000);
canvas->Divide(3, 3);
// // hsx3VpcIndex->Draw("colz");
// hsx3VpcIndex->Draw("colz");
// //=============================================== pad-1
// padID++;
// canvas->cd(padID);
// canvas->cd(padID)->SetGrid(1);
//=============================================== pad-1
padID++;
canvas->cd(padID);
canvas->cd(padID)->SetGrid(1);
// hsx3IndexVE->Draw("colz");
hsx3IndexVE->Draw("colz");
// //=============================================== pad-2
// padID++;
// canvas->cd(padID);
// canvas->cd(padID)->SetGrid(1);
//=============================================== pad-2
padID++;
canvas->cd(padID);
canvas->cd(padID)->SetGrid(1);
// hqqqIndexVE->Draw("colz");
hqqqIndexVE->Draw("colz");
// //=============================================== pad-3
// padID++;
// canvas->cd(padID);
// canvas->cd(padID)->SetGrid(1);
//=============================================== pad-3
padID++;
canvas->cd(padID);
canvas->cd(padID)->SetGrid(1);
// hpcIndexVE->Draw("colz");
hpcIndexVE->Draw("colz");
// //=============================================== pad-4
// padID++;
// canvas->cd(padID);
// canvas->cd(padID)->SetGrid(1);
//=============================================== pad-4
padID++;
canvas->cd(padID);
canvas->cd(padID)->SetGrid(1);
// hsx3Coin->Draw("colz");
hsx3Coin->Draw("colz");
// //=============================================== pad-5
// padID++;
// canvas->cd(padID);
// canvas->cd(padID)->SetGrid(1);
//=============================================== pad-5
padID++;
canvas->cd(padID);
canvas->cd(padID)->SetGrid(1);
// canvas->cd(padID)->SetLogz(true);
canvas->cd(padID)->SetLogz(true);
// hqqqCoin->Draw("colz");
hqqqCoin->Draw("colz");
// //=============================================== pad-6
// padID++;
// canvas->cd(padID);
// canvas->cd(padID)->SetGrid(1);
//=============================================== pad-6
padID++;
canvas->cd(padID);
canvas->cd(padID)->SetGrid(1);
// hpcCoin->Draw("colz");
hpcCoin->Draw("colz");
// //=============================================== pad-7
// padID++;
// canvas->cd(padID);
// canvas->cd(padID)->SetGrid(1);
//=============================================== pad-7
padID++;
canvas->cd(padID);
canvas->cd(padID)->SetGrid(1);
// // hsx3VpcIndex ->Draw("colz");
// hsx3VpcE->Draw("colz");
// hsx3VpcIndex ->Draw("colz");
hsx3VpcE->Draw("colz");
// //=============================================== pad-8
// padID++;
// canvas->cd(padID);
// canvas->cd(padID)->SetGrid(1);
//=============================================== pad-8
padID++;
canvas->cd(padID);
canvas->cd(padID)->SetGrid(1);
// // hqqqVpcIndex ->Draw("colz");
// hqqqVpcIndex ->Draw("colz");
// hqqqVpcE->Draw("colz");
// //=============================================== pad-9
// padID++;
hqqqVpcE->Draw("colz");
//=============================================== pad-9
padID++;
// // canvas->cd(padID)->DrawFrame(-50, -50, 50, 50);
// // hqqqPolar->Draw("same colz pol");
// canvas->cd(padID)->DrawFrame(-50, -50, 50, 50);
// hqqqPolar->Draw("same colz pol");
// canvas->cd(padID);
// canvas->cd(padID)->SetGrid(1);
// // hZProj->Draw();
// hanVScatsum->Draw("colz");
// // TFile *outRoot = new TFile("Histograms.root", "RECREATE");
// // if (!outRoot->IsOpen())
// // {
// // std::cerr << "Error opening file for writing!" << std::endl;
// // return;
// // }
// // // Loop through histograms and write them to the ROOT file
// // for (int i = 0; i < 48; i++)
// // {
// // if (hPC_E[i] != nullptr)
// // {
// // hPC_E[i]->Write(); // Write histogram to file
// // }
// // }
// // outRoot->Close();
canvas->cd(padID);
canvas->cd(padID)->SetGrid(1);
// hZProj->Draw();
hanVScatsum->Draw("colz");
}

View File

@ -18,7 +18,6 @@ public :
Det sx3;
Det qqq;
Det pc ;
Det misc;
ULong64_t evID;
UInt_t run;
@ -41,13 +40,6 @@ public :
TBranch *b_pcCh; //!
TBranch *b_pcE; //!
TBranch *b_pcT; //!
TBranch *b_miscMulti; //!
TBranch *b_miscID; //!
TBranch *b_miscCh; //!
TBranch *b_miscE; //!
TBranch *b_miscT; //!
TBranch *b_miscTf; //!
Analyzer(TTree * /*tree*/ =0) : fChain(0) { }
virtual ~Analyzer() { }
@ -100,13 +92,6 @@ void Analyzer::Init(TTree *tree){
fChain->SetBranchAddress("pcCh", &pc.ch, &b_pcCh);
fChain->SetBranchAddress("pcE", &pc.e, &b_pcE);
fChain->SetBranchAddress("pcT", &pc.t, &b_pcT);
fChain->SetBranchAddress("miscMulti", &misc.multi, &b_miscMulti);
fChain->SetBranchAddress("miscID", &misc.id, &b_miscID);
fChain->SetBranchAddress("miscCh", &misc.ch, &b_miscCh);
fChain->SetBranchAddress("miscE", &misc.e, &b_miscE);
fChain->SetBranchAddress("miscT", &misc.t, &b_miscT);
// fChain->SetBranchAddress("miscF", &misc.tf, &b_miscTf);
}

View File

@ -1,402 +0,0 @@
#define Analyzer1_cxx
#include "Analyzer1.h"
#include <TH2.h>
#include <TStyle.h>
#include <TCanvas.h>
#include <TMath.h>
#include <utility>
#include <algorithm>
#include "Armory/ClassSX3.h"
#include "Armory/ClassPW.h"
#include "TVector3.h"
TH2F * hsx3IndexVE;
TH2F * hqqqIndexVE;
TH2F * hpcIndexVE;
TH2F * hsx3Coin;
TH2F * hqqqCoin;
TH2F * hpcCoin;
TH2F * hqqqPolar;
TH2F * hsx3VpcIndex;
TH2F * hqqqVpcIndex;
TH2F * hqqqVpcE;
TH2F * hsx3VpcE;
TH2F * hanVScatsum;
int padID = 0;
SX3 sx3_contr;
PW pw_contr;
TVector3 hitPos;
bool HitNonZero;
TH1F * hZProj;
void Analyzer1::Begin(TTree * /*tree*/){
TString option = GetOption();
hsx3IndexVE = new TH2F("hsx3IndexVE", "SX3 index vs Energy; sx3 index ; Energy", 24*12, 0, 24*12, 400, 0, 5000); hsx3IndexVE->SetNdivisions( -612, "x");
hqqqIndexVE = new TH2F("hqqqIndexVE", "QQQ index vs Energy; QQQ index ; Energy", 4*2*16, 0, 4*2*16, 400, 0, 5000); hqqqIndexVE->SetNdivisions( -1204, "x");
hpcIndexVE = new TH2F("hpcIndexVE", "PC index vs Energy; PC index ; Energy", 2*24, 0, 2*24, 400, 0, 4000); hpcIndexVE->SetNdivisions( -1204, "x");
hsx3Coin = new TH2F("hsx3Coin", "SX3 Coincident", 24*12, 0, 24*12, 24*12, 0, 24*12);
hqqqCoin = new TH2F("hqqqCoin", "QQQ Coincident", 4*2*16, 0, 4*2*16, 4*2*16, 0, 4*2*16);
hpcCoin = new TH2F("hpcCoin", "PC Coincident", 2*24, 0, 2*24, 2*24, 0, 2*24);
hqqqPolar = new TH2F("hqqqPolar", "QQQ Polar ID", 16*4, -TMath::Pi(), TMath::Pi(),16, 10, 50);
hsx3VpcIndex = new TH2F("hsx3Vpcindex", "sx3 vs pc; sx3 index; pc index", 24*12, 0, 24*12, 48, 0, 48);
hsx3VpcIndex->SetNdivisions( -612, "x");
hsx3VpcIndex->SetNdivisions( -12, "y");
hqqqVpcIndex = new TH2F("hqqqVpcindex", "qqq vs pc; qqq index; pc index", 4*2*16, 0, 4*2*16, 48, 0, 48);
hqqqVpcIndex->SetNdivisions( -612, "x");
hqqqVpcIndex->SetNdivisions( -12, "y");
hqqqVpcE = new TH2F("hqqqVpcEnergy", "qqq vs pc; qqq energy; pc energy", 400, 0, 5000, 400, 0, 5000);
hqqqVpcE->SetNdivisions( -612, "x");
hqqqVpcE->SetNdivisions( -12, "y");
hsx3VpcE = new TH2F("hsx3VpcEnergy", "sx3 vs pc; sx3 energy; pc energy", 400, 0, 5000, 400, 0, 5000);
hsx3VpcE->SetNdivisions( -612, "x");
hsx3VpcE->SetNdivisions( -12, "y");
hZProj = new TH1F("hZProj", "Z Projection", 1200, -600, 600);
hanVScatsum = new TH2F("hanVScatsum", "Anode vs Cathode Sum; Anode E; Cathode E", 400,0 , 10000, 400, 0 , 16000);
sx3_contr.ConstructGeo();
pw_contr.ConstructGeo();
}
Bool_t Analyzer1::Process(Long64_t entry){
// if ( entry > 100 ) return kTRUE;
hitPos.Clear();
HitNonZero = false;
// if( entry > 1) return kTRUE;
// printf("################### ev : %llu \n", entry);
b_sx3Multi->GetEntry(entry);
b_sx3ID->GetEntry(entry);
b_sx3Ch->GetEntry(entry);
b_sx3E->GetEntry(entry);
b_sx3T->GetEntry(entry);
b_qqqMulti->GetEntry(entry);
b_qqqID->GetEntry(entry);
b_qqqCh->GetEntry(entry);
b_qqqE->GetEntry(entry);
b_qqqT->GetEntry(entry);
b_pcMulti->GetEntry(entry);
b_pcID->GetEntry(entry);
b_pcCh->GetEntry(entry);
b_pcE->GetEntry(entry);
b_pcT->GetEntry(entry);
sx3.CalIndex();
qqq.CalIndex();
pc.CalIndex();
// sx3.Print();
//########################################################### Raw data
// //======================= SX3
std::vector<std::pair<int, int>> ID; // first = id, 2nd = index
for( int i = 0; i < sx3.multi; i ++){
ID.push_back(std::pair<int, int>(sx3.id[i], i));
hsx3IndexVE->Fill( sx3.index[i], sx3.e[i] );
for( int j = i+1; j < sx3.multi; j++){
hsx3Coin->Fill( sx3.index[i], sx3.index[j]);
}
for( int j = 0; j < pc.multi; j++){
hsx3VpcIndex->Fill( sx3.index[i], pc.index[j] );
// if( sx3.ch[index] > 8 ){
// hsx3VpcE->Fill( sx3.e[i], pc.e[j] );
// }
}
}
if( ID.size() > 0 ){
std::sort(ID.begin(), ID.end(), [](const std::pair<int, int> & a, const std::pair<int, int> & b) {
return a.first < b.first;
} );
// printf("##############################\n");
// for( size_t i = 0; i < ID.size(); i++) printf("%zu | %d %d \n", i, ID[i].first, ID[i].second );
std::vector<std::pair<int, int>> sx3ID;
sx3ID.push_back(ID[0]);
bool found = false;
for( size_t i = 1; i < ID.size(); i++){
if( ID[i].first == sx3ID.back().first) {
sx3ID.push_back(ID[i]);
if( sx3ID.size() >= 3) {
found = true;
}
}else{
if( !found ){
sx3ID.clear();
sx3ID.push_back(ID[i]);
}
}
}
// printf("---------- sx3ID Multi : %zu \n", sx3ID.size());
if( found ){
int sx3ChUp, sx3ChDn, sx3ChBk;
float sx3EUp, sx3EDn;
// printf("------ sx3 ID : %d, multi: %zu\n", sx3ID[0].first, sx3ID.size());
for( size_t i = 0; i < sx3ID.size(); i++ ){
int index = sx3ID[i].second;
// printf(" %zu | index %d | ch : %d, energy : %d \n", i, index, sx3.ch[index], sx3.e[index]);
if( sx3.ch[index] < 8 ){
if( sx3.ch[index] % 2 == 0) {
sx3ChDn = sx3.ch[index];
sx3EDn = sx3.e[index];
}else{
sx3ChUp = sx3.ch[index];
sx3EUp = sx3.e[index];
}
}else{
sx3ChBk = sx3.ch[index];
}
for( int j = 0; j < pc.multi; j++){
// hsx3VpcIndex->Fill( sx3.index[i], pc.index[j] );
if( sx3.ch[index] > 8 ){
hsx3VpcE->Fill( sx3.e[i], pc.e[j] );
// hpcIndexVE->Fill( pc.index[i], pc.e[i] );
}
}
}
sx3_contr.CalSX3Pos(sx3ID[0].first, sx3ChUp, sx3ChDn, sx3ChBk, sx3EUp, sx3EDn);
hitPos = sx3_contr.GetHitPos();
HitNonZero = true;
// hitPos.Print();
}
}
// //======================= QQQ
for( int i = 0; i < qqq.multi; i ++){
// for( int j = 0; j < pc.multi; j++){
// if(pc.index[j]==4){
hqqqIndexVE->Fill( qqq.index[i], qqq.e[i] );
// }
// }
for( int j = 0; j < qqq.multi; j++){
if ( j == i ) continue;
hqqqCoin->Fill( qqq.index[i], qqq.index[j]);
}
for( int j = i + 1; j < qqq.multi; j++){
for( int k = 0; k < pc.multi; k++){
if(pc.index[k]<24 && pc.e[k]>50 ){
hqqqVpcE->Fill( qqq.e[i], pc.e[k] );
// hpcIndexVE->Fill( pc.index[i], pc.e[i] );
hqqqVpcIndex->Fill( qqq.index[i], pc.index[j] );
}
// }
}
// if( qqq.used[i] == true ) continue;
//if( qqq.id[i] == qqq.id[j] && (16 - qqq.ch[i]) * (16 - qqq.ch[j]) < 0 ){ // must be same detector and wedge and ring
if( qqq.id[i] == qqq.id[j] ){ // must be same detector
int chWedge = -1;
int chRing = -1;
if( qqq.ch[i] < qqq.ch[j]){
chRing = qqq.ch[j] - 16;
chWedge = qqq.ch[i];
}else{
chRing = qqq.ch[i];
chWedge = qqq.ch[j] - 16;
}
// printf(" ID : %d , chWedge : %d, chRing : %d \n", qqq.id[i], chWedge, chRing);
double theta = -TMath::Pi()/2 + 2*TMath::Pi()/16/4.*(qqq.id[i]*16 + chWedge +0.5);
double rho = 10.+40./16.*(chRing+0.5);
// if(qqq.e[i]>50){
hqqqPolar->Fill( theta, rho);
// }
// qqq.used[i] = true;
// qqq.used[j] = true;
if( !HitNonZero ){
double x = rho * TMath::Cos(theta);
double y = rho * TMath::Sin(theta);
hitPos.SetXYZ(x, y, 23 + 75 + 30);
HitNonZero = true;
}
}
}
}
// //======================= PC
ID.clear();
int counter=0;
std::vector<std::pair<int, double>> E;
E.clear();
for( int i = 0; i < pc.multi; i ++){
if( pc.e[i] > 100 ) ID.push_back(std::pair<int, int>(pc.id[i], i));
if( pc.e[i] > 100 ) E.push_back(std::pair<int, double>(pc.index[i], pc.e[i]));
hpcIndexVE->Fill( pc.index[i], pc.e[i] );
for( int j = i+1; j < pc.multi; j++){
hpcCoin->Fill( pc.index[i], pc.index[j]);
}
}
// for( size_t i = 0; i < E.size(); i++) printf("%zu | %d %d \n", i, E[i].first, E[i].second );
if( E.size()>=3 ){
int aID = 0;
int cID = 0;
float aE = 0;
float cE = 0;
bool multi_an =false;
// if( ID[0].first < 1 ) {
// aID = pc.ch[ID[0].second];
// cID = pc.ch[ID[1].second];
// }else{
// cID = pc.ch[ID[0].second];
// aID = pc.ch[ID[1].second];
// }
// printf("anode= %d, cathode = %d\n", aID, cID);
// for( int k = 0; k < qqq.multi; k++){
// if(qqq.index[k]==75 && pc.index[k]==2 && pc.e[k]>100){
for(int l=0;l<E.size();l++){
if(E[l].first<24 ){
if(!multi_an){
aE = E[l].second;
}
multi_an=true;
}
else if (E[l].first>=24){
cE = E[l].second + cE;
}
}
// }
// }
hanVScatsum->Fill(aE,cE);
if( ID[0].first < 1 ) {
aID = pc.ch[ID[0].second];
cID = pc.ch[ID[1].second];
}else{
cID = pc.ch[ID[0].second];
aID = pc.ch[ID[1].second];
}
if( HitNonZero){
pw_contr.CalTrack( hitPos, aID, cID);
hZProj->Fill(pw_contr.GetZ0());
}
}
//########################################################### Track constrcution
//############################## DO THE KINEMATICS
return kTRUE;
}
void Analyzer1::Terminate(){
gStyle->SetOptStat("neiou");
TCanvas * canvas = new TCanvas("cANASEN", "ANASEN", 2000, 2000);
canvas->Divide(3,3);
//hsx3VpcIndex->Draw("colz");
//=============================================== pad-1
padID ++; canvas->cd(padID); canvas->cd(padID)->SetGrid(1);
hsx3IndexVE->Draw("colz");
//=============================================== pad-2
padID ++; canvas->cd(padID); canvas->cd(padID)->SetGrid(1);
hqqqIndexVE->Draw("colz");
//=============================================== pad-3
padID ++; canvas->cd(padID); canvas->cd(padID)->SetGrid(1);
hpcIndexVE->Draw("colz");
//=============================================== pad-4
padID ++; canvas->cd(padID); canvas->cd(padID)->SetGrid(1);
hsx3Coin->Draw("colz");
//=============================================== pad-5
padID ++; canvas->cd(padID); canvas->cd(padID)->SetGrid(1);
canvas->cd(padID)->SetLogz(true);
hqqqCoin->Draw("colz");
//=============================================== pad-6
padID ++; canvas->cd(padID); canvas->cd(padID)->SetGrid(1);
hpcCoin->Draw("colz");
//=============================================== pad-7
padID ++; canvas->cd(padID); canvas->cd(padID)->SetGrid(1);
// hsx3VpcIndex ->Draw("colz");
hsx3VpcE->Draw("colz") ;
//=============================================== pad-8
padID ++; canvas->cd(padID); canvas->cd(padID)->SetGrid(1);
// hqqqVpcIndex ->Draw("colz");
hqqqVpcE ->Draw("colz");
//=============================================== pad-9
padID ++;
// canvas->cd(padID)->DrawFrame(-50, -50, 50, 50);
// hqqqPolar->Draw("same colz pol");
canvas->cd(padID); canvas->cd(padID)->SetGrid(1);
// hZProj->Draw();
hanVScatsum->Draw("colz");
}

283
Armory/#ClassPW.h# Normal file
View File

@ -0,0 +1,283 @@
#ifndef ClassPW_h
#define ClassPW_h
#include <cstdio>
#include <TMath.h>
#include <TVector3.h>
struct PWHitInfo{
std::pair<short, short> nearestWire; // anode, cathode
std::pair<double, double> nearestDist; // anode, cathode
std::pair<short, short> nextNearestWire; // anode, cathode
std::pair<double, double> nextNearestDist; // anode, cathode
void Clear(){
nearestWire.first = -1;
nearestWire.second = -1;
nearestDist.first = 999999999;
nearestDist.second = 999999999;
nextNearestWire.first = -1;
nextNearestWire.second = -1;
nextNearestDist.first = 999999999;
nextNearestDist.second = 999999999;
}
};
//!########################################################
class PW{ // proportional wire
public:
PW(){ ClearHitInfo();};
~PW(){};
PWHitInfo GetHitInfo() const {return hitInfo;}
std::pair<short, short> GetNearestID() const {return hitInfo.nearestWire;}
std::pair<double, double> GetNearestDistance() const {return hitInfo.nearestDist;}
std::pair<short, short> Get2ndNearestID() const {return hitInfo.nextNearestWire;}
std::pair<double, double> Get2ndNearestDistance() const {return hitInfo.nextNearestDist;}
TVector3 GetTrackPos() const {return trackPos;}
TVector3 GetTrackVec() const {return trackVec;}
double GetTrackTheta() const {return trackVec.Theta();}
double GetTrackPhi() const {return trackVec.Phi();}
double GetZ0();
int GetNumWire() const {return nWire;}
double GetDeltaAngle() const {return dAngle;}
double GetAnodeLength() const {return anodeLength;}
double GetCathodeLength() const {return cathodeLength;}
TVector3 GetAnodeDn(short id) const {return An[id].first;}
TVector3 GetAnodeUp(short id) const {return An[id].second;}
TVector3 GetCathodeDn(short id) const {return Ca[id].first;}
TVector3 GetCathodeUp(short id) const {return Ca[id].second;}
TVector3 GetAnodneMid(short id) const {return (An[id].first + An[id].second) * 0.5; }
double GetAnodeTheta(short id) const {return (An[id].first - An[id].second).Theta();}
double GetAnodePhi(short id) const {return (An[id].first - An[id].second).Phi();}
TVector3 GetCathodneMid(short id) const {return (Ca[id].first + Ca[id].second) * 0.5; }
double GetCathodeTheta(short id) const {return (Ca[id].first - Ca[id].second).Theta();}
double GetCathodePhi(short id) const {return (Ca[id].first - Ca[id].second).Phi();}
void ClearHitInfo();
void ConstructGeo();
void FindWireID(TVector3 pos, TVector3 direction, bool verbose = false);
void CalTrack(TVector3 sx3Pos, int anodeID, int cathodeID, bool verbose = false);
void CalTrack2(TVector3 sx3Pos, PWHitInfo hitInfo, double sigmaA = 0, double sigmaC = 0, bool verbose = false);
void Print(){
printf(" The nearest | Anode: %2d(%5.2f) Cathode: %2d(%5.2f)\n", hitInfo.nearestWire.first,
hitInfo.nearestDist.first,
hitInfo.nearestWire.second,
hitInfo.nearestDist.second);
printf(" The 2nd nearest | Anode: %2d(%5.2f) Cathode: %2d(%5.2f)\n", hitInfo.nextNearestWire.first,
hitInfo.nextNearestDist.first,
hitInfo.nextNearestWire.second,
hitInfo.nextNearestDist.second);
}
private:
PWHitInfo hitInfo;
TVector3 trackPos;
TVector3 trackVec;
const int nWire = 24;
const int wireShift = 3;
const float zLen = 380; //mm
const float radiusA = 37;
const float radiusC = 43;
double dAngle;
double anodeLength;
double cathodeLength;
std::vector<std::pair<TVector3,TVector3>> An; // the anode wire position vector in space
std::vector<std::pair<TVector3,TVector3>> Ca; // the cathode wire position vector in space
double Distance(TVector3 a1, TVector3 a2, TVector3 b1, TVector3 b2){
TVector3 na = a1 - a2;
TVector3 nb = b1 - b2;
TVector3 nd = (na.Cross(nb)).Unit();
return TMath::Abs(nd.Dot(a1-b2));
}
};
inline void PW::ClearHitInfo(){
hitInfo.Clear();
}
inline void PW::ConstructGeo(){
An.clear();
Ca.clear();
std::pair<TVector3, TVector3> p1; // anode
std::pair<TVector3, TVector3> q1; // cathode
//anode and cathode start at pos-Y axis and count in right-Hand
//anode wire shift is right-hand.
//cathode wire shift is left-hand.
for(int i = 0; i < nWire; i++ ){
// Anode rotate right-hand
p1.first.SetXYZ( radiusA * TMath::Cos( TMath::TwoPi() / nWire * (i) + TMath::PiOver2()),
radiusA * TMath::Sin( TMath::TwoPi() / nWire * (i) + TMath::PiOver2()),
zLen/2);
p1.second.SetXYZ( radiusA * TMath::Cos( TMath::TwoPi() / nWire * (i + wireShift) + TMath::PiOver2()),
radiusA * TMath::Sin( TMath::TwoPi() / nWire * (i + wireShift) + TMath::PiOver2()),
-zLen/2);
An.push_back(p1);
// Cathod rotate left-hand
q1.first.SetXYZ( radiusC * TMath::Cos( TMath::TwoPi() / nWire * (i) + TMath::PiOver2()),
radiusC * TMath::Sin( TMath::TwoPi() / nWire * (i) + TMath::PiOver2()),
zLen/2);
q1.second.SetXYZ( radiusC * TMath::Cos( TMath::TwoPi() / nWire * (i - wireShift) + TMath::PiOver2()),
radiusC * TMath::Sin( TMath::TwoPi() / nWire * (i - wireShift) + TMath::PiOver2()),
-zLen/2);
Ca.push_back(q1);
}
dAngle = wireShift * TMath::TwoPi() / nWire;
anodeLength = TMath::Sqrt( zLen*zLen + TMath::Power(2* radiusA * TMath::Sin(dAngle/2),2) );
cathodeLength = TMath::Sqrt( zLen*zLen + TMath::Power(2* radiusC * TMath::Sin(dAngle/2),2) );
}
inline void PW::FindWireID(TVector3 pos, TVector3 direction, bool verbose ){
hitInfo.Clear();
double phi = direction.Phi();
for( int i = 0; i < nWire; i++){
double disA = 99999999;
double phiS = An[i].first.Phi() - TMath::PiOver4();
double phiL = An[i].second.Phi() + TMath::PiOver4();
// printf("A%2d: %f %f | %f\n", i, phiS * TMath::RadToDeg(), phiL * TMath::RadToDeg(), phi * TMath::RadToDeg());
if( phi > 0 && phiS > phiL ) phiL = phiL + TMath::TwoPi();
if( phi < 0 && phiS > phiL ) phiS = phiS - TMath::TwoPi();
if( phiS < phi && phi < phiL) {
disA = Distance( pos, pos + direction, An[i].first, An[i].second);
if( disA < hitInfo.nearestDist.first ){
hitInfo.nearestDist.first = disA;
hitInfo.nearestWire.first = i;
}
}
double disC = 99999999;
phiS = Ca[i].second.Phi()- TMath::PiOver4();
phiL = Ca[i].first.Phi() + TMath::PiOver4();
// printf("C%2d: %f %f\n", i, phiS * TMath::RadToDeg(), phiL * TMath::RadToDeg());
if( phi > 0 && phiS > phiL ) phiL = phiL + TMath::TwoPi();
if( phi < 0 && phiS > phiL ) phiS = phiS - TMath::TwoPi();
if(phiS < phi && phi < phiL) {
disC = Distance( pos, pos + direction, Ca[i].first, Ca[i].second);
if( disC < hitInfo.nearestDist.second ){
hitInfo.nearestDist.second = disC;
hitInfo.nearestWire.second = i;
}
}
if(verbose) printf(" %2d | %8.2f, %8.2f\n", i, disA, disC);
}
//==== find the 2nd nearest wire
short anode1 = hitInfo.nearestWire.first;
short aaa1 = anode1 - 1; if( aaa1 < 0 ) aaa1 += nWire;
short aaa2 = (anode1 + 1) % nWire;
double haha1 = Distance( pos, pos + direction, An[aaa1].first, An[aaa1].second);
double haha2 = Distance( pos, pos + direction, An[aaa2].first, An[aaa2].second);
if( haha1 < haha2){
hitInfo.nextNearestWire.first = aaa1;
hitInfo.nextNearestDist.first = haha1;
}else{
hitInfo.nextNearestWire.first = aaa2;
hitInfo.nextNearestDist.first = haha2;
}
short cathode1 = hitInfo.nearestWire.second;
short ccc1 = cathode1 - 1; if( ccc1 < 0 ) ccc1 += nWire;
short ccc2 = (cathode1 + 1) % nWire;
haha1 = Distance( pos, pos + direction, Ca[ccc1].first, Ca[ccc1].second);
haha2 = Distance( pos, pos + direction, Ca[ccc2].first, Ca[ccc2].second);
if( haha1 < haha2){
hitInfo.nextNearestWire.second = ccc1;
hitInfo.nextNearestDist.second = haha1;
}else{
hitInfo.nextNearestWire.second = ccc2;
hitInfo.nextNearestDist.second = haha2;
}
if( verbose ) Print();
}
inline void PW::CalTrack(TVector3 sx3Pos, int anodeID, int cathodeID, bool verbose){
trackPos = sx3Pos;
TVector3 n1 = (An[anodeID].first - An[anodeID].second).Cross((sx3Pos - An[anodeID].second)).Unit();
TVector3 n2 = (Ca[cathodeID].first - Ca[cathodeID].second).Cross((sx3Pos - Ca[cathodeID].second)).Unit();
// if the handiness of anode and cathode revered, it should be n2 cross n1
trackVec = (n2.Cross(n1)).Unit();
if( verbose ) printf("Theta, Phi = %f, %f \n", trackVec.Theta() *TMath::RadToDeg(), trackVec.Phi()*TMath::RadToDeg());
}
inline void PW::CalTrack2(TVector3 sx3Pos, PWHitInfo hitInfo, double sigmaA, double sigmaC, bool verbose){
trackPos = sx3Pos;
double p1 = TMath::Abs(hitInfo.nearestDist.first + gRandom->Gaus(0, sigmaA));
double p2 = TMath::Abs(hitInfo.nextNearestDist.first + gRandom->Gaus(0, sigmaA));
double fracA = p1 / (p1 + p2);
short anodeID1 = hitInfo.nearestWire.first;
short anodeID2 = hitInfo.nextNearestWire.first;
TVector3 shiftA1 = (An[anodeID2].first - An[anodeID1].first) * fracA;
TVector3 shiftA2 = (An[anodeID2].second - An[anodeID1].second) * fracA;
double q1 = TMath::Abs(hitInfo.nearestDist.second + gRandom->Gaus(0, sigmaC));
double q2 = TMath::Abs(hitInfo.nextNearestDist.second + gRandom->Gaus(0, sigmaC));
double fracC = q1 / (q1 + q2);
short cathodeID1 = hitInfo.nearestWire.second;
short cathodeID2 = hitInfo.nextNearestWire.second;
TVector3 shiftC1 = (Ca[cathodeID2].first - Ca[cathodeID1].first) * fracC;
TVector3 shiftC2 = (Ca[cathodeID2].second - Ca[cathodeID1].second) * fracC;
TVector3 a1 = An[anodeID1].first + shiftA1;
TVector3 a2 = An[anodeID1].second + shiftA2;
TVector3 c1 = Ca[cathodeID1].first + shiftC1;
TVector3 c2 = Ca[cathodeID1].second + shiftC2;
TVector3 n1 = (a1 - a2).Cross((sx3Pos - a2)).Unit();
TVector3 n2 = (c1 - c2).Cross((sx3Pos - c2)).Unit();
// if the handiness of anode and cathode revered, it should be n2 cross n1
trackVec = (n2.Cross(n1)).Unit();
if( verbose ) printf("Theta, Phi = %f, %f \n", trackVec.Theta() *TMath::RadToDeg(), trackVec.Phi()*TMath::RadToDeg());
}
inline double PW::GetZ0(){
double x = trackPos.X();
double y = trackPos.Y();
double rho = TMath::Sqrt(x*x + y*y);
double theta = trackVec.Theta();
return trackPos.Z() - rho / TMath::Tan(theta);
}
#endif

View File

@ -103,8 +103,8 @@ void ANASEN_model(int anodeID1 = -1, int anodeID2 = -1, int cathodeID1 = -1, int
new TGeoRotation("rot1", 360/nSX3 * (i + 0.5), 0., 0.)));
}
const int qqqR1 = 50;
const int qqqR2 = 100;
const int qqqR1 = 10;
const int qqqR2 = 50;
TGeoVolume *qqq = geom->MakeTubs("qqq", Al, qqqR1, qqqR2, 0.5, 5, 85);
qqq->SetLineColor(7);
for( int i = 0; i < 4; i++){

View File

@ -82,7 +82,7 @@ public:
void ConstructGeo();
void FindWireID(TVector3 pos, TVector3 direction, bool verbose = false);
void CalTrack(TVector3 sx3Pos, int anodeID, int cathodeID, bool verbose = false);
void CalTrack2(TVector3 sx3Pos, TVector3 anodeInt, bool verbose = false);
void CalTrack2(TVector3 sx3Pos, PWHitInfo hitInfo, double sigmaA = 0, double sigmaC = 0, bool verbose = false);
void Print()
{
@ -154,20 +154,15 @@ inline void PW::ConstructGeo()
-zLen / 2);
An.push_back(p1);
// Cathod rotate left-hand with the 3 wire offset accounted for (+1 from the calculated offset from the PC coincidence spectrum)
q1.first.SetXYZ(radiusC * TMath::Cos(TMath::TwoPi() / nWire * (i + wireShift + 1) + TMath::PiOver2()),
radiusC * TMath::Sin(TMath::TwoPi() / nWire * (i + wireShift + 1) + TMath::PiOver2()),
// Cathod rotate left-hand
q1.first.SetXYZ(radiusC * TMath::Cos(TMath::TwoPi() / nWire * (i) + TMath::PiOver2()),
radiusC * TMath::Sin(TMath::TwoPi() / nWire * (i) + TMath::PiOver2()),
zLen / 2);
q1.second.SetXYZ(radiusC * TMath::Cos(TMath::TwoPi() / nWire * (i + 1) + TMath::PiOver2()),
radiusC * TMath::Sin(TMath::TwoPi() / nWire * (i + 1) + TMath::PiOver2()),
q1.second.SetXYZ(radiusC * TMath::Cos(TMath::TwoPi() / nWire * (i - wireShift) + TMath::PiOver2()),
radiusC * TMath::Sin(TMath::TwoPi() / nWire * (i - wireShift) + TMath::PiOver2()),
-zLen / 2);
Ca.push_back(q1);
}
// correcting for the fact that the order of the cathode wires is reversed
std::reverse(Ca.begin(), Ca.end());
// adjusting for the 3 wire offset, the rbegin and rend are used as the rotation of the wires is done in the opposite direction i.e. 1,2,3 -> 3,1,2
// NOT NECESSARY ANY MORE, HAS BEEN IMCORPORATED INTO THE WIREOFFSET IN THE BEGINNING
// std::rotate(Ca.rbegin(), Ca.rbegin() + 4, Ca.rend());
dAngle = wireShift * TMath::TwoPi() / nWire;
anodeLength = TMath::Sqrt(zLen * zLen + TMath::Power(2 * radiusA * TMath::Sin(dAngle / 2), 2));
@ -283,22 +278,41 @@ inline void PW::CalTrack(TVector3 sx3Pos, int anodeID, int cathodeID, bool verbo
printf("Theta, Phi = %f, %f \n", trackVec.Theta() * TMath::RadToDeg(), trackVec.Phi() * TMath::RadToDeg());
}
inline void PW::CalTrack2(TVector3 siPos, TVector3 anodeInt, bool verbose)
inline void PW::CalTrack2(TVector3 sx3Pos, PWHitInfo hitInfo, double sigmaA, double sigmaC, bool verbose)
{
float mx, my;
double z;
mx = siPos.X() / (siPos.X() - anodeInt.X());
my = siPos.Y() / (siPos.Y() - anodeInt.Y());
z=siPos.Z() + mx * (anodeInt.Z() - siPos.Z());
// if (mx == my)
{
trackVec=TVector3(0,0,z);
}
trackPos = sx3Pos;
double p1 = TMath::Abs(hitInfo.nearestDist.first + gRandom->Gaus(0, sigmaA));
double p2 = TMath::Abs(hitInfo.nextNearestDist.first + gRandom->Gaus(0, sigmaA));
double fracA = p1 / (p1 + p2);
short anodeID1 = hitInfo.nearestWire.first;
short anodeID2 = hitInfo.nextNearestWire.first;
TVector3 shiftA1 = (An[anodeID2].first - An[anodeID1].first) * fracA;
TVector3 shiftA2 = (An[anodeID2].second - An[anodeID1].second) * fracA;
double q1 = TMath::Abs(hitInfo.nearestDist.second + gRandom->Gaus(0, sigmaC));
double q2 = TMath::Abs(hitInfo.nextNearestDist.second + gRandom->Gaus(0, sigmaC));
double fracC = q1 / (q1 + q2);
short cathodeID1 = hitInfo.nearestWire.second;
short cathodeID2 = hitInfo.nextNearestWire.second;
TVector3 shiftC1 = (Ca[cathodeID2].first - Ca[cathodeID1].first) * fracC;
TVector3 shiftC2 = (Ca[cathodeID2].second - Ca[cathodeID1].second) * fracC;
TVector3 a1 = An[anodeID1].first + shiftA1;
TVector3 a2 = An[anodeID1].second + shiftA2;
TVector3 c1 = Ca[cathodeID1].first + shiftC1;
TVector3 c2 = Ca[cathodeID1].second + shiftC2;
TVector3 n1 = (a1 - a2).Cross((sx3Pos - a2)).Unit();
TVector3 n2 = (c1 - c2).Cross((sx3Pos - c2)).Unit();
// if the handiness of anode and cathode revered, it should be n2 cross n1
trackVec = (n2.Cross(n1)).Unit();
if (verbose)
printf("X slope = %f and Y slope = %f \n", mx, my);
printf("Theta, Phi = %f, %f \n", trackVec.Theta() * TMath::RadToDeg(), trackVec.Phi() * TMath::RadToDeg());
}
inline double PW::GetZ0()
@ -309,7 +323,7 @@ inline double PW::GetZ0()
double rho = TMath::Sqrt(x * x + y * y);
double theta = trackVec.Theta();
return trackVec.Z();
return trackPos.Z() - rho / TMath::Tan(theta);
}
#endif

View File

@ -1,414 +0,0 @@
#ifndef HISTPLOTTER_H
#define HISTPLOTTER_H
#include <TCanvas.h>
#include <TROOT.h>
#include <TSystem.h>
#include <TStyle.h>
#include <iostream>
#include <TFile.h>
#include <TMemFile.h>
#include <TH1.h>
#include <TH2.h>
#include <TCutG.h>
#include <signal.h>
#include <cstdlib>
#include <utility>
#include <fstream>
#include <sstream>
#include <unordered_map>
#include <set>
#include <TGraphErrors.h>
class HistPlotter {
private:
long long barrier_count, barrier_limit; //meant to keep track of how often to call FillN() on histograms
enum {TFILE, TMEMFILE} filetype;
std::unordered_map<std::string,TObject*> oMap; //!< Maps std::string to all TH1, TH2 objects in the class
std::unordered_map<std::string,TObject*> cutsMap; //!< Maps std::string to TCutG objects held by the class
std::set<std::string> folderList; //!< List of all folder names used to nest objects
std::unordered_map<TObject*,std::string> foldersForObjects; //!< Map that returns the folder corresponding to the object whose pointer is specified
TFile *ofile=nullptr; //!< TFile pointer for the output file
TMemFile *omfile=nullptr; //!< TFile pointer for the output memfile
//Caches to permit FillN() calls
std::unordered_map<std::string, std::vector<double>> onedimcache;
std::unordered_map<std::string, std::pair<std::vector<double>, std::vector<double>>> twodimcache;
inline void FillN_All_Histograms();
public:
HistPlotter(std::string outfile, std::string type);
inline void FlushToDisk(); //!< Writes all objects to file before closing, nesting objects in folders as is found necessary
inline void PrintObjects(); //!< Dump objects to std::cout for inspection
inline void ReadCuts(std::string);
inline TCutG* FindCut(std::string cut) {
return static_cast<TCutG*>(cutsMap.at(cut));
}
inline void set_barrier_limit(long long limit) { barrier_limit = limit; }
inline void barrier_increment() {
barrier_count++;
if(barrier_count == barrier_limit) {
FillN_All_Histograms();
barrier_count=0;
}
}
/*! \fn void FindCut()
\brief
- Searches for a cut by name 'cut' in the internal list of cuts 'cutsMap'. Ugly fails (via unresolved at()) if such a cut isn't found.
\param filename - name of the plainxtext file containing the cut file locations and identifiers
\return Pointer to the TCutG object that matches the name. Very useful to use this as plotter.FindCut("protonbarrelpid")->IsInside(deltaE, E) for instance.
*/
inline void SetNewTitle(std::string name, std::string title) {
auto result = oMap.find(name); //result is an iterator
if(result==oMap.end()) return; //no warnings, could be changed in future
else
static_cast<TNamed*>(oMap.at(name))->SetTitle(title.c_str()); // set new title
}
//Smart functions that create a new histogram if it doesn't exist.
inline void FillGraph(const std::string &name, float valuex, float valuey, float errx=0, float erry=0);
inline void Fill1D(const std::string& name,int nbinsx, float xlow, float xhigh, float value);
inline void Fill2D(const std::string& name,int nbinsx, float xlow, float xhigh
,int nbinsy, float ylow, float yhigh, float valuex, float valuey);
inline void Fill1D(const std::string& name,int nbinsx, float xlow, float xhigh, float value, const std::string& folder);
inline void Fill2D(const std::string& name,int nbinsx, float xlow, float xhigh
,int nbinsy, float ylow, float yhigh, float valuex, float valuey, const std::string& folder);
//TObject* findObject(std::string key);
};
HistPlotter::HistPlotter(std::string outfile, std::string type="") {
/*!
\brief Constructor. Opens a TFile instance with the specified filename
\param outfile : std::string that holds the desired output ROOT filename
\return None
*/
if(type=="" || type == "TFILE") {
ofile = new TFile(outfile.c_str(),"recreate");
filetype = TFILE;
} else if(type =="TMEMFILE") {
omfile = new TMemFile(outfile.c_str(),"recreate");
filetype=TMEMFILE;
} else {
std::cout << "Unknown type "<< type << " specified for HistPlotter (use \"TFILE\" or \"TMEMFILE\"), using default \"TFILE\" " << std::endl;
ofile = new TFile(outfile.c_str(),"recreate");
filetype = TFILE;
}
barrier_count=0;
barrier_limit=1000;
}
void HistPlotter::FillN_All_Histograms() {
for(auto it=oMap.begin(); it!=oMap.end(); it++ ) {
//it->first is std::string 'name', it->second is the TObject
if(it->second->InheritsFrom("TH1F")) {
//FillN(size, array-of-doubles, array-of-weights); //we set array-of-weights to (1,1,1,.. (size)
static_cast<TH1F*>(it->second)->FillN(onedimcache[it->first].size(), //size
onedimcache[it->first].data(), //array
std::vector<double>(onedimcache[it->first].size(),1.0).data()); //weight of ones
onedimcache[it->first].clear();
} else if(it->second->InheritsFrom("TH2F")) {
//FillN(size, array-of-doubles, array-of-weights); //we set array-of-weights to (1,1,1,.. (size))
static_cast<TH2F*>(it->second)->FillN(twodimcache[it->first].first.size(), //size
twodimcache[it->first].first.data(), //x array
twodimcache[it->first].second.data(), //y array
std::vector<double>(twodimcache[it->first].first.size(),1.0).data()); //weight of ones
twodimcache[it->first].first.clear();
twodimcache[it->first].second.clear();
}
}
std::cout << "." << std::endl;
}
void HistPlotter::FlushToDisk() {
/*! \fn void FlushToDisk()
\brief Function that can be used at any point to exit smoothly by saving all ROOT objects in memory
to the output file before closing it. Obeys the binding of histograms to separate folders, if so specified.
\return No return -- void
*/
if(filetype==TMEMFILE && omfile) {
std::cout << "Not flushing a TMemfile .. exiting .." << std::endl;
delete omfile;
return;
}
if(ofile->IsZombie() || !ofile) {
std::cerr << "Output file is zombie, finishing up without writing to disk!" << std::endl;
return;
}
FillN_All_Histograms();
for(auto it=oMap.begin(); it!=oMap.end(); it++ ) {
//omap maps: name(first) to object address(second).
// foldersForObjects maps: object address(first) to foldername(second)
auto result = foldersForObjects.find(it->second); //returns <TObject* histogram,std::string foldername> pair if found
if(result!=foldersForObjects.end()) { //we try to create folder if needed and cd to it
ofile->mkdir(result->second.c_str(),"",kTRUE); // args: name, title, returnExistingDirectory
ofile->cd(result->second.c_str());
} else {
ofile->cd(); //toplevel for all default histograms. Default setting
}
it->second->Write();
}
//Create a directory for all cuts, and save all cuts in them
ofile->mkdir("gCUTS","",kTRUE);
ofile->cd("gCUTS");
for(auto it=cutsMap.begin(); it!=cutsMap.end(); it++) {
(static_cast<TNamed*>(it->second))->SetName(it->first.c_str());
it->second->Write();
}
ofile->Close();
std::cout << "Wrote " << oMap.size() << " histograms to TFile " << std::string(ofile->GetName()) << std::endl;
}
void HistPlotter::FillGraph(const std::string& name, float valuex, float valuey, float errx, float erry) {
/*! \fn void FillGraph()
\brief
- Creates a TGraphError in memory with name 'name' if it doesn't exist, and fills it with valuex, valuey
- Writes present state to disk and fails with return value -1 if the name clashes with another object that's not of type TGraph*
\param name name of the TGraph
\param valuex The xvalue
\param valuey The yvalue
\param errx The x error
\param erry The y error
\return No return void
*/
auto result = oMap.find(name);
if(result==oMap.end()) {
TGraphErrors *tempG = new TGraphErrors();
tempG->SetName(name.c_str());
oMap.insert(std::make_pair(name,static_cast<TObject*>(tempG)));
}
if(!oMap.at(name)->InheritsFrom("TGraphErrors")) {
std::cerr << "Object " << name << " refers to something other than a TGraph*, not filling it hence!" << std::endl;
std::cerr << "Abort.." << std::endl;
FlushToDisk();
exit(-1);
}
// static_cast<TGraphErrors*>(oMap.at(name))->AddPointError(valuex,valuey,errx,erry);
}
void HistPlotter::Fill1D(const std::string& name, int nbinsx, float xlow, float xhigh, float value) {
/*! \fn void Fill1D()
\brief
- Creates a TH1F in memory with name 'name' if it doesn't exist, and fills it with valuex, valuey
- Writes present state to disk and fails with return value -1 if the name clashes with another object that's not of type TH1*
\param name name of the TH1F histogram
\param nbinsx Number of bins in the histogram
\param xlow Lower limit on x-axis
\param xhigh Upper limit on x-axis
\param value The bin corresponding to value in (nbinsx, xlow, xhigh) is incremented by 1
\return No return void
*/
auto result = oMap.find(name); //result is an iterator
if(result==oMap.end()) {
TH1F* temp1D = new TH1F(name.c_str(), name.c_str(), nbinsx, xlow, xhigh);
oMap.insert(std::make_pair(name,static_cast<TObject*>(temp1D)));
onedimcache.insert(std::make_pair(name, std::vector<double>()));
onedimcache[name].reserve(16384);
} else if(foldersForObjects.find(oMap.at(name))!=foldersForObjects.end()) { //shouldn't have a folder associated with it
std::cerr << "Object " << name << " already registered at " << foldersForObjects[oMap[name]] << ", choose a different name for the histogram to be stored in toplevel .." << std::endl;
}
//Check if the string 'name' maps to a 1D hist. If there's any other object by this name raise issue
if(!oMap.at(name)->InheritsFrom("TH1F")) {
std::cerr << "Object " << name << " refers to something other than a TH1*, not filling it hence!" << std::endl;
std::cerr << "Abort.." << std::endl;
FlushToDisk();
exit(-1);
}
onedimcache[name].emplace_back(value);
//static_cast<TH1F*>(oMap.at(name))->Fill(value);
}
void HistPlotter::Fill1D(const std::string& name, int nbinsx, float xlow, float xhigh, float value, const std::string& foldername) {
/*! \fn void Fill1D()
\brief
- Creates a TH1F in memory with name 'name' if it doesn't exist, and fills it with valuex, valuey
- Writes present state to disk and fails with return value -1 if the name clashes with another object that's not of type TH1*
- Remembers the foldername this particular histogram maps to, if provided. If not, defaults to toplevel.
\param name name of the TH1F histogram
\param nbinsx Number of bins in the histogram
\param xlow Lower limit on x-axis
\param xhigh Upper limit on x-axis
\param value The bin corresponding to value in (nbinsx, xlow, xhigh) is incremented by 1
\param foldername Name of the folder to put this histogram into. Defaults to toplevel if left empty
\return No return -- void
*/
auto result = oMap.find(name); //result is an iterator
if(result==oMap.end()) {
TH1F* temp1D = new TH1F(name.c_str(), name.c_str(), nbinsx, xlow, xhigh);
oMap.insert(std::make_pair(name,static_cast<TObject*>(temp1D)));
onedimcache.insert(std::make_pair(name, std::vector<double>()));
onedimcache[name].reserve(16384);
if(foldername!="") {
if(folderList.find(foldername)==folderList.end()) {
folderList.insert(foldername);
}
foldersForObjects.insert(std::make_pair(static_cast<TObject*>(temp1D),foldername));
}
} else {
//object is present in map, but we enforce unique names
//it must already have a folder attached to it
if(foldersForObjects.find(oMap.at(name))==foldersForObjects.end()) {
std::cerr << "Object " << name << " already registered at toplevel, choose a different name for the histogram to be stored in " << foldername << " folder .." << std::endl;
} else if(foldersForObjects[oMap[name]]!=foldername) {
std::cerr << "Object " << name << " already registered at " << foldersForObjects[oMap[name]] << ", choose a different name for the histogram to be stored in " << foldername << " folder .." << std::endl;
}
}
//Check if the string 'name' maps to a 1D hist. If there's any other object by this name raise issue
if(!oMap.at(name)->InheritsFrom("TH1F")) {
std::cerr << "Object " << name << " refers to something other than a TH1*, not filling it hence!" << std::endl;
std::cerr << "Abort.." << std::endl;
FlushToDisk();
exit(-1);
}
onedimcache[name].emplace_back(value);
//static_cast<TH1F*>(oMap.at(name))->Fill(value);
}
void HistPlotter::Fill2D(const std::string& name, int nbinsx, float xlow, float xhigh, int nbinsy, float ylow, float yhigh, float valuex, float valuey) {
/*! \fn void Fill2D()
\brief
- Creates a TH2F in memory with name 'name' if it doesn't exist, and fills it with valuex, valuey
- Writes present state to disk and fails with return value -1 if the name clashes with another object that's not of type TH2*
\param name name of the TH1F histogram
\param nbinsx Number of xbins in the histogram
\param xlow Lower limit on x-axis
\param xhigh Upper limit on x-axis
\param nbinsy Number of ybins in the histogram
\param ylow Lower limit on y-axis
\param yhigh Upper limit on y-axis
\param valuex
\param valuey The bin corresponding to (valuex, valuey) in (nbinsx, xlow, xhigh, ybinsx, ylow, yhigh) is incremented by 1
\return No return -- void
*/
auto result = oMap.find(name); //result is an iterator
if(result==oMap.end()) {
TH2F* temp2D = new TH2F(name.c_str(), name.c_str(), nbinsx, xlow, xhigh, nbinsy, ylow, yhigh);
oMap.insert(std::make_pair(name,static_cast<TObject*>(temp2D)));
twodimcache.insert(std::make_pair(name, std::make_pair(std::vector<double>(),std::vector<double>())));
twodimcache[name].first.reserve(16384);
twodimcache[name].second.reserve(16384);
} else if(foldersForObjects.find(oMap.at(name))!=foldersForObjects.end()) { //shouldn't have a folder associated with it
std::cerr << "Object " << name << " already registered at " << foldersForObjects[oMap[name]] << ", choose a different name for the histogram to be stored in toplevel .." << std::endl;
}
//Check if the string 'name' maps to a 1D hist. If there's any other object by this name raise issue
if(!oMap.at(name)->InheritsFrom("TH2F")) {
std::cerr << "Object " << name << " refers to something other than a TH2*, not filling it hence!" << std::endl;
std::cerr << "Abort.." << std::endl;
FlushToDisk();
exit(-1);
}
twodimcache[name].first.emplace_back(valuex);
twodimcache[name].second.emplace_back(valuey);
//static_cast<TH2F*>(oMap.at(name))->Fill(valuex,valuey);
}
void HistPlotter::Fill2D(const std::string& name, int nbinsx, float xlow, float xhigh, int nbinsy, float ylow, float yhigh, float valuex, float valuey, const std::string& foldername) {
/*! \fn void Fill2D()
\brief
- Creates a TH2F in memory with name 'name' if it doesn't exist, and fills it with valuex, valuey
- Writes present state to disk and fails with return value -1 if the name clashes with another object that's not of type TH2*
- Remembers the foldername this particular histogram maps to, if provided. If not defaults to toplevel
\param name name of the TH1F histogram
\param nbinsx Number of xbins in the histogram
\param xlow Lower limit on x-axis
\param xhigh Upper limit on x-axis
\param nbinsy Number of ybins in the histogram
\param ylow Lower limit on y-axis
\param yhigh Upper limit on y-axis
\param valuex
\param valuey The bin corresponding to (valuex, valuey) in (nbinsx, xlow, xhigh, ybinsx, ylow, yhigh) is incremented by 1
\param foldername Name of the folder to put this histogram into. Defaults to toplevel if left empty
\return No return -- void
*/
auto result = oMap.find(name); //result is an iterator
if(result==oMap.end()) {
TH2F* temp2D = new TH2F(name.c_str(), name.c_str(), nbinsx, xlow, xhigh, nbinsy, ylow, yhigh);
oMap.insert(std::make_pair(name,static_cast<TObject*>(temp2D)));
twodimcache.insert(std::make_pair(name, std::make_pair(std::vector<double>(),std::vector<double>())));
twodimcache[name].first.reserve(16384);
twodimcache[name].second.reserve(16384);
if(foldername!="") {
if(folderList.find(foldername)==folderList.end()) {
folderList.insert(foldername);
}
foldersForObjects.insert(std::make_pair(static_cast<TObject*>(temp2D),foldername));
}
} else {
//object is present in map, but we enforce unique names
//it must already have a folder attached to it
if(foldersForObjects.find(oMap.at(name))==foldersForObjects.end()) {
std::cerr << "Object " << name << " already registered at toplevel, choose a different name for the histogram to be stored in " << foldername << " folder .." << std::endl;
} else if(foldersForObjects[oMap.at(name)]!=foldername) {
std::cerr << "Object " << name << " already registered at " << foldersForObjects[oMap[name]] << ", choose a different name for the histogram to be stored in " << foldername << " folder .." << std::endl;
}
}
//Check if the string 'name' maps to a 1D hist. If there's any other object by this name raise issue
if(!oMap.at(name)->InheritsFrom("TH2F")) {
std::cerr << "Object " << name << " refers to something other than a TH2*, not filling it hence!" << std::endl;
std::cerr << "Abort.." << std::endl;
FlushToDisk();
exit(-1);
}
twodimcache[name].first.emplace_back(valuex);
twodimcache[name].second.emplace_back(valuey);
//static_cast<TH2F*>(oMap.at(name))->Fill(valuex,valuey);
}
void HistPlotter::ReadCuts(std::string filename) {
/*! \fn void ReadCuts()
\brief Reads a list of cuts from a file. The file must have the format below, two columns
- Column#1 - path to a file that contains a single TCutG object named "CUTG", the default name in ROOT.
- Column#2 - The identifier name you plan to use in the code, like 'protonbarrelpid' or something, that will be searched by FindCut()
\param filename name of the plainxtext file containing the cut file locations and identifiers
\return No return -- void
*/
std::ifstream infile;
infile.open(filename);
std::string cutfilename, cutname;
for(std::string line; std::getline(infile, line); ) {
if(line.size()!=0 && line[0]=='#')
; //don't do anything with '#' lines
else {
std::stringstream ss(line);
ss>>cutfilename>>cutname;
TFile f(cutfilename.c_str());
if(f.IsZombie()) {
std::cerr << "Cannot open cutfile " << cutfilename << " .. skipping.." << std::endl;
continue;
}
TCutG *cut = (TCutG*)(f.Get("CUTG"));
cutsMap.insert(std::make_pair(cutname,static_cast<TObject*>(cut)));
f.Close();
} //else
}//for loop
infile.close();
}
void HistPlotter::PrintObjects() {
/*
void PrintObjects()
Prints the contents of the unordered_maps oMap and cutsMap to facilitate debugging
*/
std::cout << "Type | Name " << std::endl;
std::cout << "---- | --------------------- " << std::endl;
for(auto it=oMap.begin(); it!=oMap.end(); it++ ) {
std::cout << it->second->ClassName() << " | "<< it->first << std::endl;
}
for(auto it=cutsMap.begin(); it!=cutsMap.end(); it++ ) {
std::cout << it->second->ClassName() << " | "<< it->first << std::endl;
}
std::cout << "---- | --------------------- " << std::endl;
}
#endif

View File

@ -1,674 +0,0 @@
GNU GENERAL PUBLIC LICENSE
Version 3, 29 June 2007
Copyright (C) 2007 Free Software Foundation, Inc. <https://fsf.org/>
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.
Preamble
The GNU General Public License is a free, copyleft license for
software and other kinds of works.
The licenses for most software and other practical works are designed
to take away your freedom to share and change the works. By contrast,
the GNU General Public License is intended to guarantee your freedom to
share and change all versions of a program--to make sure it remains free
software for all its users. We, the Free Software Foundation, use the
GNU General Public License for most of our software; it applies also to
any other work released this way by its authors. You can apply it to
your programs, too.
When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
them if you wish), that you receive source code or can get it if you
want it, that you can change the software or use pieces of it in new
free programs, and that you know you can do these things.
To protect your rights, we need to prevent others from denying you
these rights or asking you to surrender the rights. Therefore, you have
certain responsibilities if you distribute copies of the software, or if
you modify it: responsibilities to respect the freedom of others.
For example, if you distribute copies of such a program, whether
gratis or for a fee, you must pass on to the recipients the same
freedoms that you received. You must make sure that they, too, receive
or can get the source code. And you must show them these terms so they
know their rights.
Developers that use the GNU GPL protect your rights with two steps:
(1) assert copyright on the software, and (2) offer you this License
giving you legal permission to copy, distribute and/or modify it.
For the developers' and authors' protection, the GPL clearly explains
that there is no warranty for this free software. For both users' and
authors' sake, the GPL requires that modified versions be marked as
changed, so that their problems will not be attributed erroneously to
authors of previous versions.
Some devices are designed to deny users access to install or run
modified versions of the software inside them, although the manufacturer
can do so. This is fundamentally incompatible with the aim of
protecting users' freedom to change the software. The systematic
pattern of such abuse occurs in the area of products for individuals to
use, which is precisely where it is most unacceptable. Therefore, we
have designed this version of the GPL to prohibit the practice for those
products. If such problems arise substantially in other domains, we
stand ready to extend this provision to those domains in future versions
of the GPL, as needed to protect the freedom of users.
Finally, every program is threatened constantly by software patents.
States should not allow patents to restrict development and use of
software on general-purpose computers, but in those that do, we wish to
avoid the special danger that patents applied to a free program could
make it effectively proprietary. To prevent this, the GPL assures that
patents cannot be used to render the program non-free.
The precise terms and conditions for copying, distribution and
modification follow.
TERMS AND CONDITIONS
0. Definitions.
"This License" refers to version 3 of the GNU General Public License.
"Copyright" also means copyright-like laws that apply to other kinds of
works, such as semiconductor masks.
"The Program" refers to any copyrightable work licensed under this
License. Each licensee is addressed as "you". "Licensees" and
"recipients" may be individuals or organizations.
To "modify" a work means to copy from or adapt all or part of the work
in a fashion requiring copyright permission, other than the making of an
exact copy. The resulting work is called a "modified version" of the
earlier work or a work "based on" the earlier work.
A "covered work" means either the unmodified Program or a work based
on the Program.
To "propagate" a work means to do anything with it that, without
permission, would make you directly or secondarily liable for
infringement under applicable copyright law, except executing it on a
computer or modifying a private copy. Propagation includes copying,
distribution (with or without modification), making available to the
public, and in some countries other activities as well.
To "convey" a work means any kind of propagation that enables other
parties to make or receive copies. Mere interaction with a user through
a computer network, with no transfer of a copy, is not conveying.
An interactive user interface displays "Appropriate Legal Notices"
to the extent that it includes a convenient and prominently visible
feature that (1) displays an appropriate copyright notice, and (2)
tells the user that there is no warranty for the work (except to the
extent that warranties are provided), that licensees may convey the
work under this License, and how to view a copy of this License. If
the interface presents a list of user commands or options, such as a
menu, a prominent item in the list meets this criterion.
1. Source Code.
The "source code" for a work means the preferred form of the work
for making modifications to it. "Object code" means any non-source
form of a work.
A "Standard Interface" means an interface that either is an official
standard defined by a recognized standards body, or, in the case of
interfaces specified for a particular programming language, one that
is widely used among developers working in that language.
The "System Libraries" of an executable work include anything, other
than the work as a whole, that (a) is included in the normal form of
packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that
Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A
"Major Component", in this context, means a major essential component
(kernel, window system, and so on) of the specific operating system
(if any) on which the executable work runs, or a compiler used to
produce the work, or an object code interpreter used to run it.
The "Corresponding Source" for a work in object code form means all
the source code needed to generate, install, and (for an executable
work) run the object code and to modify the work, including scripts to
control those activities. However, it does not include the work's
System Libraries, or general-purpose tools or generally available free
programs which are used unmodified in performing those activities but
which are not part of the work. For example, Corresponding Source
includes interface definition files associated with source files for
the work, and the source code for shared libraries and dynamically
linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those
subprograms and other parts of the work.
The Corresponding Source need not include anything that users
can regenerate automatically from other parts of the Corresponding
Source.
The Corresponding Source for a work in source code form is that
same work.
2. Basic Permissions.
All rights granted under this License are granted for the term of
copyright on the Program, and are irrevocable provided the stated
conditions are met. This License explicitly affirms your unlimited
permission to run the unmodified Program. The output from running a
covered work is covered by this License only if the output, given its
content, constitutes a covered work. This License acknowledges your
rights of fair use or other equivalent, as provided by copyright law.
You may make, run and propagate covered works that you do not
convey, without conditions so long as your license otherwise remains
in force. You may convey covered works to others for the sole purpose
of having them make modifications exclusively for you, or provide you
with facilities for running those works, provided that you comply with
the terms of this License in conveying all material for which you do
not control copyright. Those thus making or running the covered works
for you must do so exclusively on your behalf, under your direction
and control, on terms that prohibit them from making any copies of
your copyrighted material outside their relationship with you.
Conveying under any other circumstances is permitted solely under
the conditions stated below. Sublicensing is not allowed; section 10
makes it unnecessary.
3. Protecting Users' Legal Rights From Anti-Circumvention Law.
No covered work shall be deemed part of an effective technological
measure under any applicable law fulfilling obligations under article
11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such
measures.
When you convey a covered work, you waive any legal power to forbid
circumvention of technological measures to the extent such circumvention
is effected by exercising rights under this License with respect to
the covered work, and you disclaim any intention to limit operation or
modification of the work as a means of enforcing, against the work's
users, your or third parties' legal rights to forbid circumvention of
technological measures.
4. Conveying Verbatim Copies.
You may convey verbatim copies of the Program's source code as you
receive it, in any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate copyright notice;
keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code;
keep intact all notices of the absence of any warranty; and give all
recipients a copy of this License along with the Program.
You may charge any price or no price for each copy that you convey,
and you may offer support or warranty protection for a fee.
5. Conveying Modified Source Versions.
You may convey a work based on the Program, or the modifications to
produce it from the Program, in the form of source code under the
terms of section 4, provided that you also meet all of these conditions:
a) The work must carry prominent notices stating that you modified
it, and giving a relevant date.
b) The work must carry prominent notices stating that it is
released under this License and any conditions added under section
7. This requirement modifies the requirement in section 4 to
"keep intact all notices".
c) You must license the entire work, as a whole, under this
License to anyone who comes into possession of a copy. This
License will therefore apply, along with any applicable section 7
additional terms, to the whole of the work, and all its parts,
regardless of how they are packaged. This License gives no
permission to license the work in any other way, but it does not
invalidate such permission if you have separately received it.
d) If the work has interactive user interfaces, each must display
Appropriate Legal Notices; however, if the Program has interactive
interfaces that do not display Appropriate Legal Notices, your
work need not make them do so.
A compilation of a covered work with other separate and independent
works, which are not by their nature extensions of the covered work,
and which are not combined with it such as to form a larger program,
in or on a volume of a storage or distribution medium, is called an
"aggregate" if the compilation and its resulting copyright are not
used to limit the access or legal rights of the compilation's users
beyond what the individual works permit. Inclusion of a covered work
in an aggregate does not cause this License to apply to the other
parts of the aggregate.
6. Conveying Non-Source Forms.
You may convey a covered work in object code form under the terms
of sections 4 and 5, provided that you also convey the
machine-readable Corresponding Source under the terms of this License,
in one of these ways:
a) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by the
Corresponding Source fixed on a durable physical medium
customarily used for software interchange.
b) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by a
written offer, valid for at least three years and valid for as
long as you offer spare parts or customer support for that product
model, to give anyone who possesses the object code either (1) a
copy of the Corresponding Source for all the software in the
product that is covered by this License, on a durable physical
medium customarily used for software interchange, for a price no
more than your reasonable cost of physically performing this
conveying of source, or (2) access to copy the
Corresponding Source from a network server at no charge.
c) Convey individual copies of the object code with a copy of the
written offer to provide the Corresponding Source. This
alternative is allowed only occasionally and noncommercially, and
only if you received the object code with such an offer, in accord
with subsection 6b.
d) Convey the object code by offering access from a designated
place (gratis or for a charge), and offer equivalent access to the
Corresponding Source in the same way through the same place at no
further charge. You need not require recipients to copy the
Corresponding Source along with the object code. If the place to
copy the object code is a network server, the Corresponding Source
may be on a different server (operated by you or a third party)
that supports equivalent copying facilities, provided you maintain
clear directions next to the object code saying where to find the
Corresponding Source. Regardless of what server hosts the
Corresponding Source, you remain obligated to ensure that it is
available for as long as needed to satisfy these requirements.
e) Convey the object code using peer-to-peer transmission, provided
you inform other peers where the object code and Corresponding
Source of the work are being offered to the general public at no
charge under subsection 6d.
A separable portion of the object code, whose source code is excluded
from the Corresponding Source as a System Library, need not be
included in conveying the object code work.
A "User Product" is either (1) a "consumer product", which means any
tangible personal property which is normally used for personal, family,
or household purposes, or (2) anything designed or sold for incorporation
into a dwelling. In determining whether a product is a consumer product,
doubtful cases shall be resolved in favor of coverage. For a particular
product received by a particular user, "normally used" refers to a
typical or common use of that class of product, regardless of the status
of the particular user or of the way in which the particular user
actually uses, or expects or is expected to use, the product. A product
is a consumer product regardless of whether the product has substantial
commercial, industrial or non-consumer uses, unless such uses represent
the only significant mode of use of the product.
"Installation Information" for a User Product means any methods,
procedures, authorization keys, or other information required to install
and execute modified versions of a covered work in that User Product from
a modified version of its Corresponding Source. The information must
suffice to ensure that the continued functioning of the modified object
code is in no case prevented or interfered with solely because
modification has been made.
If you convey an object code work under this section in, or with, or
specifically for use in, a User Product, and the conveying occurs as
part of a transaction in which the right of possession and use of the
User Product is transferred to the recipient in perpetuity or for a
fixed term (regardless of how the transaction is characterized), the
Corresponding Source conveyed under this section must be accompanied
by the Installation Information. But this requirement does not apply
if neither you nor any third party retains the ability to install
modified object code on the User Product (for example, the work has
been installed in ROM).
The requirement to provide Installation Information does not include a
requirement to continue to provide support service, warranty, or updates
for a work that has been modified or installed by the recipient, or for
the User Product in which it has been modified or installed. Access to a
network may be denied when the modification itself materially and
adversely affects the operation of the network or violates the rules and
protocols for communication across the network.
Corresponding Source conveyed, and Installation Information provided,
in accord with this section must be in a format that is publicly
documented (and with an implementation available to the public in
source code form), and must require no special password or key for
unpacking, reading or copying.
7. Additional Terms.
"Additional permissions" are terms that supplement the terms of this
License by making exceptions from one or more of its conditions.
Additional permissions that are applicable to the entire Program shall
be treated as though they were included in this License, to the extent
that they are valid under applicable law. If additional permissions
apply only to part of the Program, that part may be used separately
under those permissions, but the entire Program remains governed by
this License without regard to the additional permissions.
When you convey a copy of a covered work, you may at your option
remove any additional permissions from that copy, or from any part of
it. (Additional permissions may be written to require their own
removal in certain cases when you modify the work.) You may place
additional permissions on material, added by you to a covered work,
for which you have or can give appropriate copyright permission.
Notwithstanding any other provision of this License, for material you
add to a covered work, you may (if authorized by the copyright holders of
that material) supplement the terms of this License with terms:
a) Disclaiming warranty or limiting liability differently from the
terms of sections 15 and 16 of this License; or
b) Requiring preservation of specified reasonable legal notices or
author attributions in that material or in the Appropriate Legal
Notices displayed by works containing it; or
c) Prohibiting misrepresentation of the origin of that material, or
requiring that modified versions of such material be marked in
reasonable ways as different from the original version; or
d) Limiting the use for publicity purposes of names of licensors or
authors of the material; or
e) Declining to grant rights under trademark law for use of some
trade names, trademarks, or service marks; or
f) Requiring indemnification of licensors and authors of that
material by anyone who conveys the material (or modified versions of
it) with contractual assumptions of liability to the recipient, for
any liability that these contractual assumptions directly impose on
those licensors and authors.
All other non-permissive additional terms are considered "further
restrictions" within the meaning of section 10. If the Program as you
received it, or any part of it, contains a notice stating that it is
governed by this License along with a term that is a further
restriction, you may remove that term. If a license document contains
a further restriction but permits relicensing or conveying under this
License, you may add to a covered work material governed by the terms
of that license document, provided that the further restriction does
not survive such relicensing or conveying.
If you add terms to a covered work in accord with this section, you
must place, in the relevant source files, a statement of the
additional terms that apply to those files, or a notice indicating
where to find the applicable terms.
Additional terms, permissive or non-permissive, may be stated in the
form of a separately written license, or stated as exceptions;
the above requirements apply either way.
8. Termination.
You may not propagate or modify a covered work except as expressly
provided under this License. Any attempt otherwise to propagate or
modify it is void, and will automatically terminate your rights under
this License (including any patent licenses granted under the third
paragraph of section 11).
However, if you cease all violation of this License, then your
license from a particular copyright holder is reinstated (a)
provisionally, unless and until the copyright holder explicitly and
finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means
prior to 60 days after the cessation.
Moreover, your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after
your receipt of the notice.
Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated, you do not qualify to receive new licenses for the same
material under section 10.
9. Acceptance Not Required for Having Copies.
You are not required to accept this License in order to receive or
run a copy of the Program. Ancillary propagation of a covered work
occurring solely as a consequence of using peer-to-peer transmission
to receive a copy likewise does not require acceptance. However,
nothing other than this License grants you permission to propagate or
modify any covered work. These actions infringe copyright if you do
not accept this License. Therefore, by modifying or propagating a
covered work, you indicate your acceptance of this License to do so.
10. Automatic Licensing of Downstream Recipients.
Each time you convey a covered work, the recipient automatically
receives a license from the original licensors, to run, modify and
propagate that work, subject to this License. You are not responsible
for enforcing compliance by third parties with this License.
An "entity transaction" is a transaction transferring control of an
organization, or substantially all assets of one, or subdividing an
organization, or merging organizations. If propagation of a covered
work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever
licenses to the work the party's predecessor in interest had or could
give under the previous paragraph, plus a right to possession of the
Corresponding Source of the work from the predecessor in interest, if
the predecessor has it or can get it with reasonable efforts.
You may not impose any further restrictions on the exercise of the
rights granted or affirmed under this License. For example, you may
not impose a license fee, royalty, or other charge for exercise of
rights granted under this License, and you may not initiate litigation
(including a cross-claim or counterclaim in a lawsuit) alleging that
any patent claim is infringed by making, using, selling, offering for
sale, or importing the Program or any portion of it.
11. Patents.
A "contributor" is a copyright holder who authorizes use under this
License of the Program or a work on which the Program is based. The
work thus licensed is called the contributor's "contributor version".
A contributor's "essential patent claims" are all patent claims
owned or controlled by the contributor, whether already acquired or
hereafter acquired, that would be infringed by some manner, permitted
by this License, of making, using, or selling its contributor version,
but do not include claims that would be infringed only as a
consequence of further modification of the contributor version. For
purposes of this definition, "control" includes the right to grant
patent sublicenses in a manner consistent with the requirements of
this License.
Each contributor grants you a non-exclusive, worldwide, royalty-free
patent license under the contributor's essential patent claims, to
make, use, sell, offer for sale, import and otherwise run, modify and
propagate the contents of its contributor version.
In the following three paragraphs, a "patent license" is any express
agreement or commitment, however denominated, not to enforce a patent
(such as an express permission to practice a patent or covenant not to
sue for patent infringement). To "grant" such a patent license to a
party means to make such an agreement or commitment not to enforce a
patent against the party.
If you convey a covered work, knowingly relying on a patent license,
and the Corresponding Source of the work is not available for anyone
to copy, free of charge and under the terms of this License, through a
publicly available network server or other readily accessible means,
then you must either (1) cause the Corresponding Source to be so
available, or (2) arrange to deprive yourself of the benefit of the
patent license for this particular work, or (3) arrange, in a manner
consistent with the requirements of this License, to extend the patent
license to downstream recipients. "Knowingly relying" means you have
actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient's use of the covered work
in a country, would infringe one or more identifiable patents in that
country that you have reason to believe are valid.
If, pursuant to or in connection with a single transaction or
arrangement, you convey, or propagate by procuring conveyance of, a
covered work, and grant a patent license to some of the parties
receiving the covered work authorizing them to use, propagate, modify
or convey a specific copy of the covered work, then the patent license
you grant is automatically extended to all recipients of the covered
work and works based on it.
A patent license is "discriminatory" if it does not include within
the scope of its coverage, prohibits the exercise of, or is
conditioned on the non-exercise of one or more of the rights that are
specifically granted under this License. You may not convey a covered
work if you are a party to an arrangement with a third party that is
in the business of distributing software, under which you make payment
to the third party based on the extent of your activity of conveying
the work, and under which the third party grants, to any of the
parties who would receive the covered work from you, a discriminatory
patent license (a) in connection with copies of the covered work
conveyed by you (or copies made from those copies), or (b) primarily
for and in connection with specific products or compilations that
contain the covered work, unless you entered into that arrangement,
or that patent license was granted, prior to 28 March 2007.
Nothing in this License shall be construed as excluding or limiting
any implied license or other defenses to infringement that may
otherwise be available to you under applicable patent law.
12. No Surrender of Others' Freedom.
If conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot convey a
covered work so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you may
not convey it at all. For example, if you agree to terms that obligate you
to collect a royalty for further conveying from those to whom you convey
the Program, the only way you could satisfy both those terms and this
License would be to refrain entirely from conveying the Program.
13. Use with the GNU Affero General Public License.
Notwithstanding any other provision of this License, you have
permission to link or combine any covered work with a work licensed
under version 3 of the GNU Affero General Public License into a single
combined work, and to convey the resulting work. The terms of this
License will continue to apply to the part which is the covered work,
but the special requirements of the GNU Affero General Public License,
section 13, concerning interaction through a network will apply to the
combination as such.
14. Revised Versions of this License.
The Free Software Foundation may publish revised and/or new versions of
the GNU General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.
Each version is given a distinguishing version number. If the
Program specifies that a certain numbered version of the GNU General
Public License "or any later version" applies to it, you have the
option of following the terms and conditions either of that numbered
version or of any later version published by the Free Software
Foundation. If the Program does not specify a version number of the
GNU General Public License, you may choose any version ever published
by the Free Software Foundation.
If the Program specifies that a proxy can decide which future
versions of the GNU General Public License can be used, that proxy's
public statement of acceptance of a version permanently authorizes you
to choose that version for the Program.
Later license versions may give you additional or different
permissions. However, no additional obligations are imposed on any
author or copyright holder as a result of your choosing to follow a
later version.
15. Disclaimer of Warranty.
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
16. Limitation of Liability.
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.
17. Interpretation of Sections 15 and 16.
If the disclaimer of warranty and limitation of liability provided
above cannot be given local legal effect according to their terms,
reviewing courts shall apply local law that most closely approximates
an absolute waiver of all civil liability in connection with the
Program, unless a warranty or assumption of liability accompanies a
copy of the Program in return for a fee.
END OF TERMS AND CONDITIONS
How to Apply These Terms to Your New Programs
If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.
To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
state the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.
<one line to give the program's name and a brief idea of what it does.>
Copyright (C) <year> <name of author>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
Also add information on how to contact you by electronic and paper mail.
If the program does terminal interaction, make it output a short
notice like this when it starts in an interactive mode:
<program> Copyright (C) <year> <name of author>
This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
This is free software, and you are welcome to redistribute it
under certain conditions; type `show c' for details.
The hypothetical commands `show w' and `show c' should show the appropriate
parts of the General Public License. Of course, your program's commands
might be different; for a GUI interface, you would use an "about box".
You should also get your employer (if you work as a programmer) or school,
if any, to sign a "copyright disclaimer" for the program, if necessary.
For more information on this, and how to apply and follow the GNU GPL, see
<https://www.gnu.org/licenses/>.
The GNU General Public License does not permit incorporating your program
into proprietary programs. If your program is a subroutine library, you
may consider it more useful to permit linking proprietary applications with
the library. If this is what you want to do, use the GNU Lesser General
Public License instead of this License. But first, please read
<https://www.gnu.org/licenses/why-not-lgpl.html>.

View File

@ -1,6 +0,0 @@
# HistPlotter
- Header-only class to encapsulate CERN ROOT 1D/2D Histogram plotting and application of TCuts.
- Can specify folder hierarchy while setting up fills, currently supports only one level.
- Cuts specified using a two-column text file containing cut names, and target .root files. These .root files must contain a TCutG of name "CUTG".
- Tested for use in macros, with TSelector design pattern and compiled code.
- Idea inspired from MyFill() pattern created by github user gwm17

View File

@ -1,231 +0,0 @@
#define Calibration_cxx
#include <TH2.h>
#include <TF1.h>
#include <TStyle.h>
#include <TCanvas.h>
#include <TMath.h>
#include <TCutG.h>
#include <fstream>
#include <utility>
#include <algorithm>
#include "Armory/HistPlotter.h"
#include "TVector3.h"
#include "Calibration.h"
TH2F *hQQQFVB;
HistPlotter *plotter;
int padID = 0;
TCutG *cut;
std::map<std::tuple<int, int, int>, std::vector<std::pair<double, double>>> dataPoints;
bool qqqEcut = false;
// Gain Arrays
const int MAX_QQQ = 4;
const int MAX_RING = 16;
const int MAX_WEDGE = 16;
double qqqGain[MAX_QQQ][MAX_RING][MAX_WEDGE] = {{{0}}};
bool qqqGainValid[MAX_QQQ][MAX_RING][MAX_WEDGE] = {{{false}}};
void Calibration::Begin(TTree * /*tree*/)
{
plotter = new HistPlotter("Calib.root", "TFILE");
// ----------------------- Load QQQ Gains
{
std::string filename = "qqq_GainMatch.txt";
std::ifstream infile(filename);
if (!infile.is_open())
{
std::cerr << "Error opening " << filename << "!" << std::endl;
}
else
{
int det, ring, wedge;
double gain;
while (infile >> det >> ring >> wedge >> gain)
{
qqqGain[det][ring][wedge] = gain;
qqqGainValid[det][ring][wedge] = (gain > 0);
}
infile.close();
std::cout << "Loaded QQQ gains from " << filename << std::endl;
}
}
for (int det = 0; det < MAX_QQQ; det++)
{
for (int ring = 0; ring < MAX_RING; ring++)
{
for (int wedge = 0; wedge < MAX_WEDGE; wedge++)
{
TString hname = Form("hCal_qqq%d_ring%d_wedge%d", det, ring, wedge);
TString htitle = Form("QQQ det%d ring%d wedge%d; Energy (arb); Counts", det, ring, wedge);
// hQQQSpectra[det][ring][wedge] = new TH1F(hname, htitle, 4000, 0, 16000);
}
}
}
}
Bool_t Calibration::Process(Long64_t entry)
{
b_qqqMulti->GetEntry(entry);
b_qqqID->GetEntry(entry);
b_qqqCh->GetEntry(entry);
b_qqqE->GetEntry(entry);
b_qqqT->GetEntry(entry);
qqq.CalIndex();
for (int i = 0; i < qqq.multi; i++)
{
for (int j = i + 1; j < qqq.multi; j++)
{
if (qqq.e[i] > 100)
qqqEcut = true;
if (qqq.id[i] == qqq.id[j])
{
int chWedge = -1;
int chRing = -1;
float eWedgeRaw = 0.0;
float eWedge = 0.0;
float eRingRaw = 0.0;
float eRing = 0.0;
if (qqq.ch[i] < 16 && qqq.ch[j] >= 16 && qqqGainValid[qqq.id[i]][qqq.ch[i]][qqq.ch[j] - 16])
{
chWedge = qqq.ch[i];
eWedgeRaw = qqq.e[i];
eWedge = qqq.e[i] * qqqGain[qqq.id[i]][qqq.ch[i]][qqq.ch[j] - 16];
printf("Wedge E: %.2f Gain: %.4f \n", eWedge, qqqGain[qqq.id[i]][qqq.ch[i]][qqq.ch[j] - 16]);
chRing = qqq.ch[j] - 16;
eRingRaw = qqq.e[j];
eRing = qqq.e[j]; //*qqqGain[qqq.id[j]][qqq.ch[j]][qqq.ch[i]-16];
}
else if (qqq.ch[j] < 16 && qqq.ch[i] >= 16 && qqqGainValid[qqq.id[j]][qqq.ch[j]][qqq.ch[i] - 16])
{
chWedge = qqq.ch[j];
eWedge = qqq.e[j] * qqqGain[qqq.id[j]][qqq.ch[j]][qqq.ch[i] - 16];
eWedgeRaw = qqq.e[j];
chRing = qqq.ch[i] - 16;
eRing = qqq.e[i];// * qqqGain[qqq.id[i]][qqq.ch[i]][qqq.ch[j] - 16];
eRingRaw = qqq.e[i];
}
else
continue;
// hQQQFVB->Fill(eWedge, eRing);
plotter->Fill2D(Form("hRaw_qqq%d_ring%d_wedge%d", qqq.id[i], chRing, chWedge),400,0,16000,400,0,16000, eWedgeRaw, eRingRaw,"ERaw");
plotter->Fill2D(Form("hGM_qqq%d_ring%d_wedge%d", qqq.id[i], chRing, chWedge),400,0,16000,400,0,16000, eWedge, eRing,"EGM");
plotter->Fill2D("hRawQQQ", 4000, 0, 16000, 4000, 0, 16000, eWedgeRaw, eRingRaw);
plotter->Fill2D("hGMQQQ", 4000, 0, 16000, 4000, 0, 16000, eWedge, eRing);
TString histName = Form("hQQQFVB_id%d_r%d_w%d", qqq.id[i], chRing, chWedge);
// TH2F *hist2d = (TH2F *)gDirectory->Get(histName);
// if (!hist2d)
// {
// hist2d = new TH2F(histName, Form("QQQ Det%d R%d W%d;Wedge E;Ring E", qqq.id[i], chRing, chWedge), 400, 0, 16000, 400, 0, 16000);
// }
// hist2d->Fill(eWedge, eRing);
// if (cut && cut->IsInside(eWedge, eRing))
{
// Accumulate data for gain matching
dataPoints[{qqq.id[i], chRing, chWedge}].emplace_back(eWedge, eRing);
}
}
}
}
return kTRUE;
}
void Calibration::Terminate()
{
const double AM241_PEAK = 5485.56; // keV
double calibArray[MAX_QQQ][MAX_RING][MAX_WEDGE] = {{{0}}};
bool calibValid[MAX_QQQ][MAX_RING][MAX_WEDGE] = {{{false}}};
std::ofstream outFile("qqq_Calib.txt");
if (!outFile.is_open())
{
std::cerr << "Error opening output file!" << std::endl;
return;
}
// ======================= Loop over all channels =======================
for (auto &kv : dataPoints) {
int det, ring, wedge;
std::tie(det, ring, wedge) = kv.first;
const std::vector<std::pair<double,double>> &pts = kv.second;
if (pts.size() < 5)
continue;
// Build TGraph from stored (wedgeGM, ringE)
std::vector<double> wedgeGM, ringE;
wedgeGM.reserve(pts.size());
ringE.reserve(pts.size());
for (auto &p : pts) {
wedgeGM.push_back(p.first); // gain-matched wedge energy (ADC)
ringE.push_back(p.second); // ring energy (ADC)
}
TGraph g(pts.size(), wedgeGM.data(), ringE.data());
g.SetTitle(Form("QQQ Det%d Ring%d Wedge%d", det, ring, wedge));
// Fit a line through origin: E_ring = a * E_wedge
TF1 f("f","[0]*x",0,16000);
g.Fit(&f,"QNR"); // Quiet, No draw, use Range
double slope_raw = f.GetParameter(0);
if (slope_raw <= 0)
continue;
// Convert raw slope into keV calibration:
// Use the Am241 peak expected position:
// E_keV = ADC * slope_keV
double slope_keV = AM241_PEAK / (AM241_PEAK / slope_raw);
// Simplifies to:
// slope_keV = slope_raw; // slope now directly converts ADC → keV
calibArray[det][ring][wedge] = slope_keV;
calibValid[det][ring][wedge] = true;
outFile << det << " " << ring << " " << wedge << " "
<< slope_keV << "\n";
printf("Calib Det=%d Ring=%d Wedge=%d slope=%.5f\n",
det, ring, wedge, slope_keV);
}
outFile.close();
std::cout << "Gain matching complete." << std::endl;
// === Plot all gain-matched QQQ points together with a 2D histogram ===
TH2F *hAll = new TH2F("hAll", "All QQQ Gain-Matched;Corrected Wedge E;Ring E",
800, 0, 16000, 800, 0, 16000);
// Fill the combined TH2F with corrected data
for (auto &kv : dataPoints)
{
int id, ring, wedge;
std::tie(id, ring, wedge) = kv.first;
if (!calibValid[id][ring][wedge])
continue;
auto &pts = kv.second;
for (auto &pr : pts)
{
double corrWedge = pr.first * calibArray[id][ring][wedge];
double corrRing = pr.second * calibArray[id][ring][wedge];
hAll->Fill(corrWedge, corrRing);
plotter->Fill2D("hAll", 4000, 0, 16000, 4000, 0, 16000, corrWedge, corrRing); // Create the histogram in the plotter
}
}
plotter->FlushToDisk();
}

View File

@ -1,124 +0,0 @@
#include <TFile.h>
#include <TH1.h>
#include <TSpectrum.h>
#include <TF1.h>
#include <TCanvas.h>
#include <vector>
#include <iostream>
#include <algorithm>
#include <fstream>
#include <TText.h>
void FitHistogramsWithTSpectrum_Sequential_Improved() {
TFile *inputFile = new TFile("Histograms_anodes.root", "READ");
if (!inputFile || inputFile->IsZombie()) {
std::cerr << "Error opening the input file!" << std::endl;
return;
}
TCanvas *c1 = new TCanvas("c1", "Histogram Viewer", 800, 600);
// Open the output ASCII file to save the centroids
std::ofstream outFile("centroids.txt");
if (!outFile.is_open()) {
std::cerr << "Error opening output file!" << std::endl;
return;
}
outFile << "HistogramIndex\tPeakNumber\tCentroid\tAmplitude\tSigma" << std::endl;
for (int i = 0; i < 24; ++i) {
TH1 *histogram = dynamic_cast<TH1*>(inputFile->Get(Form("hCathode_%d", i)));
if (!histogram) {
std::cerr << "Failed to retrieve histogram_" << i << " from the file." << std::endl;
continue;
}
// Set range for peak search
double minX = 700;
double maxX = 25000;
histogram->GetXaxis()->SetRangeUser(minX, maxX);
// Draw the histogram
c1->cd();
histogram->Draw();
// Peak search using TSpectrum
const int maxPeaks = 5;
TSpectrum spectrumFinder(maxPeaks);
int nFound = spectrumFinder.Search(histogram, 2, "", 0.01);
if (nFound <= 0) {
std::cerr << "No peaks found for histogram " << i << std::endl;
continue;
}
Double_t *xPositions = spectrumFinder.GetPositionX();
Double_t *yPositions = spectrumFinder.GetPositionY();
std::vector<std::pair<Double_t, Double_t>> peaks;
// Collect and sort peaks by X position
for (int j = 0; j < nFound; ++j) {
peaks.emplace_back(xPositions[j], yPositions[j]);
}
std::sort(peaks.begin(), peaks.end());
// Fit each peak with a Gaussian
for (int j = 0; j < peaks.size(); ++j) {
Double_t peakX = peaks[j].first;
Double_t peakY = peaks[j].second;
Double_t initialAmplitude = peakY; // Better initial guess
Double_t initialCentroid = peakX; // Centroid based on peak position
Double_t initialSigma = 60.0;
// Define Gaussian with initial parameters
TF1 *gaussFit = new TF1(Form("gauss_%d", j), "gaus", peakX - 200, peakX + 200);
//gaussFit->SetParameters(peakY, peakX, 25.0); // Initial guesses for amplitude, mean, sigma
gaussFit->SetParameters(initialAmplitude, initialCentroid, initialSigma);
// Perform fit
int fitStatus = histogram->Fit(gaussFit, "RQ+");
if (fitStatus != 0) {
std::cerr << "Fit failed for peak " << j + 1 << " in histogram " << i << std::endl;
delete gaussFit;
continue;
}
// Retrieve fit parameters
double amplitude = gaussFit->GetParameter(0);
double centroid = gaussFit->GetParameter(1);
double sigma = gaussFit->GetParameter(2);
double amplitudeError = gaussFit->GetParError(0);
double centroidError = gaussFit->GetParError(1);
double sigmaError = gaussFit->GetParError(2);
// Chi-squared value
double chi2 = gaussFit->GetChisquare();
int ndf = gaussFit->GetNDF();
outFile << i << "\t" << j + 1 << "\t" << centroid << std::endl;
gaussFit->SetLineColor(kRed);
gaussFit->Draw("SAME");
TText *text = new TText();
text->SetNDC();
text->SetTextSize(0.03);
text->SetTextColor(kRed);
//text->DrawText(0.15, 0.8 - j * 0.05, Form("Peak %d: Amp=%.2f, Mean=%.2f, Sigma=%.2f", j + 1, amplitude, centroid, sigma));
text->DrawText(0.15, 0.8 - j * 0.05,
Form("Peak %d: Amp=%.2f±%.2f, Mean=%.2f±%.2f, Sigma=%.2f±%.2f, Chi2/NDF=%.2f",
j + 1, amplitude, amplitudeError, centroid, centroidError, sigma, sigmaError, chi2 / ndf));
// Save results
// Clean up
delete gaussFit;
}
// Update canvas for visualization
c1->Update();
std::cout << "Press Enter to view the next histogram..." << std::endl;
c1->WaitPrimitive(); // Wait until Enter is pressed in the ROOT console
}
// Close resources
inputFile->Close();
outFile.close();
delete c1;
}

View File

@ -1,197 +0,0 @@
#define GainMatchQQQ_cxx
#include "GainMatchQQQ.h"
#include <TH2.h>
#include <TF1.h>
#include <TStyle.h>
#include <TCanvas.h>
#include <TMath.h>
#include <TCutG.h>
#include <fstream>
#include <utility>
#include <algorithm>
#include "Armory/HistPlotter.h"
#include "TVector3.h"
TH2F *hQQQFVB;
HistPlotter *plotter;
int padID = 0;
TCutG *cut;
std::map<std::tuple<int, int, int>, std::vector<std::pair<double, double>>> dataPoints;
void GainMatchQQQ::Begin(TTree * /*tree*/)
{
plotter = new HistPlotter("GainQQQ.root", "TFILE");
TString option = GetOption();
hQQQFVB = new TH2F("hQQQFVB", "QQQ Front vs Back; Front E; Back E", 800, 0, 16000, 800, 0, 16000);
// Load the TCutG object
TFile *cutFile = TFile::Open("qqqcorr.root");
if (!cutFile || cutFile->IsZombie())
{
std::cerr << "Error: Could not open qqqcorr.root" << std::endl;
return;
}
cut = dynamic_cast<TCutG *>(cutFile->Get("qqqcorr"));
if (!cut)
{
std::cerr << "Error: Could not find TCutG named 'qqqcorr' in qqqcorr.root" << std::endl;
return;
}
cut->SetName("qqqcorr"); // Ensure the cut has the correct name
}
Bool_t GainMatchQQQ::Process(Long64_t entry)
{
b_qqqMulti->GetEntry(entry);
b_qqqID->GetEntry(entry);
b_qqqCh->GetEntry(entry);
b_qqqE->GetEntry(entry);
b_qqqT->GetEntry(entry);
qqq.CalIndex();
for (int i = 0; i < qqq.multi; i++)
{
for (int j = i + 1; j < qqq.multi; j++)
{
if (qqq.id[i] == qqq.id[j])
{
int chWedge = -1;
int chRing = -1;
float eWedge = 0.0;
float eRing = 0.0;
if (qqq.ch[i] < 16 && qqq.ch[j] >= 16)
{
chWedge = qqq.ch[i];
eWedge = qqq.e[i];
chRing = qqq.ch[j] - 16;
eRing = qqq.e[j];
}
else if (qqq.ch[j] < 16 && qqq.ch[i] >= 16)
{
chWedge = qqq.ch[j];
eWedge = qqq.e[j];
chRing = qqq.ch[i] - 16;
eRing = qqq.e[i];
}
else
continue;
hQQQFVB->Fill(eWedge, eRing);
// TString histName = Form("hQQQFVB_id%d_r%d_w%d", qqq.id[i], chRing, chWedge);
// TH2F *hist2d = (TH2F *)gDirectory->Get(histName);
// if (!hist2d)
// {
// hist2d = new TH2F(histName, Form("QQQ Det%d R%d W%d;Wedge E;Ring E", qqq.id[i], chRing, chWedge), 400, 0, 16000, 400, 0, 16000);
// }
// hist2d->Fill(eWedge, eRing);
// if (cut && cut->IsInside(eWedge, eRing))
double ratio = eRing / eWedge;
double maxslope=1.5;
//gate gets rid of noisy off diagonal events forming a 'V' about the center
//TODO: These are very likely nearest-neighbor charge-sharing events, that will go away if appropriately summed
// if(ratio < maxslope && ratio > 1./maxslope || eWedge<200 || eRing<200) //method adopted from Sudarshan's approach
bool validPoint = false;
if(ratio < maxslope && ratio > 1./maxslope)// || eWedge<200 || eRing<200) //method adopted from Sudarshan's approach
{
// Accumulate data for gain matching
dataPoints[{qqq.id[i], chRing, chWedge}].emplace_back(eWedge, eRing);
plotter->Fill2D("hAll_in", 4000, 0, 16000, 4000, 0, 16000, eWedge, eRing);
validPoint = true;
}
if(!validPoint){
plotter->Fill2D("hAll_out", 4000, 0, 16000, 4000, 0, 16000, eWedge, eRing);
}
}
}
}
return kTRUE;
}
void GainMatchQQQ::Terminate()
{
const int MAX_DET = 4;
const int MAX_RING = 16;
const int MAX_WEDGE = 16;
double gainArray[MAX_DET][MAX_RING][MAX_WEDGE] = {{{0}}};
bool gainValid[MAX_DET][MAX_RING][MAX_WEDGE] = {{{false}}};
std::ofstream outFile("qqq_GainMatch.txt");
if (!outFile.is_open())
{
std::cerr << "Error opening output file!" << std::endl;
return;
}
for (const auto &kv : dataPoints)
{
auto [id, ring, wedge] = kv.first;
const auto &pts = kv.second;
if (pts.size() < 5)
continue;
std::vector<double> wE, rE;
for (const auto &pr : pts)
{
wE.push_back(pr.first);
rE.push_back(pr.second);
}
TGraph g(wE.size(), wE.data(), rE.data());
TF1 f("f", "[0]*x", 0, 16000);
g.Fit(&f, "QNR");
gainArray[id][ring][wedge] = f.GetParameter(0);
gainValid[id][ring][wedge] = true;
}
for (int id = 0; id < MAX_DET; ++id)
{
for (int ring = 0; ring < MAX_RING; ++ring)
{
for (int wedge = 0; wedge < MAX_WEDGE; ++wedge)
{
if (gainValid[id][ring][wedge])
{
outFile << id << " " << wedge << " " << ring << " " << gainArray[id][ring][wedge] << std::endl;
printf("Gain match Det%d Ring%d Wedge%d → %.4f \n", id, ring, wedge, gainArray[id][ring][wedge]);
}
}
}
}
outFile.close();
std::cout << "Gain matching complete." << std::endl;
// === Plot all gain-matched QQQ points together with a 2D histogram ===
TH2F *hAll = new TH2F("hAll", "All QQQ Gain-Matched;Corrected Wedge E;Ring E",
4000, 0, 16000, 4000, 0, 16000);
// Fill the combined TH2F with corrected data
for (auto &kv : dataPoints)
{
int id, ring, wedge;
std::tie(id, ring, wedge) = kv.first;
if (!gainValid[id][ring][wedge])
continue;
auto &pts = kv.second;
for (auto &pr : pts)
{
double corrWedge = pr.first * gainArray[id][ring][wedge];
double ringE = pr.second;
hAll->Fill(corrWedge, ringE);
}
}
plotter->FlushToDisk();
}

View File

@ -1,114 +0,0 @@
#ifndef GainMatchQQQ_h
#define GainMatchQQQ_h
#include <TROOT.h>
#include <TChain.h>
#include <TFile.h>
#include <TSelector.h>
#include "Armory/ClassDet.h"
class GainMatchQQQ : public TSelector {
public :
TTree *fChain; //!pointer to the analyzed TTree or TChain
// Fixed size dimensions of array or collections stored in the TTree if any.
// Declaration of leaf types
Det sx3;
Det qqq;
Det pc ;
ULong64_t evID;
UInt_t run;
// List of branches
TBranch *b_eventID; //!
TBranch *b_run; //!
TBranch *b_sx3Multi; //!
TBranch *b_sx3ID; //!
TBranch *b_sx3Ch; //!
TBranch *b_sx3E; //!
TBranch *b_sx3T; //!
TBranch *b_qqqMulti; //!
TBranch *b_qqqID; //!
TBranch *b_qqqCh; //!
TBranch *b_qqqE; //!
TBranch *b_qqqT; //!
TBranch *b_pcMulti; //!
TBranch *b_pcID; //!
TBranch *b_pcCh; //!
TBranch *b_pcE; //!
TBranch *b_pcT; //!
GainMatchQQQ(TTree * /*tree*/ =0) : fChain(0) { }
virtual ~GainMatchQQQ() { }
virtual Int_t Version() const { return 2; }
virtual void Begin(TTree *tree);
virtual void SlaveBegin(TTree *tree);
virtual void Init(TTree *tree);
virtual Bool_t Notify();
virtual Bool_t Process(Long64_t entry);
virtual Int_t GetEntry(Long64_t entry, Int_t getall = 0) { return fChain ? fChain->GetTree()->GetEntry(entry, getall) : 0; }
virtual void SetOption(const char *option) { fOption = option; }
virtual void SetObject(TObject *obj) { fObject = obj; }
virtual void SetInputList(TList *input) { fInput = input; }
virtual TList *GetOutputList() const { return fOutput; }
virtual void SlaveTerminate();
virtual void Terminate();
ClassDef(GainMatchQQQ,0);
};
#endif
#ifdef GainMatchQQQ_cxx
void GainMatchQQQ::Init(TTree *tree){
// Set branch addresses and branch pointers
if (!tree) return;
fChain = tree;
fChain->SetMakeClass(1);
fChain->SetBranchAddress("evID", &evID, &b_eventID);
fChain->SetBranchAddress("run", &run, &b_run);
sx3.SetDetDimension(24,12);
qqq.SetDetDimension(4,32);
pc.SetDetDimension(2,24);
fChain->SetBranchAddress("sx3Multi", &sx3.multi, &b_sx3Multi);
fChain->SetBranchAddress("sx3ID", &sx3.id, &b_sx3ID);
fChain->SetBranchAddress("sx3Ch", &sx3.ch, &b_sx3Ch);
fChain->SetBranchAddress("sx3E", &sx3.e, &b_sx3E);
fChain->SetBranchAddress("sx3T", &sx3.t, &b_sx3T);
fChain->SetBranchAddress("qqqMulti", &qqq.multi, &b_qqqMulti);
fChain->SetBranchAddress("qqqID", &qqq.id, &b_qqqID);
fChain->SetBranchAddress("qqqCh", &qqq.ch, &b_qqqCh);
fChain->SetBranchAddress("qqqE", &qqq.e, &b_qqqE);
fChain->SetBranchAddress("qqqT", &qqq.t, &b_qqqT);
fChain->SetBranchAddress("pcMulti", &pc.multi, &b_pcMulti);
fChain->SetBranchAddress("pcID", &pc.id, &b_pcID);
fChain->SetBranchAddress("pcCh", &pc.ch, &b_pcCh);
fChain->SetBranchAddress("pcE", &pc.e, &b_pcE);
fChain->SetBranchAddress("pcT", &pc.t, &b_pcT);
}
Bool_t GainMatchQQQ::Notify(){
return kTRUE;
}
void GainMatchQQQ::SlaveBegin(TTree * /*tree*/){
TString option = GetOption();
}
void GainMatchQQQ::SlaveTerminate(){
}
#endif // #ifdef GainMatchQQQ_cxx

View File

@ -1,432 +0,0 @@
#define GainMatchSX3_cxx
#include "GainMatchSX3.h"
#include <TH2.h>
#include <TF1.h>
#include <TStyle.h>
#include <TCanvas.h>
#include <TMath.h>
#include <TCutG.h>
#include <fstream>
#include <utility>
#include <algorithm>
#include <TProfile.h>
#include "Armory/ClassSX3.h"
#include "Armory/HistPlotter.h"
#include <TGraphErrors.h>
#include "TVector3.h"
TH2F *hSX3FvsB;
TH2F *hSX3FvsB_g;
TH2F *hsx3IndexVE;
TH2F *hsx3IndexVE_g;
TH2F *hSX3;
TH2F *hsx3Coin;
int padID = 0;
SX3 sx3_contr;
TCutG *cut;
TCutG *cut1;
std::map<std::tuple<int, int, int, int>, std::vector<std::tuple<double, double, double>>> dataPoints;
std::map<std::tuple<int, int, int, int>, int> comboCounts;
const int MAX_DET = 24;
const int MAX_UP = 4;
const int MAX_DOWN = 4;
const int MAX_BK = 4;
double frontGainUp[MAX_DET][MAX_BK][MAX_UP][MAX_DOWN] = {{{{0}}}};
double frontGainDown[MAX_DET][MAX_BK][MAX_UP][MAX_DOWN] = {{{{0}}}};
bool frontGainValid[MAX_DET][MAX_BK][MAX_UP][MAX_DOWN] = {{{{false}}}};
TCanvas c("canvas", "canvas", 800, 600);
// ==== Configuration Flags ====
const bool interactiveMode = true; // If true: show canvas + wait for user
const bool verboseFit = true; // If true: print fit summary and chi²
const bool drawCanvases = true; // If false: canvases won't be drawn at all
// HistPlotter plotter("SX3GainMatchBack.root");
void GainMatchSX3::Begin(TTree * /*tree*/)
{
TString option = GetOption();
hSX3FvsB = new TH2F("hSX3FvsB", "SX3 Front vs Back; Front E; Back E", 400, 0, 16000, 400, 0, 16000);
hSX3FvsB_g = new TH2F("hSX3FvsB_g", "SX3 Front vs Back; Front E; Back E", 400, 0, 16000, 400, 0, 16000);
hsx3IndexVE = new TH2F("hsx3IndexVE", "SX3 index vs Energy; sx3 index ; Energy", 24 * 12, 0, 24 * 12, 400, 0, 5000);
hsx3IndexVE_g = new TH2F("hsx3IndexVE_g", "SX3 index vs Energy; sx3 index ; Energy", 24 * 12, 0, 24 * 12, 400, 0, 5000);
hSX3 = new TH2F("hSX3", "SX3 Front v Back; Fronts; Backs", 8, 0, 8, 4, 0, 4);
hsx3Coin = new TH2F("hsx3Coin", "SX3 Coincident", 24 * 12, 0, 24 * 12, 24 * 12, 0, 24 * 12);
sx3_contr.ConstructGeo();
// Load the TCutG object
TFile *cutFile = TFile::Open("sx3cut.root");
if (!cutFile || cutFile->IsZombie())
{
std::cerr << "Error: Could not open sx3cut.root" << std::endl;
return;
}
cut = dynamic_cast<TCutG *>(cutFile->Get("sx3cut"));
if (!cut)
{
std::cerr << "Error: Could not find TCutG named 'sx3cut' in sx3cut.root" << std::endl;
return;
}
cut->SetName("sx3cut"); // Ensure the cut has the correct name
// Load the TCutG object
TFile *cutFile1 = TFile::Open("UvD.root");
bool cut1Loaded = (cut1 != nullptr);
cut1 = dynamic_cast<TCutG *>(cutFile1->Get("UvD"));
if (!cut1)
{
std::cerr << "Error: Could not find TCutG named 'UvD' in UvD.root" << std::endl;
return;
}
cut1->SetName("UvD");
// plotter.ReadCuts("cuts.txt");
std::string filename = "sx3_GainMatchfront.txt";
// std::string filename = "sx3_GainMatchfront.txt";
std::ifstream infile(filename);
if (!infile.is_open())
{
std::cerr << "Error opening " << filename << "!" << std::endl;
return;
}
int id, bk, u, d;
double gainup, gaindown;
while (infile >> id >> bk >> u >> d >> gainup >> gaindown)
{
frontGainUp[id][bk][u][d] = gainup;
frontGainDown[id][bk][u][d] = gaindown;
frontGainValid[id][bk][u][d] = true;
if(frontGainValid[id][bk][u][d]) {
// std::cout << "Loaded front gain for Det" << id << " Bk" << bk << " U" << u << " D" << d
// << ": Up=" << gainup << ", Down=" << gaindown << std::endl;
}
else {
std::cout << "No valid front gain for Det" << id << " Bk" << bk << " U" << u << " D" << d << std::endl;
}
}
}
Bool_t GainMatchSX3::Process(Long64_t entry)
{
b_sx3Multi->GetEntry(entry);
b_sx3ID->GetEntry(entry);
b_sx3Ch->GetEntry(entry);
b_sx3E->GetEntry(entry);
b_sx3T->GetEntry(entry);
b_qqqMulti->GetEntry(entry);
b_qqqID->GetEntry(entry);
b_qqqCh->GetEntry(entry);
b_qqqE->GetEntry(entry);
b_qqqT->GetEntry(entry);
b_pcMulti->GetEntry(entry);
b_pcID->GetEntry(entry);
b_pcCh->GetEntry(entry);
b_pcE->GetEntry(entry);
b_pcT->GetEntry(entry);
sx3.CalIndex();
qqq.CalIndex();
pc.CalIndex();
std::vector<std::pair<int, int>> ID;
for (int i = 0; i < sx3.multi; i++)
{
// for (int j = i + 1; j < sx3.multi; j++)
// {
// if (sx3.id[i] == 3)
// hsx3Coin->Fill(sx3.index[i], sx3.index[j]);
// }
if (sx3.e[i] > 100)
{
ID.push_back(std::pair<int, int>(sx3.id[i], i));
hsx3IndexVE->Fill(sx3.index[i], sx3.e[i]);
}
}
if (ID.size() > 0)
{
std::sort(ID.begin(), ID.end(), [](const std::pair<int, int> &a, const std::pair<int, int> &b)
{ return a.first < b.first; });
// start with the first entry in the sorted array: channels that belong to the same detector are together in sequenmce
std::vector<std::pair<int, int>> sx3ID;
sx3ID.push_back(ID[0]);
bool found = false;
for (size_t i = 1; i < ID.size(); i++)
{ // Check if id of i belongs to the same detector and then add it to the detector ID vector
if (ID[i].first == sx3ID.back().first)
{ // count the nunmber of hits that belong to the same detector
sx3ID.push_back(ID[i]);
if (sx3ID.size() >= 3)
{
found = true;
}
}
else
{ // the next event does not belong to the same detector, abandon the first event and continue with the next one
if (!found)
{
sx3ID.clear();
sx3ID.push_back(ID[i]);
}
}
}
if (found)
{
int sx3ChUp = -1, sx3ChDn = -1, sx3ChBk = -1;
float sx3EUp = 0.0, sx3EDn = 0.0, sx3EBk = 0.0;
// Build the correlated set once
for (size_t i = 0; i < sx3ID.size(); i++)
{
if (sx3.e[i] > 100)
{
int index = sx3ID[i].second;
if (sx3.ch[index] < 8)
{
if (sx3.ch[index] % 2 == 0)
{
sx3ChDn = sx3.ch[index];
sx3EDn = sx3.e[index];
//
}
else
{
sx3ChUp = sx3.ch[index];
sx3EUp = sx3.e[index];
}
}
else
{
sx3ChBk = sx3.ch[index] - 8;
sx3EBk = sx3.e[index];
}
}
}
// Only if we found all three channels do we proceed
if (sx3ChUp >= 0 && sx3ChDn >= 0 && sx3ChBk >= 0)
{
// Fill once per correlated set
hSX3->Fill(sx3ChDn + 4, sx3ChBk);
hSX3->Fill(sx3ChUp, sx3ChBk);
hSX3FvsB->Fill(sx3EUp + sx3EDn, sx3EBk);
if (frontGainValid[sx3ID[0].first][sx3ChBk][sx3ChUp / 2][sx3ChDn / 2])
{
sx3EUp *= frontGainUp[sx3ID[0].first][sx3ChBk][sx3ChUp / 2][sx3ChDn / 2];
sx3EDn *= frontGainDown[sx3ID[0].first][sx3ChBk][sx3ChUp / 2][sx3ChDn / 2];
}
else
{
// printf("No front gain for Det%d Bk%d U%d D%d\n", sx3ID[0].first, sx3ChBk, sx3ChUp / 2, sx3ChDn / 2);
sx3EUp = sx3EDn = 0.;
}
// plotter.Fill2D("hSX3F", 400, 0, 16000, 400, 0, 16000, sx3EUp + sx3EDn, sx3EBk);
// Pick detector ID from one of the correlated hits (all same detector)
int detID = sx3ID[0].first;
TString histName = Form("hSX3FVB_id%d_U%d_D%d_B%d", detID, sx3ChUp, sx3ChDn, sx3ChBk);
TString histName1 = Form("UnCorr_id%d_U%d-D%dvsB%d", detID, sx3ChUp, sx3ChDn, sx3ChBk);
TH2F *hist2d = (TH2F *)gDirectory->Get(histName);
TH2F *hist2d1 = (TH2F *)gDirectory->Get(histName1);
if (!hist2d)
{
hist2d = new TH2F(histName, histName,
400, 0, 16000, 400, 0, 16000);
}
if (!hist2d1)
{
hist2d1 = new TH2F(histName1, histName1,
800, -1, 1, 800, 0, 4000);
}
if (sx3EBk > 100 || sx3EUp > 100 || sx3EDn > 100)
{
hSX3FvsB_g->Fill(sx3EUp + sx3EDn, sx3EBk);
// Use the correlated triplet directly
dataPoints[{detID, sx3ChBk, sx3ChUp, sx3ChDn}]
.emplace_back(sx3EBk, sx3EUp, sx3EDn);
}
hist2d->Fill(sx3EUp + sx3EDn, sx3EBk);
hist2d1->Fill((sx3EUp - sx3EDn) / (sx3EUp + sx3EDn), sx3EBk);
}
}
}
return kTRUE;
}
const double GAIN_ACCEPTANCE_THRESHOLD = 0.3;
void GainMatchSX3::Terminate()
{
double backSlope[MAX_DET][MAX_BK] = {{0}};
bool backSlopeValid[MAX_DET][MAX_BK] = {{false}};
std::ofstream outFile("sx3_BackGains0.txt");
if (!outFile.is_open())
{
std::cerr << "Error opening sx3_BackGains.txt for writing!" << std::endl;
return;
}
// === Gain fit: (Up+Dn) vs Back, grouped by [id][bk] ===
for (int id = 0; id < MAX_DET; id++)
{
for (int bk = 0; bk < MAX_BK; bk++)
{
std::vector<double> bkE, udE;
// Collect all (Up+Dn, Back) for this id,bk
for (const auto &kv : dataPoints)
{
auto [cid, cbk, u, d] = kv.first;
if (cid != id || cbk != bk)
continue;
for (const auto &pr : kv.second)
{
double eBk, eUp, eDn;
std::tie(eBk, eUp, eDn) = pr;
if ((eBk < 100) || (eUp < 100) || (eDn < 100))
continue;
bkE.push_back(eBk);
udE.push_back(eUp + eDn);
}
}
if (bkE.size() < 5)
continue; // not enough statistics
// Build graph with errors
const double fixedError = 0.0; // ADC channels
std::vector<double> exVals(udE.size(), 0.0); // no x error
std::vector<double> eyVals(udE.size(), fixedError); // constant y error
TGraphErrors g(udE.size(), udE.data(), bkE.data(),
exVals.data(), eyVals.data());
TF1 f("f", "[0]*x", 0, 16000);
// f.SetParameter(0, 1.0); // initial slope
if (drawCanvases)
{
g.SetTitle(Form("Detector %d Back %d: (Up+Dn) vs Back", id, bk));
g.SetMarkerStyle(20);
g.SetMarkerColor(kBlue);
g.Draw("AP");
g.Fit(&f, interactiveMode ? "Q" : "QNR");
if (verboseFit)
{
double chi2 = f.GetChisquare();
int ndf = f.GetNDF();
double reducedChi2 = (ndf != 0) ? chi2 / ndf : -1;
std::cout << Form("Det%d Back%d → Slope: %.4f | χ²/ndf = %.2f/%d = %.2f",
id, bk, f.GetParameter(0), chi2, ndf, reducedChi2)
<< std::endl;
}
if (interactiveMode)
{
c.Update();
gPad->WaitPrimitive();
}
else
{
c.Close();
}
}
else
{
g.Fit(&f, "QNR");
}
double slope = 1 / f.GetParameter(0);
if (std::abs(slope - 1.0) < 0.3) // sanity check
{
backSlope[id][bk] = slope;
backSlopeValid[id][bk] = true;
outFile << id << " " << bk << " " << slope << "\n";
printf("Back slope Det%d Bk%d → %.4f\n", id, bk, slope);
}
else
{
std::cerr << "Warning: Bad slope for Det" << id << " Bk" << bk
<< " slope=" << slope << std::endl;
}
}
}
outFile.close();
std::cout << "Back gain matching complete." << std::endl;
// === Create histograms ===
TH2F *hFVB = new TH2F("hFVB", "Corrected Up+Dn vs Corrected Back;Up+Dn E;Corrected Back E",
600, 0, 16000, 600, 0, 16000);
TH2F *hAsym = new TH2F("hAsym", "Up vs Dn divide corrected back;Up/Back E;Dn/Back E",
400, 0.0, 1.0, 400, 0.0, 1.0);
TH2F *hAsymUnorm = new TH2F("hAsymUnorm", "Up vs Dn;Up E;Dn E",
800, 0.0, 4000.0, 800, 0.0, 4000.0);
// Fill histograms using corrected back energies
for (const auto &kv : dataPoints)
{
auto [id, bk, u, d] = kv.first;
if (!backSlopeValid[id][bk])
continue;
double slope = backSlope[id][bk];
for (const auto &pr : kv.second)
{
double eBk, eUp, eDn;
std::tie(eBk, eUp, eDn) = pr;
double updn = eUp + eDn;
if (updn == 0 || eBk == 0)
continue;
double correctedBack = eBk * slope;
double asym = (eUp - eDn) / updn;
hFVB->Fill(updn, correctedBack);
hAsym->Fill(eUp / correctedBack, eDn / correctedBack);
hAsymUnorm->Fill(eUp, eDn);
TString histNamex = Form("CorrBack_id%d_U%d-D%dvsB%d", id, u, d, bk);
TH2F *hist2dx = (TH2F *)gDirectory->Get(histNamex);
if (!hist2dx)
{
hist2dx = new TH2F(histNamex, histNamex,
800, -1, 1, 800, 0, 4000);
}
hist2dx->Fill((eUp - eDn) / (eUp + eDn), correctedBack);
}
}
// plotter.FlushToDisk();
}

View File

@ -1,114 +0,0 @@
#ifndef GainMatchSX3_h
#define GainMatchSX3_h
#include <TROOT.h>
#include <TChain.h>
#include <TFile.h>
#include <TSelector.h>
#include "Armory/ClassDet.h"
class GainMatchSX3 : public TSelector {
public :
TTree *fChain; //!pointer to the analyzed TTree or TChain
// Fixed size dimensions of array or collections stored in the TTree if any.
// Declaration of leaf types
Det sx3;
Det qqq;
Det pc ;
ULong64_t evID;
UInt_t run;
// List of branches
TBranch *b_eventID; //!
TBranch *b_run; //!
TBranch *b_sx3Multi; //!
TBranch *b_sx3ID; //!
TBranch *b_sx3Ch; //!
TBranch *b_sx3E; //!
TBranch *b_sx3T; //!
TBranch *b_qqqMulti; //!
TBranch *b_qqqID; //!
TBranch *b_qqqCh; //!
TBranch *b_qqqE; //!
TBranch *b_qqqT; //!
TBranch *b_pcMulti; //!
TBranch *b_pcID; //!
TBranch *b_pcCh; //!
TBranch *b_pcE; //!
TBranch *b_pcT; //!
GainMatchSX3(TTree * /*tree*/ =0) : fChain(0) { }
virtual ~GainMatchSX3() { }
virtual Int_t Version() const { return 2; }
virtual void Begin(TTree *tree);
virtual void SlaveBegin(TTree *tree);
virtual void Init(TTree *tree);
virtual Bool_t Notify();
virtual Bool_t Process(Long64_t entry);
virtual Int_t GetEntry(Long64_t entry, Int_t getall = 0) { return fChain ? fChain->GetTree()->GetEntry(entry, getall) : 0; }
virtual void SetOption(const char *option) { fOption = option; }
virtual void SetObject(TObject *obj) { fObject = obj; }
virtual void SetInputList(TList *input) { fInput = input; }
virtual TList *GetOutputList() const { return fOutput; }
virtual void SlaveTerminate();
virtual void Terminate();
ClassDef(GainMatchSX3,0);
};
#endif
#ifdef GainMatchSX3_cxx
void GainMatchSX3::Init(TTree *tree){
// Set branch addresses and branch pointers
if (!tree) return;
fChain = tree;
fChain->SetMakeClass(1);
fChain->SetBranchAddress("evID", &evID, &b_eventID);
fChain->SetBranchAddress("run", &run, &b_run);
sx3.SetDetDimension(24,12);
qqq.SetDetDimension(4,32);
pc.SetDetDimension(2,24);
fChain->SetBranchAddress("sx3Multi", &sx3.multi, &b_sx3Multi);
fChain->SetBranchAddress("sx3ID", &sx3.id, &b_sx3ID);
fChain->SetBranchAddress("sx3Ch", &sx3.ch, &b_sx3Ch);
fChain->SetBranchAddress("sx3E", &sx3.e, &b_sx3E);
fChain->SetBranchAddress("sx3T", &sx3.t, &b_sx3T);
fChain->SetBranchAddress("qqqMulti", &qqq.multi, &b_qqqMulti);
fChain->SetBranchAddress("qqqID", &qqq.id, &b_qqqID);
fChain->SetBranchAddress("qqqCh", &qqq.ch, &b_qqqCh);
fChain->SetBranchAddress("qqqE", &qqq.e, &b_qqqE);
fChain->SetBranchAddress("qqqT", &qqq.t, &b_qqqT);
fChain->SetBranchAddress("pcMulti", &pc.multi, &b_pcMulti);
fChain->SetBranchAddress("pcID", &pc.id, &b_pcID);
fChain->SetBranchAddress("pcCh", &pc.ch, &b_pcCh);
fChain->SetBranchAddress("pcE", &pc.e, &b_pcE);
fChain->SetBranchAddress("pcT", &pc.t, &b_pcT);
}
Bool_t GainMatchSX3::Notify(){
return kTRUE;
}
void GainMatchSX3::SlaveBegin(TTree * /*tree*/){
TString option = GetOption();
}
void GainMatchSX3::SlaveTerminate(){
}
#endif // #ifdef GainMatchSX3_cxx

View File

@ -1,420 +0,0 @@
#define GainMatchSX3Front_cxx
#include "GainMatchSX3Front.h"
#include <TH2.h>
#include <TF1.h>
#include <TStyle.h>
#include <TCanvas.h>
#include <TMath.h>
#include <TCutG.h>
#include <fstream>
#include <utility>
#include <algorithm>
#include <TProfile.h>
#include "Armory/ClassSX3.h"
#include "TGraphErrors.h"
#include "TMultiDimFit.h"
#include "TVector3.h"
TH2F *hSX3FvsB;
TH2F *hSX3FvsB_g;
TH2F *hsx3IndexVE;
TH2F *hsx3IndexVE_g;
TH2F *hSX3;
TH2F *hsx3Coin;
int padID = 0;
SX3 sx3_contr;
TCutG *cut;
TCutG *cut1;
std::map<std::tuple<int, int, int, int>, std::vector<std::tuple<double, double, double>>> dataPoints;
TCanvas c(Form("canvas"), "Fit", 800, 600);
// Gain arrays
const int MAX_DET = 24;
const int MAX_UP = 4;
const int MAX_DOWN = 4;
const int MAX_BK = 4;
double backGain[MAX_DET][MAX_BK] = {{0}};
bool backGainValid[MAX_DET][MAX_BK] = {{false}};
double frontGain[MAX_DET][MAX_BK][MAX_UP][MAX_DOWN] = {{{{0}}}};
bool frontGainValid[MAX_DET][MAX_BK][MAX_UP][MAX_DOWN] = {{{{false}}}};
double uvdslope[MAX_DET][MAX_BK][MAX_UP][MAX_DOWN] = {{{{0}}}};
// ==== Configuration Flags ====
const bool interactiveMode = true; // If true: show canvas + wait for user
const bool verboseFit = true; // If true: print fit summary and chi²
const bool drawCanvases = true; // If false: canvases won't be drawn at all
void GainMatchSX3Front::Begin(TTree * /*tree*/)
{
TString option = GetOption();
hSX3FvsB = new TH2F("hSX3FvsB", "SX3 Front vs Back; Front E; Back E", 800, 0, 16000, 800, 0, 16000);
hSX3FvsB_g = new TH2F("hSX3FvsB_g", "SX3 Front vs Back; Front E; Back E", 800, 0, 16000, 800, 0, 16000);
hsx3IndexVE = new TH2F("hsx3IndexVE", "SX3 index vs Energy; sx3 index ; Energy", 24 * 12, 0, 24 * 12, 400, 0, 5000);
hsx3IndexVE_g = new TH2F("hsx3IndexVE_g", "SX3 index vs Energy; sx3 index ; Energy", 24 * 12, 0, 24 * 12, 400, 0, 5000);
hSX3 = new TH2F("hSX3", "SX3 Front v Back; Fronts; Backs", 8, 0, 8, 4, 0, 4);
hsx3Coin = new TH2F("hsx3Coin", "SX3 Coincident", 24 * 12, 0, 24 * 12, 24 * 12, 0, 24 * 12);
sx3_contr.ConstructGeo();
// Load the TCutG object
TFile *cutFile = TFile::Open("sx3cut.root");
bool cutLoaded = (cut != nullptr);
cut = dynamic_cast<TCutG *>(cutFile->Get("sx3cut"));
if (!cut)
{
std::cerr << "Error: Could not find TCutG named 'sx3cut' in sx3cut.root" << std::endl;
return;
}
cut->SetName("sx3cut"); // Ensure the cut has the correct name
// Load the TCutG object
TFile *cutFile1 = TFile::Open("UvD.root");
bool cut1Loaded = (cut1 != nullptr);
cut1 = dynamic_cast<TCutG *>(cutFile1->Get("UvD"));
if (!cut1)
{
std::cerr << "Error: Could not find TCutG named 'UvD' in UvD.root" << std::endl;
return;
}
cut1->SetName("UvD");
std::string filename = "sx3_BackGains.txt";
std::ifstream infile(filename);
if (!infile.is_open())
{
std::cerr << "Error opening " << filename << "!" << std::endl;
return;
}
int id, bk;
double gain;
while (infile >> id >> bk >> gain)
{
backGain[id][bk] = gain;
if (backGain[id][bk] > 0)
backGainValid[id][bk] = true;
else
backGainValid[id][bk] = false;
}
SX3 sx3_contr;
}
Bool_t GainMatchSX3Front::Process(Long64_t entry)
{
b_sx3Multi->GetEntry(entry);
b_sx3ID->GetEntry(entry);
b_sx3Ch->GetEntry(entry);
b_sx3E->GetEntry(entry);
b_sx3T->GetEntry(entry);
sx3.CalIndex();
std::vector<std::pair<int, int>> ID;
for (int i = 0; i < sx3.multi; i++)
{
for (int j = i + 1; j < sx3.multi; j++)
{
// if (sx3.id[i] == 3)
hsx3Coin->Fill(sx3.index[i], sx3.index[j]);
}
if (sx3.e[i] > 100)
{
ID.push_back(std::pair<int, int>(sx3.id[i], i));
hsx3IndexVE->Fill(sx3.index[i], sx3.e[i]);
}
}
if (ID.size() > 0)
{
std::sort(ID.begin(), ID.end(), [](const std::pair<int, int> &a, const std::pair<int, int> &b)
{ return a.first < b.first; });
// start with the first entry in the sorted array: channels that belong to the same detector are together in sequenmce
std::vector<std::pair<int, int>> sx3ID;
sx3ID.push_back(ID[0]);
bool found = false;
for (size_t i = 1; i < ID.size(); i++)
{ // Check if id of i belongs to the same detector and then add it to the detector ID vector
if (ID[i].first == sx3ID.back().first)
{ // count the nunmber of hits that belong to the same detector
sx3ID.push_back(ID[i]);
if (sx3ID.size() >= 3)
{
found = true;
}
}
else
{ // the next event does not belong to the same detector, abandon the first event and continue with the next one
if (!found)
{
sx3ID.clear();
sx3ID.push_back(ID[i]);
}
}
}
if (found)
{
int sx3ChUp = -1, sx3ChDn = -1, sx3ChBk = -1;
float sx3EUp = 0.0, sx3EDn = 0.0, sx3EBk = 0.0;
for (size_t i = 0; i < sx3ID.size(); i++)
{
int index = sx3ID[i].second;
// Check the channel number and assign it to the appropriate channel type
if (sx3.ch[index] < 8)
{
if (sx3.ch[index] % 2 == 0)
{
sx3ChDn = sx3.ch[index] / 2;
sx3EDn = sx3.e[index];
}
else
{
sx3ChUp = sx3.ch[index] / 2;
sx3EUp = sx3.e[index];
}
}
else
{
sx3ChBk = sx3.ch[index] - 8;
// if (sx3ChBk == 2)
// printf("Found back channel Det %d Back %d \n", sx3.id[index], sx3ChBk);
sx3EBk = sx3.e[index];
}
}
for (int i = 0; i < sx3.multi; i++)
{
// If we have a valid front and back channel, fill the histograms
hSX3->Fill(sx3ChDn + 4, sx3ChBk);
hSX3->Fill(sx3ChUp, sx3ChBk);
// Fill the histogram for the front vs back
hSX3FvsB->Fill(sx3EUp + sx3EDn, sx3EBk);
if (sx3.e[i] > 100 && sx3.id[i] == 3)
{
// back gain correction
// Fill the histogram for the front vs back with gain correction
// hSX3FvsB_g->Fill(sx3EUp + sx3EDn, sx3EBk);
// // Fill the index vs energy histogram
// hsx3IndexVE_g->Fill(sx3.index[i], sx3.e[i]);
// }
// {
TString histName = Form("hSX3FVB_id%d_U%d_D%d_B%d", sx3.id[i], sx3ChUp, sx3ChDn, sx3ChBk);
TH2F *hist2d = (TH2F *)gDirectory->Get(histName);
if (!hist2d)
{
hist2d = new TH2F(histName, Form("hSX3FVB_id%d_U%d_D%d_B%d", sx3.id[i], sx3ChUp, sx3ChDn, sx3ChBk), 400, 0, 16000, 400, 0, 16000);
}
// if (sx3ChBk == 2)
// printf("Found back channel Det %d Back %d \n", sx3.id[i], sx3ChBk);
hsx3IndexVE_g->Fill(sx3.index[i], sx3.e[i]);
hSX3FvsB_g->Fill(sx3EUp + sx3EDn, sx3EBk);
hist2d->Fill(sx3EUp + sx3EDn, sx3EBk);
if (cut && cut->IsInside(sx3EUp + sx3EDn, sx3EBk) && cut1 && cut1->IsInside(sx3EUp / sx3EBk, sx3EDn / sx3EBk))
{
if (backGainValid[sx3.id[i]][sx3ChBk])
{
sx3EBk *= backGain[sx3.id[i]][sx3ChBk];
}
// Accumulate data for gain matching
dataPoints[{sx3.id[i], sx3ChBk, sx3ChUp, sx3ChDn}].emplace_back(sx3EBk, sx3EUp, sx3EDn);
}
}
}
}
}
return kTRUE;
}
void GainMatchSX3Front::Terminate()
{
std::map<std::tuple<int, int, int, int>, TVectorD> fitCoefficients;
// === Gain matching ===
std::ofstream outFile("sx3_GainMatchfront.txt");
if (!outFile.is_open())
{
std::cerr << "Error opening output file!" << std::endl;
return;
}
TH2F *hUvD = new TH2F("hUvD", " UvD; Up/CorrBack; Down/CorrBack", 600, 0, 1, 600, 0, 1);
for (const auto &kv : dataPoints)
{
auto [id, bk, u, d] = kv.first;
const auto &pts = kv.second;
if (pts.size() < 50)
continue;
std::vector<double> uE, dE, udE, corrBkE;
for (const auto &pr : pts)
{
double eBkCorr, eUp, eDn;
std::tie(eBkCorr, eUp, eDn) = pr;
if ((eBkCorr < 100) || (eUp < 100) || (eDn < 100))
continue; // Skip if any energy is zero
uE.push_back(eUp / eBkCorr);
dE.push_back(eDn / eBkCorr);
udE.push_back(eUp + eDn);
corrBkE.push_back(eBkCorr);
hUvD->Fill(eUp / eBkCorr, eDn / eBkCorr);
}
if (uE.size() < 5 || dE.size() < 5 || corrBkE.size() < 5)
continue; // Ensure we have enough points for fitting
// TGraph g(udE.size(), udE.data(), corrBkE.data());
// TF1 f("f", "[0]*x", 0, 20000);
// f.SetParameter(0, 1.0); // Initial guess for the gain
// g.Fit(&f, "R");
const double fixedError = 0.0; // in ADC channels
std::vector<double> xVals, yVals, exVals, eyVals;
// Build data with fixed error
for (size_t i = 0; i < udE.size(); ++i)
{
double x = uE[i]; // front energy
double y = dE[i]; // back energy
xVals.push_back(x);
yVals.push_back(y);
exVals.push_back(fixedError); // error in up energy
eyVals.push_back(0.); // error in down energy
}
// Build TGraphErrors with errors
TGraphErrors g(xVals.size(), xVals.data(), yVals.data(), exVals.data(), eyVals.data());
TF1 f("f", "[0]*x+[1]", 0, 16000);
f.SetParameter(0, -1.0); // Initial guess
if (drawCanvases)
{
g.SetTitle(Form("Detector %d: U%d D%d B%d", id, u, d, bk));
g.SetMarkerStyle(20);
g.SetMarkerColor(kBlue);
g.Draw("AP");
g.Fit(&f, interactiveMode ? "Q" : "QNR"); // 'R' avoids refit, 'N' skips drawing
if (verboseFit)
{
double chi2 = f.GetChisquare();
int ndf = f.GetNDF();
double reducedChi2 = (ndf != 0) ? chi2 / ndf : -1;
std::cout << Form("Det%d U%d D%d B%d → Gain: %.4f | χ²/ndf = %.2f/%d = %.2f",
id, u, d, bk, f.GetParameter(0), chi2, ndf, reducedChi2)
<< std::endl;
}
if (interactiveMode)
{
c.Update();
gPad->WaitPrimitive();
}
else
{
c.Close(); // Optionally avoid clutter in batch
}
}
else
{
g.Fit(&f, "QNR");
}
double slope = f.GetParameter(0);
double intercept = f.GetParameter(1);
// printf("Front gain Det%d Back%d Up%dDn%d → %.4f\n", id, bk, u, d, frontGain[id][bk][u][d]);
if (std::abs(slope + 1.0) < 0.3) // sanity check
{
frontGain[id][bk][u][d] = slope;
frontGainValid[id][bk][u][d] = true;
outFile << id << " " << bk << " " << u << " " << d << " " << TMath::Abs(slope)/intercept << " " << 1.0/intercept << std::endl;
printf("Back slope Det%d Bk%d → %.4f\n", id, bk, slope);
}
else
{
std::cerr << "Warning: Bad slope for Det" << id << " Bk" << bk
<< " slope=" << f.GetParameter(0) << std::endl;
}
}
outFile.close();
std::cout << "Gain matching complete." << std::endl;
// === Stage 3: Create corrected histogram ===
TH2F *hCorrectedFvB = new TH2F("hCorrectedFvB", "Corrected;Corrected Front Sum;Corrected Back", 800, 0, 8000, 800, 0, 8000);
TH2F *hCorrectedUvD = new TH2F("hCorrectedUvD", "Corrected UvD; UvD Up; UvD Down", 600, 0, 1, 600, 0, 1);
for (const auto &kv : dataPoints)
{
auto [id, bk, u, d] = kv.first;
double front;
if (frontGainValid[id][bk][u][d])
front = frontGain[id][bk][u][d];
else
continue;
for (const auto &pr : kv.second)
{
double eBk, eUp, eDn;
std::tie(eBk, eUp, eDn) = pr;
double corrUp = eUp * front;
// double corrDn = eDn * front;
hCorrectedFvB->Fill(corrUp + eDn, eBk);
hCorrectedUvD->Fill(corrUp / eBk, eDn / eBk);
}
}
// // === Final canvas ===
// gStyle->SetOptStat(1110);
// TCanvas *c1 = new TCanvas("c1", "Gain Correction Results", 1200, 600);
// c1->Divide(2, 1);
// c1->cd(1);
// hSX3FvsB_g->SetTitle("Before Correction (Gated)");
// hSX3FvsB_g->GetXaxis()->SetTitle("Measured Front Sum (E_Up + E_Dn)");
// hSX3FvsB_g->GetYaxis()->SetTitle("Measured Back E");
// hSX3FvsB_g->Draw("colz");
// c1->cd(2);
// hCorrectedFvB->SetTitle("After Correction");
// hCorrectedFvB->Draw("colz");
// TF1 *diag = new TF1("diag", "x", 0, 40000);
// diag->SetLineColor(kRed);
// diag->SetLineWidth(2);
// diag->Draw("same");
std::cout << "Terminate() completed successfully." << std::endl;
}

View File

@ -1,104 +0,0 @@
#ifndef GainMatchSX3Front_h
#define GainMatchSX3Front_h
#include <TROOT.h>
#include <TChain.h>
#include <TFile.h>
#include <TSelector.h>
#include "Armory/ClassDet.h"
class GainMatchSX3Front : public TSelector {
public :
TTree *fChain; //!pointer to the analyzed TTree or TChain
// Fixed size dimensions of array or collections stored in the TTree if any.
// Declaration of leaf types
Det sx3;
Det qqq;
Det pc ;
ULong64_t evID;
UInt_t run;
// List of branches
TBranch *b_eventID; //!
TBranch *b_run; //!
TBranch *b_sx3Multi; //!
TBranch *b_sx3ID; //!
TBranch *b_sx3Ch; //!
TBranch *b_sx3E; //!
TBranch *b_sx3T; //!
TBranch *b_qqqMulti; //!
TBranch *b_qqqID; //!
TBranch *b_qqqCh; //!
TBranch *b_qqqE; //!
TBranch *b_qqqT; //!
TBranch *b_pcMulti; //!
TBranch *b_pcID; //!
TBranch *b_pcCh; //!
TBranch *b_pcE; //!
TBranch *b_pcT; //!
GainMatchSX3Front(TTree * /*tree*/ =0) : fChain(0) { }
virtual ~GainMatchSX3Front() { }
virtual Int_t Version() const { return 2; }
virtual void Begin(TTree *tree);
virtual void SlaveBegin(TTree *tree);
virtual void Init(TTree *tree);
virtual Bool_t Notify();
virtual Bool_t Process(Long64_t entry);
virtual Int_t GetEntry(Long64_t entry, Int_t getall = 0) { return fChain ? fChain->GetTree()->GetEntry(entry, getall) : 0; }
virtual void SetOption(const char *option) { fOption = option; }
virtual void SetObject(TObject *obj) { fObject = obj; }
virtual void SetInputList(TList *input) { fInput = input; }
virtual TList *GetOutputList() const { return fOutput; }
virtual void SlaveTerminate();
virtual void Terminate();
ClassDef(GainMatchSX3Front,0);
};
#endif
#ifdef GainMatchSX3Front_cxx
void GainMatchSX3Front::Init(TTree *tree){
// Set branch addresses and branch pointers
if (!tree) return;
fChain = tree;
fChain->SetMakeClass(1);
fChain->SetBranchAddress("evID", &evID, &b_eventID);
fChain->SetBranchAddress("run", &run, &b_run);
sx3.SetDetDimension(24,12);
qqq.SetDetDimension(4,32);
pc.SetDetDimension(2,24);
fChain->SetBranchAddress("sx3Multi", &sx3.multi, &b_sx3Multi);
fChain->SetBranchAddress("sx3ID", &sx3.id, &b_sx3ID);
fChain->SetBranchAddress("sx3Ch", &sx3.ch, &b_sx3Ch);
fChain->SetBranchAddress("sx3E", &sx3.e, &b_sx3E);
fChain->SetBranchAddress("sx3T", &sx3.t, &b_sx3T);
}
Bool_t GainMatchSX3Front::Notify(){
return kTRUE;
}
void GainMatchSX3Front::SlaveBegin(TTree * /*tree*/){
TString option = GetOption();
}
void GainMatchSX3Front::SlaveTerminate(){
}
#endif // #ifdef GainMatchSX3Front_cxx

View File

@ -1,245 +0,0 @@
#define GainMatchSX3_cxx
#include "GainMatchSX3.h"
#include "Armory/ClassSX3.h"
#include <TFile.h>
#include <TTree.h>
#include <TGraph.h>
#include <TF1.h>
#include <TH2F.h>
#include <TCanvas.h>
#include <TStyle.h>
#include <TApplication.h>
#include <map>
#include <vector>
#include <tuple>
#include <fstream>
#include <iostream>
#include <algorithm>
// Constants
const int MAX_DET = 24;
const int MAX_BK = 4;
const int MAX_UP = 4;
const int MAX_DOWN = 4;
// Gain arrays
double backGain[MAX_DET][MAX_BK][MAX_UP][MAX_DOWN] = {{{{0}}}};
bool backGainValid[MAX_DET][MAX_BK][MAX_UP][MAX_DOWN] = {{{{false}}}};
double frontGain[MAX_DET][MAX_BK][MAX_UP][MAX_DOWN] = {{{{0}}}};
bool frontGainValid[MAX_DET][MAX_BK][MAX_UP][MAX_DOWN] = {{{{false}}}};
// Data container
std::map<std::tuple<int, int, int, int>, std::vector<std::tuple<double, double, double>>> dataPoints;
// Load back gains
void LoadBackGains(const std::string &filename)
{
std::ifstream infile(filename);
if (!infile.is_open())
{
std::cerr << "Error opening " << filename << "!" << std::endl;
return;
}
int id, bk, u, d;
double gain;
while (infile >> id >> bk >> u >> d >> gain)
{
backGain[id][bk][u][d] = gain;
backGainValid[id][bk][u][d] = true;
}
infile.close();
std::cout << "Loaded back gains from " << filename << std::endl;
SX3 sx3_contr;
}
// Front gain matching function
Bool_t GainMatchSX3::Process(Long64_t entry)
{
// Link SX3 branches
b_sx3Multi->GetEntry(entry);
b_sx3ID->GetEntry(entry);
b_sx3Ch->GetEntry(entry);
b_sx3E->GetEntry(entry);
b_sx3T->GetEntry(entry);
sx3.CalIndex();
Long64_t nentries = tree->GetEntries(Long64_t entry);
std::cout << "Total entries: " << nentries << std::endl;
TH2F *hBefore = new TH2F("hBefore", "Before Correction;E_Up+E_Dn;Back Energy", 400, 0, 40000, 400, 0, 40000);
TH2F *hAfter = new TH2F("hAfter", "After Correction;E_Up+E_Dn;Corrected Back Energy", 400, 0, 40000, 400, 0, 40000);
for (Long64_t entry = 0; entry < nentries; ++entry)
{
tree->GetEntry(entry);
sx3.CalIndex();
std::vector<std::pair<int, int>> ID;
for (int i = 0; i < sx3.multi; i++)
{
if (sx3.e[i] > 100)
{
ID.push_back({sx3.id[i], i});
}
}
if (ID.empty())
continue;
// Sort by id
std::sort(ID.begin(), ID.end(), [](auto &a, auto &b) { return a.first < b.first; });
std::vector<std::pair<int, int>> sx3ID;
sx3ID.push_back(ID[0]);
bool found = false;
for (size_t i = 1; i < ID.size(); i++)
{
if (ID[i].first == sx3ID.back().first)
{
sx3ID.push_back(ID[i]);
if (sx3ID.size() >= 3)
found = true;
}
else if (!found)
{
sx3ID.clear();
sx3ID.push_back(ID[i]);
}
}
if (!found)
continue;
int sx3ChUp = -1, sx3ChDn = -1, sx3ChBk = -1;
float sx3EUp = 0.0, sx3EDn = 0.0, sx3EBk = 0.0;
int sx3id = sx3ID[0].first;
for (auto &[id, idx] : sx3ID)
{
if (sx3.ch[idx] < 8)
{
if (sx3.ch[idx] % 2 == 0)
{
sx3ChDn = sx3.ch[idx] / 2;
sx3EDn = sx3.e[idx];
}
else
{
sx3ChUp = sx3.ch[idx] / 2;
sx3EUp = sx3.e[idx];
}
}
else
{
sx3ChBk = sx3.ch[idx] - 8;
sx3EBk = sx3.e[idx];
}
}
if (sx3ChUp < 0 || sx3ChDn < 0 || sx3ChBk < 0)
continue;
if (!backGainValid[sx3id][sx3ChBk][sx3ChUp][sx3ChDn])
continue;
double corrBk = sx3EBk * backGain[sx3id][sx3ChBk][sx3ChUp][sx3ChDn];
hBefore->Fill(sx3EUp + sx3EDn, sx3EBk);
hAfter->Fill(sx3EUp + sx3EDn, corrBk);
dataPoints[{sx3id, sx3ChBk, sx3ChUp, sx3ChDn}].emplace_back(corrBk, sx3EUp, sx3EDn);
}
// === Fit front gains ===
std::ofstream outFile("sx3_GainMatchfront.txt");
if (!outFile.is_open())
{
std::cerr << "Error opening sx3_GainMatchfront.txt!" << std::endl;
return;
}
for (const auto &kv : dataPoints)
{
auto [id, bk, u, d] = kv.first;
const auto &pts = kv.second;
if (pts.size() < 5)
continue;
std::vector<double> udE, corrBkE;
for (const auto &pr : pts)
{
double eBkCorr, eUp, eDn;
std::tie(eBkCorr, eUp, eDn) = pr;
udE.push_back(eUp + eDn);
corrBkE.push_back(eBkCorr);
}
TGraph g(udE.size(), udE.data(), corrBkE.data());
TF1 f("f", "[0]*x", 0, 40000);
g.Fit(&f, "QNR");
frontGain[id][bk][u][d] = f.GetParameter(0);
frontGainValid[id][bk][u][d] = true;
outFile << id << " " << bk << " " << u << " " << d << " " << frontGain[id][bk][u][d] << std::endl;
printf("Front gain Det%d Back%d Up%dDn%d → %.4f\n", id, bk, u, d, frontGain[id][bk][u][d]);
}
outFile.close();
std::cout << "Front gain matching complete." << std::endl;
// === Draw diagnostic plots ===
gStyle->SetOptStat(1110);
TCanvas *c = new TCanvas("c", "Gain Matching Diagnostics", 1200, 600);
c->Divide(2, 1);
c->cd(1);
hBefore->Draw("colz");
TF1 *diag1 = new TF1("diag1", "x", 0, 40000);
diag1->SetLineColor(kRed);
diag1->Draw("same");
c->cd(2);
hAfter->Draw("colz");
TF1 *diag2 = new TF1("diag2", "x", 0, 40000);
diag2->SetLineColor(kRed);
diag2->Draw("same");
}
int main(int argc, char **argv)
{
TApplication app("app", &argc, argv);
// Load back gains
LoadBackGains("sx3_GainMatchback.txt");
// Open tree
TFile *f = TFile::Open("input_tree.root"); // <<< Change file name
if (!f || f->IsZombie())
{
std::cerr << "Cannot open input_tree.root!" << std::endl;
return 1;
}
TTree *tree = (TTree *)f->Get("tree");
if (!tree)
{
std::cerr << "Tree not found!" << std::endl;
return 1;
}
// Run front gain matching
GainMatchSX3(tree);
app.Run();
return 0;
}

View File

@ -1,133 +0,0 @@
#include <fstream>
#include <sstream>
#include <vector>
#include <map>
#include <iostream>
#include <TGraph.h>
#include <TF1.h>
#include <TCanvas.h>
#include <TH1.h>
void MatchAndPlotCentroids() {
// Open the centroid data file
std::ifstream inputFile("centroids.txt");
if (!inputFile.is_open()) {
std::cerr << "Error: Could not open Centroids.txt" << std::endl;
return;
}
// Data structure to store centroids by histogram and peak number
std::map<int, std::map<int, double>> centroidData;
// Read data from the file
std::string line;
while (std::getline(inputFile, line)) {
std::istringstream iss(line);
int histogramIndex, peakNumber;
double centroid;
if (iss >> histogramIndex >> peakNumber >> centroid) {
centroidData[histogramIndex][peakNumber] = centroid;
}
}
inputFile.close();
// Ensure histogram 24 exists and has data
if (centroidData.find(1) == centroidData.end()) {
std::cerr << "Error: Histogram 0 not found in the data!" << std::endl;
return;
}
// Reference centroids from histogram 24
const auto& referenceCentroids = centroidData[1];
std::ofstream outputFile("slope_intercept_results.txt");
if (!outputFile.is_open()) {
std::cerr << "Error: Could not open the output file for writing!" << std::endl;
return;
}
outputFile << "Histogram Number\tSlope\tIntercept\n";
// Loop through histograms 25 to 47
for (int targetHist = 0; targetHist <= 23; targetHist++) {
// Ensure the target histogram exists and matches in peak numbers
if (centroidData.find(targetHist) == centroidData.end() || centroidData[targetHist].size() != referenceCentroids.size()) {
//4th cnetroid data point for 19 was generated using the 3 datqa points for the slope of wires 0 and 19
std::cout << "Skipping Histogram " << targetHist << " due to mismatched or missing data." << std::endl;
continue;
}
// Prepare x and y values for TGraph
std::vector<double> xValues, yValues;
for (const auto& [peakNumber, refCentroid] : referenceCentroids) {
if (centroidData[targetHist].find(peakNumber) != centroidData[targetHist].end()) {
yValues.push_back(refCentroid);
xValues.push_back(centroidData[targetHist][peakNumber]);
} else {
std::cerr << "Warning: Peak " << peakNumber << " missing in histogram " << targetHist << std::endl;
}
}
if (xValues.size() < 3) {
std::cout << "Skipping Histogram " << targetHist << " as it has less than 3 matching centroids." << std::endl;
continue;
}
// Create a TGraph
TCanvas *c1 = new TCanvas(Form("c_centroid_1_vs_%d", targetHist), Form("Centroid 1 vs %d", targetHist), 800, 600);
TGraph *graph = new TGraph(xValues.size(), &xValues[0], &yValues[0]);
graph->SetTitle(Form("Centroid of Histogram %d vs 1", targetHist));
graph->GetYaxis()->SetTitle("Centroid of Histogram 1");
graph->GetXaxis()->SetTitle(Form("Centroid of Histogram %d", targetHist));
graph->SetMarkerStyle(20); // Full circle marker
graph->SetMarkerSize(1.0);
graph->SetMarkerColor(kBlue);
// Draw the graph
graph->Draw("AP");
double minX = *std::min_element(xValues.begin(), xValues.end());
double maxX = *std::max_element(xValues.begin(), xValues.end());
// Fit the data with a linear function
TF1 *fitLine = new TF1("fitLine", "pol1", minX, maxX); // Adjust range as needed
fitLine->SetLineColor(kRed); // Set the line color to distinguish it
fitLine->SetLineWidth(2); // Thicker line for visibility
graph->Fit(fitLine, "M");
fitLine->Draw("same");
fitLine->SetParLimits(0, -10, 10); // Limit intercept between -10 and 10
fitLine->SetParLimits(1, 0, 2);
// Extract slope and intercept
double slope = fitLine->GetParameter(1);
double intercept = fitLine->GetParameter(0);
outputFile << targetHist << "\t" << slope << "\t" << intercept << "\n";
std::cout << "Histogram 24 vs " << targetHist << ": Slope = " << slope << ", Intercept = " << intercept << std::endl;
std::vector<double> residuals;
for (size_t i = 0; i < xValues.size(); ++i) {
double fittedY = fitLine->Eval(xValues[i]); // Evaluate fitted function at x
double residual = yValues[i] - fittedY; // Residual = observed - fitted
residuals.push_back(residual);
}
// Create a graph for the residuals
/*TGraph *residualGraph = new TGraph(residuals.size(), &xValues[0], &residuals[0]);
residualGraph->SetTitle(Form("Residuals for Histogram 24 vs %d", targetHist));
residualGraph->GetYaxis()->SetTitle("Residuals");
residualGraph->GetXaxis()->SetTitle(Form("Centroid of Histogram %d", targetHist));
residualGraph->SetMarkerStyle(20);
residualGraph->SetMarkerSize(1.0);
residualGraph->SetMarkerColor(kGreen);
// Draw the residuals plot below the original plot (can be on a new canvas if preferred)
TCanvas *c2 = new TCanvas(Form("c_residuals_24_vs_%d", targetHist), Form("Residuals for Centroid 24 vs %d", targetHist), 800, 400);
residualGraph->Draw("AP");*/
c1->Update();
//c2->Update();
std::cout << "Press Enter to continue..." << std::endl;
//std::cin.get();
c1->WaitPrimitive();
//c2->WaitPrimitive();
//std::cin.get();
//std::cin.get();
}
outputFile.close();
std::cout << "Results written to slope_intercept_results.txt" << std::endl;
}

View File

@ -1,454 +0,0 @@
#define PCGainMatch_cxx
#include "PCGainMatch.h"
#include <TH2.h>
#include <TStyle.h>
#include <TCanvas.h>
#include <TMath.h>
#include <TCutG.h>
#include <utility>
#include <algorithm>
#include "Armory/ClassSX3.h"
#include "Armory/ClassPW.h"
#include "TVector3.h"
TH2F * hsx3IndexVE;
TH2F * hqqqIndexVE;
TH2F * hpcIndexVE;
TH2F * hsx3Coin;
TH2F * hqqqCoin;
TH2F * hpcCoin;
TH2F * hqqqPolar;
TH2F * hsx3VpcIndex;
TH2F * hqqqVpcIndex;
TH2F * hqqqVpcE;
TH2F * hsx3VpcE;
TH2F * hanVScatsum;
TH2F * hanVScatsum_a[24];
TH2F * hanVScatsum_hcut;
TH2F * hanVScatsum_lcut;
TH2F * hAnodeHits;
TH1F * hAnodeMultiplicity;
int padID = 0;
SX3 sx3_contr;
PW pw_contr;
TVector3 hitPos;
bool HitNonZero;
TH1F * hZProj;
TCutG *AnCatSum_high;
TCutG *AnCatSum_low;
TCutG *PCCoinc_cut1;
TCutG *PCCoinc_cut2;
bool inCuth;
bool inCutl;
bool inPCCut;
void PCGainMatch::Begin(TTree * /*tree*/){
TString option = GetOption();
hsx3IndexVE = new TH2F("hsx3IndexVE", "SX3 index vs Energy; sx3 index ; Energy", 24*12, 0, 24*12, 400, 0, 5000); hsx3IndexVE->SetNdivisions( -612, "x");
hqqqIndexVE = new TH2F("hqqqIndexVE", "QQQ index vs Energy; QQQ index ; Energy", 4*2*16, 0, 4*2*16, 400, 0, 5000); hqqqIndexVE->SetNdivisions( -1204, "x");
hpcIndexVE = new TH2F("hpcIndexVE", "PC index vs Energy; PC index ; Energy", 2*24, 0, 2*24, 800, 0, 16000); hpcIndexVE->SetNdivisions( -1204, "x");
hsx3Coin = new TH2F("hsx3Coin", "SX3 Coincident", 24*12, 0, 24*12, 24*12, 0, 24*12);
hqqqCoin = new TH2F("hqqqCoin", "QQQ Coincident", 4*2*16, 0, 4*2*16, 4*2*16, 0, 4*2*16);
hpcCoin = new TH2F("hpcCoin", "PC Coincident", 2*24, 0, 2*24, 2*24, 0, 2*24);
hqqqPolar = new TH2F("hqqqPolar", "QQQ Polar ID", 16*4, -TMath::Pi(), TMath::Pi(),16, 10, 50);
hsx3VpcIndex = new TH2F("hsx3Vpcindex", "sx3 vs pc; sx3 index; pc index", 24*12, 0, 24*12, 48, 0, 48);
hsx3VpcIndex->SetNdivisions( -612, "x");
hsx3VpcIndex->SetNdivisions( -12, "y");
hqqqVpcIndex = new TH2F("hqqqVpcindex", "qqq vs pc; qqq index; pc index", 4*2*16, 0, 4*2*16, 48, 0, 48);
hqqqVpcIndex->SetNdivisions( -612, "x");
hqqqVpcIndex->SetNdivisions( -12, "y");
hqqqVpcE = new TH2F("hqqqVpcEnergy", "qqq vs pc; qqq energy; pc energy", 400, 0, 5000, 400, 0, 5000);
hqqqVpcE->SetNdivisions( -612, "x");
hqqqVpcE->SetNdivisions( -12, "y");
hsx3VpcE = new TH2F("hsx3VpcEnergy", "sx3 vs pc; sx3 energy; pc energy", 400, 0, 5000, 400, 0, 5000);
hsx3VpcE->SetNdivisions( -612, "x");
hsx3VpcE->SetNdivisions( -12, "y");
hZProj = new TH1F("hZProj", "Nos of anodes", 20, 0, 19);
hAnodeHits = new TH2F("hAnodeHits", "Anode vs Anode Energy, Anode ID; Anode E", 24,0 , 23, 400, 0 , 20000);
hAnodeMultiplicity = new TH1F("hAnodeMultiplicity", "Number of Anodes/Event", 40, 0, 40);
hanVScatsum = new TH2F("hanVScatsum", "Anode vs Cathode Sum; Anode E; Cathode E", 400,0 , 10000, 800, 0 , 16000);
for (int i = 0; i < 24; i++) {
TString histName = Form("hAnodeVsCathode_%d", i);
TString histTitle = Form("Anode %d vs Cathode Sum; Anode E; Cathode Sum E", i);
hanVScatsum_a[i] = new TH2F(histName, histTitle, 400, 0, 10000, 400, 0, 16000);
}
hanVScatsum_lcut = new TH2F("hanVScatsum_LCUT", "Anode vs Cathode Sum; Anode E; Cathode E", 400,0 , 16000, 400, 0 , 16000);
hanVScatsum_hcut = new TH2F("hanVScatsum_HCUT", "Anode vs Cathode Sum; Anode E; Cathode E", 400,0 , 16000, 400, 0 , 16000);
sx3_contr.ConstructGeo();
pw_contr.ConstructGeo();
// TFile *f1 = new TFile("AnCatSum_high.root");
// TFile *f2 = new TFile("AnCatSum_low.root");
// TFile *f3 = new TFile("PCCoinc_cut1.root");
// TFile *f4 = new TFile("PCCoinc_cut2.root");
// AnCatSum_high= (TCutG*)f1->Get("AnCatSum_high");
// AnCatSum_low= (TCutG*)f2->Get("AnCatSum_low");
// PCCoinc_cut1= (TCutG*)f3->Get("PCCoinc_cut1");
// PCCoinc_cut2= (TCutG*)f4->Get("PCCoinc_cut2");
}
Bool_t PCGainMatch::Process(Long64_t entry){
// if (entry % 1000000 == 0) {
// std::cout << "Processing entry: " << entry << std::endl;
// }
// if ( entry > 100 ) return kTRUE;
hitPos.Clear();
HitNonZero = false;
// if( entry > 1) return kTRUE;
// printf("################### ev : %llu \n", entry);
b_sx3Multi->GetEntry(entry);
b_sx3ID->GetEntry(entry);
b_sx3Ch->GetEntry(entry);
b_sx3E->GetEntry(entry);
b_sx3T->GetEntry(entry);
b_qqqMulti->GetEntry(entry);
b_qqqID->GetEntry(entry);
b_qqqCh->GetEntry(entry);
b_qqqE->GetEntry(entry);
b_qqqT->GetEntry(entry);
b_pcMulti->GetEntry(entry);
b_pcID->GetEntry(entry);
b_pcCh->GetEntry(entry);
b_pcE->GetEntry(entry);
b_pcT->GetEntry(entry);
sx3.CalIndex();
qqq.CalIndex();
pc.CalIndex();
// sx3.Print();
//########################################################### Raw data
// //======================= PC
std::vector<std::pair<int, double>> anodeHits={};
std::vector<std::pair<int, double>> cathodeHits={};
int aID = 0;
int cID = 0;
float aE = 0;
float cE = 0;
// Define the excluded SX3 and QQQ channels
// std::unordered_set<int> excludeSX3 = {34, 35, 36, 37, 61, 62, 67, 73, 74, 75, 76, 77, 78, 79, 80, 93, 97, 100, 103, 108, 109, 110, 111, 112};
// std::unordered_set<int> excludeQQQ = {0, 17, 109, 110, 111, 112, 113, 119, 127, 128};
// inCuth=false;
// inCutl=false;
// inPCCut=false;
for( int i = 0; i < pc.multi; i ++){
if(pc.e[i]>50 && pc.multi<7){
float aESum = 0;
float cESum = 0;
if (pc.index[i] < 24 ) {
anodeHits.push_back(std::pair<int, double>(pc.index[i], pc.e[i]));
} else if (pc.index[i] >= 24) {
cathodeHits.push_back(std::pair<int, double>(pc.index[i], pc.e[i]));
}
for(int j=i+1;j<pc.multi;j++){
// if(PCCoinc_cut1->IsInside(pc.index[i], pc.index[j]) || PCCoinc_cut2->IsInside(pc.index[i], pc.index[j])){
// // hpcCoin->Fill(pc.index[i], pc.index[j]);
// inPCCut = true;
// }
hpcCoin->Fill(pc.index[i], pc.index[j]);
}
if (anodeHits.size()==1 && cathodeHits.size() >= 1) {
for (const auto& anode : anodeHits) {
// for(int l=0; l<sx3.multi; l++){
// if (sx3.index[l]==80){
aID = anode.first;
aE = anode.second;
aESum += aE;
// printf("aID : %d, aE : %f\n", aID, aE);
}
// printf("aID : %d, aE : %f, cE : %f\n", aID, aE, cE);
for (const auto& cathode : cathodeHits) {
cID = cathode.first;
cE = cathode.second;
// if(cE>cEMax){
// cEMax = cE;
// cIDMax = cID;
// }
// if(cE>cEnextMax && cE<cEMax){
// cEnextMax = cE;
// cIDnextMax = cID;
// }
cESum += cE;
}
// }
// inCuth = false;
// inCutl = false;
// inPCCut = false;
// for(int j=i+1;j<pc.multi;j++){
// if(PCCoinc_cut1->IsInside(pc.index[i], pc.index[j]) || PCCoinc_cut2->IsInside(pc.index[i], pc.index[j])){
// // hpcCoin->Fill(pc.index[i], pc.index[j]);
// inPCCut = true;
// }
// hpcCoin->Fill(pc.index[i], pc.index[j]);
// }
// Check if the accumulated energies are within the defined ranges
// if (AnCatSum_high && AnCatSum_high->IsInside(aESum, cESum)) {
// inCuth = true;
// }
// if (AnCatSum_low && AnCatSum_low->IsInside(aESum, cESum)) {
// inCutl = true;
// }
// Fill histograms based on the cut conditions
// if (inCuth && inPCCut) {
// hanVScatsum_hcut->Fill(aESum, cESum);
// }
// if (inCutl && inPCCut) {
// hanVScatsum_lcut->Fill(aESum, cESum);
// }
// for(auto anode : anodeHits){
// float aE = anode.second;
// aESum += aE;
// if(inPCCut){
hanVScatsum->Fill(aESum, cESum);
// }
if (aID < 24 && aE > 50) {
hanVScatsum_a[aID]->Fill(aE, cESum);
}
// }
// Fill histograms for the `pc` data
hpcIndexVE->Fill(pc.index[i], pc.e[i]);
// if(inPCCut){
hAnodeMultiplicity->Fill(anodeHits.size());
// }
}
}
}
// //======================= SX3
std::vector<std::pair<int, int>> ID; // first = id, 2nd = index
for( int i = 0; i < sx3.multi; i ++){
if(sx3.e[i]>50){
ID.push_back(std::pair<int, int>(sx3.id[i], i));
hsx3IndexVE->Fill( sx3.index[i], sx3.e[i] );
for( int j = i+1; j < sx3.multi; j++){
hsx3Coin->Fill( sx3.index[i], sx3.index[j]);
}
for( int j = 0; j < pc.multi; j++){
hsx3VpcIndex->Fill( sx3.index[i], pc.index[j] );
// if( sx3.ch[index] > 8 ){
// hsx3VpcE->Fill( sx3.e[i], pc.e[j] );
// }
}
}
}
if( ID.size() > 0 ){
std::sort(ID.begin(), ID.end(), [](const std::pair<int, int> & a, const std::pair<int, int> & b) {
return a.first < b.first;
} );
// printf("##############################\n");
// for( size_t i = 0; i < ID.size(); i++) printf("%zu | %d %d \n", i, ID[i].first, ID[i].second );
std::vector<std::pair<int, int>> sx3ID;
sx3ID.push_back(ID[0]);
bool found = false;
for( size_t i = 1; i < ID.size(); i++){
if( ID[i].first == sx3ID.back().first) {
sx3ID.push_back(ID[i]);
if( sx3ID.size() >= 3) {
found = true;
}
}else{
if( !found ){
sx3ID.clear();
sx3ID.push_back(ID[i]);
}
}
}
// printf("---------- sx3ID Multi : %zu \n", sx3ID.size());
if( found ){
int sx3ChUp, sx3ChDn, sx3ChBk;
float sx3EUp, sx3EDn;
// printf("------ sx3 ID : %d, multi: %zu\n", sx3ID[0].first, sx3ID.size());
for( size_t i = 0; i < sx3ID.size(); i++ ){
int index = sx3ID[i].second;
// printf(" %zu | index %d | ch : %d, energy : %d \n", i, index, sx3.ch[index], sx3.e[index]);
if( sx3.ch[index] < 8 ){
if( sx3.ch[index] % 2 == 0) {
sx3ChDn = sx3.ch[index];
sx3EDn = sx3.e[index];
}else{
sx3ChUp = sx3.ch[index];
sx3EUp = sx3.e[index];
}
}else{
sx3ChBk = sx3.ch[index];
}
for( int j = 0; j < pc.multi; j++){
// hsx3VpcIndex->Fill( sx3.index[i], pc.index[j] );
if( sx3.ch[index] > 8 && pc.index[j]<24 && pc.e[j]>50 ){
hsx3VpcE->Fill( sx3.e[i], pc.e[j] );
// hpcIndexVE->Fill( pc.index[i], pc.e[i] );
}
}
}
sx3_contr.CalSX3Pos(sx3ID[0].first, sx3ChUp, sx3ChDn, sx3ChBk, sx3EUp, sx3EDn);
hitPos = sx3_contr.GetHitPos();
HitNonZero = true;
// hitPos.Print();
}
}
// //======================= QQQ
for( int i = 0; i < qqq.multi; i ++){
// for( int j = 0; j < pc.multi; j++){
if(qqq.e[i]>50 ){
hqqqIndexVE->Fill( qqq.index[i], qqq.e[i] );
for( int j = 0; j < qqq.multi; j++){
if ( j == i ) continue;
hqqqCoin->Fill( qqq.index[i], qqq.index[j]);
}
for( int j = i + 1; j < qqq.multi; j++){
for( int k = 0; k < pc.multi; k++){
// if(qqq.e[i>50]){
hqqqVpcE->Fill( qqq.e[i], pc.e[k] );
hqqqVpcIndex->Fill( qqq.index[i], pc.index[j] );
}
// }
}
}
// }
}
// hanVScatsum->Fill(aE,cE);
if( HitNonZero){
pw_contr.CalTrack( hitPos, aID, cID);
hZProj->Fill(pw_contr.GetZ0());
}
//########################################################### Track constrcution
//############################## DO THE KINEMATICS
return kTRUE;
}
void PCGainMatch::Terminate(){
gStyle->SetOptStat("neiou");
TCanvas * canvas = new TCanvas("cANASEN", "ANASEN", 2000, 2000);
canvas->Divide(3,3);
//hsx3VpcIndex->Draw("colz");
//=============================================== pad-1
padID ++; canvas->cd(padID); canvas->cd(padID)->SetGrid(1);
hsx3IndexVE->Draw("colz");
//=============================================== pad-2
padID ++; canvas->cd(padID); canvas->cd(padID)->SetGrid(1);
hqqqIndexVE->Draw("colz");
//=============================================== pad-3
padID ++; canvas->cd(padID); canvas->cd(padID)->SetGrid(1);
hpcIndexVE->Draw("colz");
//=============================================== pad-4
padID ++; canvas->cd(padID); canvas->cd(padID)->SetGrid(1);
hsx3Coin->Draw("colz");
//=============================================== pad-5
padID ++; canvas->cd(padID); canvas->cd(padID)->SetGrid(1);
canvas->cd(padID)->SetLogz(true);
hqqqCoin->Draw("colz");
//=============================================== pad-6
padID ++; canvas->cd(padID); canvas->cd(padID)->SetGrid(1);
hpcCoin->Draw("colz");
//=============================================== pad-7
padID ++; canvas->cd(padID); canvas->cd(padID)->SetGrid(1);
// hsx3VpcIndex ->Draw("colz");
hsx3VpcE->Draw("colz") ;
//=============================================== pad-8
padID ++; canvas->cd(padID); canvas->cd(padID)->SetGrid(1);
// hqqqVpcIndex ->Draw("colz");
hqqqVpcE ->Draw("colz");
//=============================================== pad-9
padID ++;
// canvas->cd(padID)->DrawFrame(-50, -50, 50, 50);
// hqqqPolar->Draw("same colz pol");
canvas->cd(padID); canvas->cd(padID)->SetGrid(1);
hanVScatsum->Draw("colz");
// hAnodeHits->Draw("colz");
// hAnodeMultiplicity->Draw();
}

View File

@ -1,114 +0,0 @@
#ifndef PCGainMatch_h
#define PCGainMatch_h
#include <TROOT.h>
#include <TChain.h>
#include <TFile.h>
#include <TSelector.h>
#include "Armory/ClassDet.h"
class PCGainMatch : public TSelector {
public :
TTree *fChain; //!pointer to the analyzed TTree or TChain
// Fixed size dimensions of array or collections stored in the TTree if any.
// Declaration of leaf types
Det sx3;
Det qqq;
Det pc ;
ULong64_t evID;
UInt_t run;
// List of branches
TBranch *b_eventID; //!
TBranch *b_run; //!
TBranch *b_sx3Multi; //!
TBranch *b_sx3ID; //!
TBranch *b_sx3Ch; //!
TBranch *b_sx3E; //!
TBranch *b_sx3T; //!
TBranch *b_qqqMulti; //!
TBranch *b_qqqID; //!
TBranch *b_qqqCh; //!
TBranch *b_qqqE; //!
TBranch *b_qqqT; //!
TBranch *b_pcMulti; //!
TBranch *b_pcID; //!
TBranch *b_pcCh; //!
TBranch *b_pcE; //!
TBranch *b_pcT; //!
PCGainMatch(TTree * /*tree*/ =0) : fChain(0) { }
virtual ~PCGainMatch() { }
virtual Int_t Version() const { return 2; }
virtual void Begin(TTree *tree);
virtual void SlaveBegin(TTree *tree);
virtual void Init(TTree *tree);
virtual Bool_t Notify();
virtual Bool_t Process(Long64_t entry);
virtual Int_t GetEntry(Long64_t entry, Int_t getall = 0) { return fChain ? fChain->GetTree()->GetEntry(entry, getall) : 0; }
virtual void SetOption(const char *option) { fOption = option; }
virtual void SetObject(TObject *obj) { fObject = obj; }
virtual void SetInputList(TList *input) { fInput = input; }
virtual TList *GetOutputList() const { return fOutput; }
virtual void SlaveTerminate();
virtual void Terminate();
ClassDef(PCGainMatch,0);
};
#endif
#ifdef PCGainMatch_cxx
void PCGainMatch::Init(TTree *tree){
// Set branch addresses and branch pointers
if (!tree) return;
fChain = tree;
fChain->SetMakeClass(1);
fChain->SetBranchAddress("evID", &evID, &b_eventID);
fChain->SetBranchAddress("run", &run, &b_run);
sx3.SetDetDimension(24,12);
qqq.SetDetDimension(4,32);
pc.SetDetDimension(2,24);
fChain->SetBranchAddress("sx3Multi", &sx3.multi, &b_sx3Multi);
fChain->SetBranchAddress("sx3ID", &sx3.id, &b_sx3ID);
fChain->SetBranchAddress("sx3Ch", &sx3.ch, &b_sx3Ch);
fChain->SetBranchAddress("sx3E", &sx3.e, &b_sx3E);
fChain->SetBranchAddress("sx3T", &sx3.t, &b_sx3T);
fChain->SetBranchAddress("qqqMulti", &qqq.multi, &b_qqqMulti);
fChain->SetBranchAddress("qqqID", &qqq.id, &b_qqqID);
fChain->SetBranchAddress("qqqCh", &qqq.ch, &b_qqqCh);
fChain->SetBranchAddress("qqqE", &qqq.e, &b_qqqE);
fChain->SetBranchAddress("qqqT", &qqq.t, &b_qqqT);
fChain->SetBranchAddress("pcMulti", &pc.multi, &b_pcMulti);
fChain->SetBranchAddress("pcID", &pc.id, &b_pcID);
fChain->SetBranchAddress("pcCh", &pc.ch, &b_pcCh);
fChain->SetBranchAddress("pcE", &pc.e, &b_pcE);
fChain->SetBranchAddress("pcT", &pc.t, &b_pcT);
}
Bool_t PCGainMatch::Notify(){
return kTRUE;
}
void PCGainMatch::SlaveBegin(TTree * /*tree*/){
TString option = GetOption();
}
void PCGainMatch::SlaveTerminate(){
}
#endif // #ifdef Analyzer_cxx

View File

@ -1,8 +1,7 @@
#!/bin/bash
if [ "$#" -ne 3 ]; then
echo "Usage: $0 runID timeWindow_ns option"
echo "option: 0 - process raw data, 1 - process mapped data"
if [ "$#" -ne 2 ]; then
echo "Usage: $0 runID timeWindow_ns"
echo "Exiting..."
exit 1
fi
@ -10,9 +9,7 @@ fi
runID=$1
timeWindow=$2
option=$3
rawFolder=/home/tandem/data1/2024_09_17Fap/data
rawFolder=/home/tandem/Desktop/analysis/data
rootFolder=../root_data
if [ $option -eq 0 ]; then
@ -29,5 +26,4 @@ if [ $option -eq 0 ]; then
./Mapper ${rootFolder}/*${runID}*${timeWindow}.root
fi
root "processRun.C(\"${rootFolder}/ProtonRun_${runID}_mapped.root\")"
root "processRun.C(\"${rootFolder}/Run_${runID}_mapped.root\")"

View File

@ -1,6 +1,6 @@
#define Analyzer_cxx
#define TrackRecon_cxx
#include "Analyzer.h"
#include "TrackRecon.h"
#include <TH2.h>
#include <TStyle.h>
#include <TCanvas.h>
@ -14,20 +14,6 @@
#include "TVector3.h"
TH2F * hsx3IndexVE;
TH2F * hqqqIndexVE;
TH2F * hpcIndexVE;
TH2F * hsx3Coin;
TH2F * hqqqCoin;
TH2F * hpcCoin;
TH2F * hqqqPolar;
TH2F * hsx3VpcIndex;
TH2F * hqqqVpcIndex;
TH2F * hqqqVpcE;
TH2F * hsx3VpcE;
TH2F * hanVScatsum;
int padID = 0;
SX3 sx3_contr;
@ -37,7 +23,7 @@ bool HitNonZero;
TH1F * hZProj;
void Analyzer::Begin(TTree * /*tree*/){
void TrackRecon::Begin(TTree * /*tree*/){
TString option = GetOption();
hZProj = new TH1F("hZProj", "Z Projection", 200, -600, 600);
@ -47,17 +33,14 @@ void Analyzer::Begin(TTree * /*tree*/){
}
Bool_t Analyzer::Process(Long64_t entry){
Bool_t TrackRecon::Process(Long64_t entry){
// if ( entry > 100 ) return kTRUE;
hitPos.Clear();
HitNonZero = false;
// if( entry > 1) return kTRUE;
if( entry > 1) return kTRUE;
// printf("################### ev : %llu \n", entry);
b_sx3Multi->GetEntry(entry);
@ -133,13 +116,6 @@ Bool_t Analyzer::Process(Long64_t entry){
}else{
sx3ChBk = sx3.ch[index];
}
for( int j = 0; j < pc.multi; j++){
// hsx3VpcIndex->Fill( sx3.index[i], pc.index[j] );
if( sx3.ch[index] > 8 ){
hsx3VpcE->Fill( sx3.e[i], pc.e[j] );
// hpcIndexVE->Fill( pc.index[i], pc.e[i] );
}
}
}
sx3_contr.CalSX3Pos(sx3ID[0].first, sx3ChUp, sx3ChDn, sx3ChBk, sx3EUp, sx3EDn);
@ -170,7 +146,7 @@ Bool_t Analyzer::Process(Long64_t entry){
double theta = -TMath::Pi()/2 + 2*TMath::Pi()/16/4.*(qqq.id[i]*16 + chWedge +0.5);
double rho = 10.+40./16.*(chRing+0.5);
// if(qqq.e[i]>50){
hqqqPolar->Fill( theta, rho);
// hqqqPolar->Fill( theta, rho);
// }
// qqq.used[i] = true;
// qqq.used[j] = true;
@ -187,7 +163,6 @@ Bool_t Analyzer::Process(Long64_t entry){
}
// //======================= PC
PCHit_1An hitInfo;
ID.clear();
int counter=0;
@ -197,33 +172,51 @@ Bool_t Analyzer::Process(Long64_t entry){
if( E.size()==3 ){
float aE = 0;
float cE = 0;
bool multi_an =false;
for(int l=0;l<E.size();l++){
if(E[l].first<24 && E[l].first!=20 && E[l].first!=12){
if(!multi_an){
aE = E[l].second;
}
multi_an=true;
}
else {
cE = E[l].second + cE;
}
int multi_an =0;
for(int l=0;l<E.size();l++){
if(E[l].first<24 && E[l].first!=20 && E[l].first!=12){
multi_an++;
}
// printf("anode= %d, cathode = %d\n", aID, cID);
// }
if( ID[0].first < 1 ) {
aID = pc.ch[ID[0].second];
cID = pc.ch[ID[1].second];
}else{
cID = pc.ch[ID[0].second];
aID = pc.ch[ID[1].second];
}
hanVScatsum->Fill(aE,cE);
if(multi_an==1){
for(int l=0;l<E.size();l++){
if(E[l].first<24 && E[l].first!=20 && E[l].first!=12){
aE = E[l].second;
}else if(E[l].first>24){
cE = E[l].second;
}
}
}
//using CalTrack3 to get the track position and direction
// hanVScatsum->Fill(aE,cE);
if( HitNonZero){
pw_contr.CalTrack3( hitPos, hitinfo, cID);
hZProj->Fill(pw_contr.GetZ0());
if (ID.size() == 3) {
int aID = -1;
int cID1 = -1;
int cID2 = -1;
for (int i = 0; i < ID.size(); i++) {
if (pc.ch[ID[i].second] < 24 && pc.ch[ID[i].second] != 20 && pc.ch[ID[i].second] != 12) {
aID = pc.ch[ID[i].second];
} else if (pc.ch[ID[i].second] > 24) {
if (cID1 == -1) {
cID1 = pc.ch[ID[i].second];
} else {
cID2 = pc.ch[ID[i].second];
}
}
}
if (aID != -1 && cID1 != -1 && cID2 != -1) {
pw_contr.CalTrack3(hitPos, aID, cID1, cID2);
pw_contr.Print();
printf("###################\n");
hZProj->Fill(pw_contr.GetZ0());
}
}
}
// }
@ -240,64 +233,13 @@ Bool_t Analyzer::Process(Long64_t entry){
return kTRUE;
}
void Analyzer::Terminate(){
void TrackRecon::Terminate(){
gStyle->SetOptStat("neiou");
TCanvas * canvas = new TCanvas("cANASEN", "ANASEN", 2000, 2000);
canvas->Divide(3,3);
//hsx3VpcIndex->Draw("colz");
//=============================================== pad-1
padID ++; canvas->cd(padID); canvas->cd(padID)->SetGrid(1);
hsx3IndexVE->Draw("colz");
//=============================================== pad-2
padID ++; canvas->cd(padID); canvas->cd(padID)->SetGrid(1);
hqqqIndexVE->Draw("colz");
//=============================================== pad-3
padID ++; canvas->cd(padID); canvas->cd(padID)->SetGrid(1);
hpcIndexVE->Draw("colz");
//=============================================== pad-4
padID ++; canvas->cd(padID); canvas->cd(padID)->SetGrid(1);
hsx3Coin->Draw("colz");
//=============================================== pad-5
padID ++; canvas->cd(padID); canvas->cd(padID)->SetGrid(1);
hqqqCoin->Draw("colz");
//=============================================== pad-6
padID ++; canvas->cd(padID); canvas->cd(padID)->SetGrid(1);
hpcCoin->Draw("colz");
//=============================================== pad-7
padID ++; canvas->cd(padID); canvas->cd(padID)->SetGrid(1);
hsx3VpcIndex ->Draw("colz");
// hsx3VpcE->Draw("colz") ;
//=============================================== pad-8
padID ++; canvas->cd(padID); canvas->cd(padID)->SetGrid(1);
hqqqVpcIndex ->Draw("colz");
// hqqqVpcE ->Draw("colz");
//=============================================== pad-9
padID ++;
// canvas->cd(padID)->DrawFrame(-50, -50, 50, 50);
// hqqqPolar->Draw("same colz pol");
TCanvas * canvas = new TCanvas("cANASEN", "ANASEN", 200, 200);
padID=1;
canvas->cd(padID); canvas->cd(padID)->SetGrid(1);
hZProj->Draw();
// hanVScatsum->Draw("colz");
}

View File

@ -1,5 +1,5 @@
#ifndef Analyzer1_h
#define Analyzer1_h
#ifndef TrackRecon_h
#define TrackRecon_h
#include <TROOT.h>
#include <TChain.h>
@ -8,7 +8,7 @@
#include "Armory/ClassDet.h"
class Analyzer1 : public TSelector {
class TrackRecon : public TSelector {
public :
TTree *fChain; //!pointer to the analyzed TTree or TChain
@ -41,8 +41,8 @@ public :
TBranch *b_pcE; //!
TBranch *b_pcT; //!
Analyzer1(TTree * /*tree*/ =0) : fChain(0) { }
virtual ~Analyzer1() { }
TrackRecon(TTree * /*tree*/ =0) : fChain(0) { }
virtual ~TrackRecon() { }
virtual Int_t Version() const { return 2; }
virtual void Begin(TTree *tree);
virtual void SlaveBegin(TTree *tree);
@ -57,13 +57,13 @@ public :
virtual void SlaveTerminate();
virtual void Terminate();
ClassDef(Analyzer1,0);
ClassDef(TrackRecon,0);
};
#endif
#ifdef Analyzer1_cxx
void Analyzer1::Init(TTree *tree){
#ifdef TrackRecon_cxx
void TrackRecon::Init(TTree *tree){
// Set branch addresses and branch pointers
if (!tree) return;
@ -95,20 +95,20 @@ void Analyzer1::Init(TTree *tree){
}
Bool_t Analyzer1::Notify(){
Bool_t TrackRecon::Notify(){
return kTRUE;
}
void Analyzer1::SlaveBegin(TTree * /*tree*/){
void TrackRecon::SlaveBegin(TTree * /*tree*/){
TString option = GetOption();
}
void Analyzer1::SlaveTerminate(){
void TrackRecon::SlaveTerminate(){
}
#endif // #ifdef Analyzer_cxx
#endif // #ifdef TrackRecon_cxx

View File

@ -1,97 +0,0 @@
HistogramIndex PeakNumber Centroid Amplitude Sigma
0 1 991.118
0 2 2026.83
0 3 3060.26
0 4 4092.45
1 1 922.213
1 2 1885.55
1 3 2845.53
1 4 3810.32
2 1 955.591
2 2 1953.17
2 3 2949.37
2 4 3950.79
3 1 995.787
3 2 2036.58
3 3 3076.91
3 4 4112.05
4 1 1017.48
4 2 2080.19
4 3 3142.24
4 4 4206.1
5 1 1022.78
5 2 2091.21
5 3 3158.28
5 4 4226.97
6 1 1076.22
6 2 2203.37
6 3 3329.53
6 4 4457.69
7 1 977.46
7 2 1998.02
7 3 3017.36
7 4 4040.47
8 1 1049.74
8 2 2144.38
8 3 3238.2
8 4 4335.25
9 1 1000.59
9 2 2046.42
9 3 3090.29
9 4 4129.63
10 1 1014.92
10 2 2076.16
10 3 3134.59
10 4 4213.42
11 1 1004.85
11 2 2052.88
11 3 3100.3
11 4 4164.75
12 1 945.861
12 2 1932.49
12 3 2917.95
12 4 3955.15
13 1 998.307
13 2 2040.38
13 3 3078.76
13 4 4135.51
14 1 966.429
14 2 1972.15
14 3 2974.84
14 4 4056.41
15 1 958.352
15 2 1958.64
15 3 2957.7
15 4 3970.41
16 1 970.732
16 2 1977.63
16 3 2984.97
16 4 4002.56
17 1 1013.65
17 2 2064.9
17 3 3114.19
17 4 4190.98
18 1 975.538
18 2 1990.64
18 3 3005.46
18 4 4048.99
19 1 1082.91
19 2 2194.08
19 3 3303.65
19 4 4411.32
20 1 912.778
20 2 1866.83
20 3 2819.21
20 4 3781.63
21 1 1002.36
21 2 1989.95
21 3 2975.53
21 4 3986.71
22 1 1075.38
22 2 2144.25
22 3 3210.17
22 4 4312.84
23 1 988.828
23 2 2016.35
23 3 3044.19
23 4 4082.41

View File

@ -1,89 +0,0 @@
HistogramIndex PeakNumber Centroid Amplitude Sigma
1 1 922.213
1 2 1885.55
1 3 2845.53
1 4 3810.32
2 1 955.591
2 2 1953.17
2 3 2949.37
2 4 3950.79
3 1 995.787
3 2 2036.58
3 3 3076.91
3 4 4112.05
4 1 1017.48
4 2 2080.19
4 3 3142.24
4 4 4206.1
5 1 1022.78
5 2 2091.21
5 3 3158.28
5 4 4226.97
6 1 1076.22
6 2 2203.37
6 3 3329.53
6 4 4457.69
7 1 977.46
7 2 1998.02
7 3 3017.36
7 4 4040.47
8 1 1049.74
8 2 2144.38
8 3 3238.2
8 4 4335.25
9 1 1000.59
9 2 2046.42
9 3 3090.29
9 4 4129.63
10 1 1014.92
10 2 2076.16
10 3 3134.59
10 4 4213.42
11 1 1004.85
11 2 2052.88
11 3 3100.3
11 4 4164.75
12 1 945.861
12 2 1932.49
12 3 2917.95
12 4 3955.15
13 1 998.307
13 2 2040.38
13 3 3078.76
13 4 4135.51
14 1 966.429
14 2 1972.15
14 3 2974.84
14 4 4056.41
15 1 958.352
15 2 1958.64
15 3 2957.7
15 4 3970.41
16 1 970.732
16 2 1977.63
16 3 2984.97
16 4 4002.56
17 1 1013.65
17 2 2064.9
17 3 3114.19
17 4 4190.98
18 1 975.538
18 2 1990.64
18 3 3005.46
18 4 4048.99
20 1 912.778
20 2 1866.83
20 3 2819.21
20 4 3781.63
21 1 1002.36
21 2 1989.95
21 3 2975.53
21 4 3986.71
22 1 1075.38
22 2 2144.25
22 3 3210.17
22 4 4312.84
23 1 988.828
23 2 2016.35
23 3 3044.19
23 4 4082.41

541
gainmatch.C Normal file
View File

@ -0,0 +1,541 @@
#define gainmatch_cxx
#include "gainmatch.h"
#include <TH2.h>
#include <TStyle.h>
#include <TCanvas.h>
#include <TMath.h>
#include <TCutG.h>
#include <utility>
#include <algorithm>
#include "Armory/ClassSX3.h"
#include "Armory/ClassPW.h"
#include "TVector3.h"
TH2F * hsx3IndexVE;
TH2F * hqqqIndexVE;
TH2F * hqqqIndexVE_cut;
TH2F * hpcIndexVE;
TH2F * hsx3Coin;
TH2F * hqqqCoin;
TH2F * hpcCoin;
TH2F * hpcCoin_cut;
TH2F * hGoodQQQ;
TH2F * hGoodQQQRingVWedge;
TH2F * hqqqPolar;
TH2F * hsx3VpcIndex;
TH2F * hqqqVpcIndex;
TH2F * hqqqVpcIndex_cut;
TH2F * hqqqVpcE;
TH2F * hqqqVpcE_cut;
TH2F * hqqqVpcE_cut1;
TH2F * hqqqVpcE_cut2;
TH2F * hqqqVpcE_cutCoinc;
TH2F * hsx3VpcE;
TH2F * hanVScatsum;
TH2F * hanVScatsum_cut;
TH2F * hanVScatsum_cut1;
TH2F * hanVScatsum_cut2;
TH2F * hsx3Vsx3;
TH2F * hsx3uVsx3d_01;
TH2F * hsx3uVsx3d_23;
TH2F * hsx3uVsx3d_45;
TH2F * hsx3uVsx3d_67;
TH2F * hVCID;
TH1F *hsx3bk_9_shifted ;
TH1F *hsx3bk_10_shifted ;
TH1F *hsx3bk_11_shifted ;
int padID = 0;
TCutG *Coinc_cut_set1;
//TCutG *crap_cut;
TCutG *AnCathCoinc_cut;
TCutG *AnCathCoinc_cut1;
TCutG *AnCathCoinc_cut2;
SX3 sx3_contr;
PW pw_contr;
TVector3 hitPos;
bool HitNonZero;
bool inCut;
bool inCut1;
bool inCut2;
bool inCutCoinc;
TH1F *hZd_01_1;
TH1F *hZd_01_2;
TH1F *hZd_01_3;
TH1F *hZd_01_4;
TH1F * hZProj;
TH1F * hsx3bk_11;
TH1F * hsx3bk_10;
TH1F * hsx3bk_9;
TH1F * hsx3bk_8;
void gainmatch::Begin(TTree * /*tree*/){
TString option = GetOption();
hsx3IndexVE = new TH2F("hsx3IndexVE", "SX3 index vs Energy; sx3 index ; Energy", 24*12, 0, 24*12, 400, 0, 5000); hsx3IndexVE->SetNdivisions( -612, "x");
hqqqIndexVE = new TH2F("hqqqIndexVE", "QQQ index vs Energy; QQQ index ; Energy", 4*2*16, 0, 4*2*16, 400, 0, 5000); hqqqIndexVE->SetNdivisions( -1204, "x");
hqqqIndexVE_cut = new TH2F("hqqqIndexVE_cut", "QQQ index vs Energy gated; QQQ index ; Energy", 4*2*16, 0, 4*2*16, 400, 0, 5000); hqqqIndexVE->SetNdivisions( -1204, "x");
hpcIndexVE = new TH2F("hpcIndexVE", "PC index vs Energy; PC index ; Energy", 2*24, 0, 2*24, 400, 0, 4000); hpcIndexVE->SetNdivisions( -1204, "x");
hGoodQQQ = new TH2F("hGoodQQQ", "number of good QQQ vs QQQ id", 10, 0, 10, 4, 0, 4);
hGoodQQQRingVWedge = new TH2F("hGoodQQQRingVWedge", "Ring index, Wedge index", 16*4, 0, 16*4, 16*4, 0, 16*4);
hZd_01_1 =new TH1F("hZd_01_1", "Z position", 100, -1, 1);
hZd_01_2 =new TH1F("hZd_01_2", "Z position", 100, -1, 1);
hZd_01_3 =new TH1F("hZd_01_3", "Z position", 100, -1, 1);
hZd_01_4 =new TH1F("hZd_01_4", "Z position", 100, -1, 1);
hsx3Coin = new TH2F("hsx3Coin", "SX3 Coincident", 24*12, 0, 24*12, 24*12, 0, 24*12);
hqqqCoin = new TH2F("hqqqCoin", "QQQ Coincident", 4*2*16, 0, 4*2*16, 4*2*16, 0, 4*2*16);
hpcCoin = new TH2F("hpcCoin", "PC Coincident", 2*24, 0, 2*24, 2*24, 0, 2*24);
hpcCoin_cut = new TH2F("hpcCoin_cut", "PC Coincident gated", 2*24, 0, 2*24, 2*24, 0, 2*24);
hqqqPolar = new TH2F("hqqqPolar", "QQQ Polar ID", 16*4, -TMath::Pi(), TMath::Pi(),16, 10, 50);
hsx3VpcIndex = new TH2F("hsx3Vpcindex", "sx3 vs pc; sx3 index; pc index", 24*12, 0, 24*12, 48, 0, 48);
hsx3Vsx3 = new TH2F("hsx3Vsx3", "sx3 vs sx3; sx3 E; sx3 E", 8000, 0, 16000, 8000, 0, 16000);
hsx3uVsx3d_01 = new TH2F("hsx3uVsx3d_01", "sx3u vs sx3d; sx3u E; sx3d E", 100, 0, 1, 100, 0, 1);
hsx3uVsx3d_23 = new TH2F("hsx3uVsx3d_23", "sx3u vs sx3d; sx3u E; sx3d E", 100, 0, 1, 100, 0, 1);
hsx3uVsx3d_45 = new TH2F("hsx3uVsx3d_45", "sx3u vs sx3d; sx3u E; sx3d E", 1000, 0, 5000, 1000, 0, 5000);
hsx3uVsx3d_67 = new TH2F("hsx3uVsx3d_67", "sx3u vs sx3d; sx3u E; sx3d E", 1000, 0, 5000, 1000, 0, 5000);
hsx3VpcIndex->SetNdivisions( -612, "x");
hsx3VpcIndex->SetNdivisions( -12, "y");
hqqqVpcIndex = new TH2F("hqqqVpcindex", "qqq vs pc; qqq index; pc index", 4*2*16, 0, 4*2*16, 48, 0, 48);
hqqqVpcIndex->SetNdivisions( -612, "x");
hqqqVpcIndex->SetNdivisions( -12, "y");
hqqqVpcIndex_cut = new TH2F("hqqqVpcindex_cut", "qqq vs pc gated; qqq index; pc index", 4*2*16, 0, 4*2*16, 48, 0, 48);
hqqqVpcIndex_cut->SetNdivisions( -612, "x");
hqqqVpcIndex_cut->SetNdivisions( -12, "y");
hqqqVpcE = new TH2F("hqqqVpcEnergy", "qqq vs pc; qqq energy; pc energy", 8000, 0, 16000, 8000, 0, 16000);
hqqqVpcE->SetNdivisions( -612, "x");
hqqqVpcE->SetNdivisions( -12, "y");
hqqqVpcE_cut = new TH2F("hqqqVpcEnergy_cut", "qqq vs pc gated; qqq energy; pc energy", 8000, 0, 16000, 8000, 0, 16000);
hqqqVpcE_cut->SetNdivisions( -612, "x");
hqqqVpcE_cut->SetNdivisions( -12, "y");
hqqqVpcE_cut1 = new TH2F("hqqqVpcEnergy_cut1", "qqq vs pc gated; qqq energy; pc energy", 8000, 0, 16000, 8000, 0, 16000);
hqqqVpcE_cut1->SetNdivisions( -612, "x");
hqqqVpcE_cut1->SetNdivisions( -12, "y");
hqqqVpcE_cut2 = new TH2F("hqqqVpcEnergy_cut2", "qqq vs pc gated; qqq energy; pc energy", 8000, 0, 16000, 8000, 0, 16000);
hqqqVpcE_cut2->SetNdivisions( -612, "x");
hqqqVpcE_cut2->SetNdivisions( -12, "y");
hqqqVpcE_cutCoinc = new TH2F("hqqqVpcEnergy_cutCoinc", "qqq vs pc gated; qqq energy; pc energy", 8000, 0, 16000, 8000, 0, 16000);
hqqqVpcE_cutCoinc->SetNdivisions( -612, "x");
hqqqVpcE_cutCoinc->SetNdivisions( -12, "y");
hsx3bk_8=new TH1F("hsx3bk_8", "hsx3bk_8",1000, 0,5000);
hsx3bk_9=new TH1F("hsx3bk_9", "hsx3bk_9",1000, 0,5000);
hsx3bk_10=new TH1F("hsx3bk_10", "hsx3bk_10",1000, 0,5000);
hsx3bk_11=new TH1F("hsx3bk_11", "hsx3bk_11",1000, 0,5000);
hsx3VpcE = new TH2F("hsx3VpcEnergy", "sx3 vs pc; sx3 energy; pc energy", 400, 0, 5000, 400, 0, 5000);
hsx3VpcE->SetNdivisions( -612, "x");
hsx3VpcE->SetNdivisions( -12, "y");
hsx3bk_9_shifted = new TH1F("hsx3bk_9_shifted", "hsx3bk_9",1000, 0,5000);
hsx3bk_10_shifted = new TH1F("hsx3bk_10_shifted", "hsx3bk_9",1000, 0,5000);
hsx3bk_11_shifted = new TH1F("hsx3bk_11_shifted", "hsx3bk_9",1000, 0,5000);
hZProj = new TH1F("hZProj", "Z Projection", 200, -600, 600);
hanVScatsum = new TH2F("hanVScatsum", "Anode vs Cathode Sum; Anode E; Cathode E", 8000,0 , 16000, 8000, 0 , 16000);
hanVScatsum_cut = new TH2F("hanVScatsum_cut", "Anode vs Cathode Sum gated; Anode E; Cathode E", 1600,0 , 16000, 1600, 0 , 16000);
hanVScatsum_cut1 = new TH2F("hanVScatsum_cut1", "Anode vs Cathode Sum gated; Anode E; Cathode E", 1600,0 , 16000, 1600, 0 , 16000);
hanVScatsum_cut2 = new TH2F("hanVScatsum_cut2", "Anode vs Cathode Sum gated; Anode E; Cathode E", 1600,0 , 16000, 1600, 0 , 16000);
hVCID = new TH2F("hVCID", "Virtual Cathod ID vs total Cath. Energy", 200, 0, 24, 200, 0, 10000);
sx3_contr.ConstructGeo();
pw_contr.ConstructGeo();
TFile *f3 = new TFile("Coinc_cut_set1.root");
//TFile *f4 = new TFile("crap_cut.root");
TFile *f = new TFile("AnCathCoinc_cut.root");
TFile *f1 = new TFile("AnCathCoinc_cut1.root");
TFile *f2 = new TFile("AnCathCoinc_cut2.root");
Coinc_cut_set1 = (TCutG*)f3->Get("Coinc_cut_set1");
//crap_cut = (TCutG*)f4->Get("crap_cut");
AnCathCoinc_cut = (TCutG*)f->Get("AnCathCoinc_cut");
AnCathCoinc_cut1 = (TCutG*)f1->Get("AnCathCoinc_cut1");
AnCathCoinc_cut2 = (TCutG*)f2->Get("AnCathCoinc_cut2");
}
Bool_t gainmatch::Process(Long64_t entry){
// if ( entry > 100 ) return kTRUE;
hitPos.Clear();
HitNonZero = false;
inCut = false;
// if( entry > 1) return kTRUE;
// printf("################### ev : %llu \n", entry);
b_sx3Multi->GetEntry(entry);
b_sx3ID->GetEntry(entry);
b_sx3Ch->GetEntry(entry);
b_sx3E->GetEntry(entry);
b_sx3T->GetEntry(entry);
b_qqqMulti->GetEntry(entry);
b_qqqID->GetEntry(entry);
b_qqqCh->GetEntry(entry);
b_qqqE->GetEntry(entry);
b_qqqT->GetEntry(entry);
b_pcMulti->GetEntry(entry);
b_pcID->GetEntry(entry);
b_pcCh->GetEntry(entry);
b_pcE->GetEntry(entry);
b_pcT->GetEntry(entry);
sx3.CalIndex();
qqq.CalIndex();
pc.CalIndex();
// sx3.Print();
//########################################################### Raw data
// //======================= SX3
std::vector<std::pair<int, int>> ID; // first = id, 2nd = index
for (int i = 0; i < sx3.multi; i++) {
ID.push_back(std::pair<int, int>(sx3.id[i], i));
hsx3IndexVE->Fill(sx3.index[i], sx3.e[i]);
for (int j = i + 1; j < sx3.multi; j++) {
hsx3Coin->Fill(sx3.index[i], sx3.index[j]);
}
for (int j = 0; j < pc.multi; j++) {
hsx3VpcIndex->Fill(sx3.index[i], pc.index[j]);
}
}
if (ID.size() > 0) {
std::sort(ID.begin(), ID.end(), [](const std::pair<int, int> &a, const std::pair<int, int> &b) {
return a.first < b.first;
});
std::vector<std::pair<int, int>> sx3ID;
sx3ID.push_back(ID[0]);
bool found = false;
for (size_t i = 1; i < ID.size(); i++) {
if (ID[i].first == sx3ID.back().first) {
sx3ID.push_back(ID[i]);
if (sx3ID.size() >= 3) {
found = true;
}
} else {
if (!found) {
sx3ID.clear();
sx3ID.push_back(ID[i]);
}
}
}
if (found) {
int sx3ChUp = -1, sx3ChDn = -1, sx3ChBk = -1;
float sx3EUp = 0.0, sx3EDn = 0.0, sx3EBk = 0.0;
for (size_t i = 0; i < sx3ID.size(); i++) {
int index = sx3ID[i].second;
if (sx3.ch[index] < 8) {
if (sx3.ch[index] % 2 == 0) {
sx3ChDn = sx3.ch[index];
sx3EDn = sx3.e[index];
} else {
sx3ChUp = sx3.ch[index];
sx3EUp = sx3.e[index];
}
} else {
sx3ChBk = sx3.ch[index];
sx3EBk = sx3.e[index];
}
int ch = sx3.ch[index];
float energy = sx3.e[index];
if (sx3ID[0].first == 9) {
float peak8 = 0.0;
float peak9 = 0.0;
int peak10 = 0.0;
float peak11 = 0.0;
float shift9 =0.0;
float shift10 =0.0;
float shift11 =0.0;
int minBin_8 = hsx3bk_8->FindBin(1);
int maxBin_8 = hsx3bk_8->FindBin(5000);
int maxRangeBinContent_8 = -1;
double maxBinCenter_8 = 0.0;
int minBin_9 = hsx3bk_9->FindBin(1);
int maxBin_9 = hsx3bk_9->FindBin(5000);
int maxRangeBinContent_9 = -1;
double maxBinCenter_9 = 0.0;
int minBin_10 = hsx3bk_10->FindBin(1);
int maxBin_10 = hsx3bk_10->FindBin(5000);
int maxRangeBinContent_10 = -1;
double maxBinCenter_10 = 0.0;
int minBin_11 = hsx3bk_11->FindBin(1);
int maxBin_11 = hsx3bk_11->FindBin(5000);
int maxRangeBinContent_11 = -1;
double maxBinCenter_11 = 0.0;
if (sx3ChBk == 8) {
hsx3bk_8->Fill(sx3EBk);
for (int bin = minBin_8; bin <= maxBin_8; ++bin) {
if (hsx3bk_8->GetBinContent(bin) > maxRangeBinContent_8) {
maxRangeBinContent_8 = hsx3bk_8->GetBinContent(bin);
maxBinCenter_8 = hsx3bk_8->GetBinCenter(bin);
}
}
//peak8 = hsx3bk_8->GetMaximumBin();
//peak8 = hsx3bk_8->GetMaximumBin();
//printf("peak8: %f\n", maxBinCenter_8);
}
//printf("peak8_mm: %f\n", maxBinCenter);
else if (sx3ChBk == 9) {
hsx3bk_9->Fill(sx3EBk);
for (int bin = minBin_9; bin <= maxBin_9; ++bin) {
if (hsx3bk_9->GetBinContent(bin) > maxRangeBinContent_9) {
maxRangeBinContent_9 = hsx3bk_9->GetBinContent(bin);
maxBinCenter_9 = hsx3bk_9->GetBinCenter(bin);
}
}
//peak8 = hsx3bk_8->GetMaximumBin();
//peak8 = hsx3bk_8->GetMaximumBin();
//printf("peak9: %f\n", maxBinCenter_9);
//hsx3bk_9_shifted->Fill(sx3EBk*0.76);
peak9 = 2097.5/maxBinCenter_9;
//printf("peak9_shift: %f\n", peak9);
hsx3bk_9_shifted->Fill(sx3EBk*(2097.5/maxBinCenter_9));
//printf("peak9 %d\n", peak9);
}
else if(sx3ChBk == 10) {
hsx3bk_10->Fill(sx3EBk);
for (int bin = minBin_10; bin <= maxBin_10; ++bin) {
if (hsx3bk_10->GetBinContent(bin) > maxRangeBinContent_10) {
maxRangeBinContent_10 = hsx3bk_10->GetBinContent(bin);
maxBinCenter_10 = hsx3bk_10->GetBinCenter(bin);
}
}
//peak8 = hsx3bk_8->GetMaximumBin();
//peak8 = hsx3bk_8->GetMaximumBin();
//printf("peak10: %f\n", maxBinCenter_10);
//hsx3bk_9_shifted->Fill(sx3EBk*0.76);
peak10= 2097.5/maxBinCenter_10;
//printf("peak10_shift: %f\n", 1787.5/maxBinCenter_10);
hsx3bk_10_shifted->Fill(sx3EBk*(2097.5/maxBinCenter_10));
//printf("peak9 %d\n", peak9);
}
//peak10 = hsx3bk_10->GetMaximumBin();
// printf("peak10 %d\n" ,peak10);
else if(sx3ChBk == 11) {
hsx3bk_11->Fill(sx3EBk);
for (int bin = minBin_11; bin <= maxBin_11; ++bin) {
if (hsx3bk_11->GetBinContent(bin) > maxRangeBinContent_11) {
maxRangeBinContent_11 = hsx3bk_11->GetBinContent(bin);
maxBinCenter_11 = hsx3bk_11->GetBinCenter(bin);
}
}
//peak8 = hsx3bk_8->GetMaximumBin();
//peak8 = hsx3bk_8->GetMaximumBin();
//printf("peak9: %f\n", maxBinCenter_11);
//hsx3bk_9_shifted->Fill(sx3EBk*0.76);
peak11 = 2097.5/maxBinCenter_11;
//printf("peak11_shift: %f\n", peak11);
hsx3bk_11_shifted->Fill(sx3EBk*(2097.5/maxBinCenter_11));
//printf("peak9 %d\n", peak9);
}
float sx3EBk_shifted = 0.0;
float sx3E_u_matched_01 = 0.0;
float sx3E_d_matched_01 = 0.0;
float sx3E_fb_matched_01 = 0.0;
float sx3E_fbu_matched_01 = 0.0;
float sx3E_fbd_matched_01 = 0.0;
float diff =0.0;
float ratio = 0.0;
float coeff = 0.0;
if (sx3ChBk == 9) {
sx3EBk_shifted = (sx3EBk *(2097.5/maxBinCenter_9));
} else if (sx3ChBk == 10) {
sx3EBk_shifted = (sx3EBk * (2097.5/maxBinCenter_10));
} else if (sx3ChBk == 11) {
sx3EBk_shifted = (sx3EBk * (2097.5/maxBinCenter_11)) ;
} else {
sx3EBk_shifted = sx3EBk; // Use unshifted value for sx3ChBk == 8
}
if ((sx3ChUp == 1 && sx3ChDn == 0)) {
sx3E_u_matched_01= (sx3EUp-0.898729)/0.836243;
//sx3E_u_matched_01= (0.836243*sx3EDn)+0.898729;
sx3E_d_matched_01= (sx3EDn-0.898729)/0.836243;
sx3E_fb_matched_01=(sx3EBk_shifted+9.2423)/0.924773 ;
sx3E_fbu_matched_01=(sx3E_u_matched_01+9.2423)/0.924773 ;
sx3E_fbd_matched_01=(sx3E_d_matched_01+9.2423)/0.924773 ;
diff = sx3E_fb_matched_01 - (sx3EUp+sx3E_fbd_matched_01);
ratio = sx3EUp/sx3E_fbd_matched_01;
coeff = ((sx3EUp+diff) - (sx3E_fbd_matched_01*ratio))/(diff*(1+ratio));
}
//TH2F *hsx3uVsx3d_01 = nullptr;
if (sx3ChBk >=8) {
//if (sx3ChBk == 9) {
if ((sx3ChUp == 1 && sx3ChDn == 0)) {
if (sx3ChUp != -1 && sx3ChDn != -1 && sx3ChBk !=-1) {
if (sx3EBk_shifted > 50 && sx3EUp > 50 && sx3EDn > 50) {
printf("sx3EUp: %f, sx3EDn: %f, sx3E_u_matched_01: %f,sx3E_d_matched_01: %f\n", sx3EUp, sx3EDn, sx3E_u_matched_01,sx3E_d_matched_01);
//printf("Filling hsx3uVsx3d_01_shifted: %f\n", sx3EBk_ud_matched_01 / sx3EBk_shifted);
// hsx3uVsx3d_01->Fill(sx3E_u_matched_01 / sx3EBk_shifted, sx3E_d_matched_01 / sx3EBk_shifted);
hsx3uVsx3d_01->Fill(sx3EUp / sx3EBk_shifted, sx3E_d_matched_01 / sx3EBk_shifted);
hsx3uVsx3d_23->Fill(sx3EUp / sx3EBk_shifted, sx3EDn/ sx3EBk_shifted);
}
}
//}
}
else if ((sx3ChUp == 3 && sx3ChDn == 2)) {
if (sx3ChUp != -1 && sx3ChDn != -1 && sx3ChBk !=-1) {
if (sx3EBk_shifted != 0 && sx3EBk_shifted > 50 && sx3EUp > 50 && sx3EDn > 50) {
printf("sx3EUp: %f, sx3EDn: %f, sx3EBk_shifted: %f\n", sx3EUp, sx3EDn, sx3EBk_shifted);
printf("Filling hsx3uVsx3d_23_shifted: %f\n", sx3EUp / sx3EBk_shifted);
// hsx3uVsx3d_23->Fill(sx3EUp / sx3EBk_shifted, (-0.924754*sx3EUp+0.916671) / sx3EBk_shifted);
}
}
}
/* if ((sx3ChUp == 1 && sx3ChDn == 0)) {
if (sx3ChUp != -1 && sx3ChDn != -1 && sx3ChBk !=-1) {
if (sx3EBk != 0 && sx3EBk > 50 && sx3EUp > 50 && sx3EDn > 50) {
printf("sx3EUp: %f, sx3EDn: %f, sx3EBk: %f\n", sx3EUp, sx3EDn, sx3EBk);
printf("Filling hsx3uVsx3d_01: %f\n", sx3EUp / sx3EBk);
hsx3uVsx3d_45->Fill(sx3EUp / sx3EBk, sx3EDn / sx3EBk);
}
}
}
else if ((sx3ChUp == 3 && sx3ChDn == 2)) {
if (sx3ChUp != -1 && sx3ChDn != -1 && sx3ChBk !=-1) {
if (sx3EBk != 0 && sx3EBk > 50 && sx3EUp > 50 && sx3EDn > 50) {
printf("sx3EUp: %f, sx3EDn: %f, sx3EBk: %f\n", sx3EUp, sx3EDn, sx3EBk);
printf("Filling hsx3uVsx3d_23: %f\n", sx3EUp / sx3EBk);
hsx3uVsx3d_67->Fill(sx3EUp / sx3EBk, sx3EDn / sx3EBk);
}
}
}*/
if (sx3ChUp == 1 && sx3ChDn == 0){
//if (sx3ChUp == 1 || sx3ChDn == 0 || sx3ChUp == 3 || sx3ChDn == 2 || sx3ChUp == 5 || sx3ChDn == 4 || sx3ChUp == 7 || sx3ChDn == 6) {
if (sx3ChUp != -1 && sx3ChBk !=-1 && sx3ChDn !=-1) {
if (sx3EBk_shifted > 50 && sx3EUp > 50 && sx3EDn>50 &&sx3E_u_matched_01>50 && sx3E_u_matched_01>50) {
//printf("sx3EUp: %f, sx3EDn: %f, sx3E_u_matched_01: %f,sx3E_d_matched_01: %f\n", sx3EUp, sx3EDn, sx3E_u_matched_01,sx3E_d_matched_01);
printf("Filling hsx3uVsx3d_nn: %f, gggggg: %f \n", (sx3EUp+sx3EDn),(sx3E_u_matched_01+sx3E_d_matched_01) );
hsx3uVsx3d_45->Fill((sx3EUp+sx3E_d_matched_01),sx3EBk_shifted);
hsx3uVsx3d_67->Fill((sx3EUp+sx3E_d_matched_01),sx3E_fb_matched_01);
}
}
}
/*if (sx3ChBk > 8) {
if ((sx3ChUp == 7 && sx3ChDn == 6) ||
(sx3ChUp == 5 && sx3ChDn == 4) ||
(sx3ChUp == 3 && sx3ChDn == 2) ||
(sx3ChUp == 1 && sx3ChDn == 0)) {
if (sx3ChUp != -1 && sx3ChDn != -1 && sx3ChBk !=-1) {
if (sx3EBk != 0 && sx3EBk > 50 && sx3EUp > 50 && sx3EDn > 50) {
hsx3uVsx3d->Fill(sx3EUp / sx3EBk, sx3EDn / sx3EBk);
hsx3Vsx3->Fill(sx3EUp ,sx3EDn);
printf("sx3EUp: %f | sx3EDn: %f | sx3EBk: %f | sx3ChUp: %d | sx3ChDn: %d | sx3ChBk: %d\n", sx3EUp, sx3EDn, sx3EBk, sx3ChUp, sx3ChDn, sx3ChBk);
}
}
}
}*/
//else {
//printf("sx3EUp\n");
//}
if (sx3ChUp == 1 && sx3ChDn == 0){
if (sx3ChUp != -1 && sx3ChBk !=-1 && sx3ChDn !=-1) {
if (sx3E_d_matched_01> sx3EUp ) {
//printf("hZd_01_1_dn: %f\n", sx3E_d_matched_01);
//printf("hZd_01_1_b: %f\n", sx3E_fb_matched_01);
hZd_01_1->Fill((2*(sx3E_d_matched_01+(coeff*diff))/sx3E_fb_matched_01)-1);
}
else if(sx3EUp> sx3E_d_matched_01) {
//printf("hZd_01_2_sx3EUp: %f\n",sx3EUp );
//printf("hZd_01_2_sx3EDn: %f\n",sx3E_fb_matched_01);
hZd_01_2->Fill(1-(2*(sx3EUp+(1-coeff)*diff))/sx3E_fb_matched_01);
}
else if(sx3EUp>0.0 && sx3E_d_matched_01>0.0 && sx3E_d_matched_01>=sx3EUp ) {
hZd_01_3->Fill((2*(sx3E_d_matched_01+ coeff*diff)/sx3E_fb_matched_01)-1);
}
else if(sx3EUp>0.0 && sx3E_d_matched_01>0.0 && sx3E_d_matched_01<sx3EUp ) {
hZd_01_4->Fill(1-(2*(sx3EUp+ (1-coeff)*diff)/sx3E_fb_matched_01));
}
}
}
}
for (int j = 0; j < pc.multi; j++) {
if (sx3.ch[index] > 8) {
hsx3VpcE->Fill(sx3.e[i], pc.e[j]);
}
}
}
sx3_contr.CalSX3Pos(sx3ID[0].first, sx3ChUp, sx3ChDn, sx3ChBk, sx3EUp, sx3EDn);
hitPos = sx3_contr.GetHitPos();
HitNonZero = true;
// hitPos.Print();
}
}
// //======================= PC
//########################################################### Track constrcution
//############################## DO THE KINEMATICS
}
return kTRUE;
}
void gainmatch::Terminate(){
}

View File

@ -1,5 +1,5 @@
#ifndef Calibration_h
#define Calibration_h
#ifndef gainmatch_h
#define gainmatch_h
#include <TROOT.h>
#include <TChain.h>
@ -8,7 +8,7 @@
#include "Armory/ClassDet.h"
class Calibration : public TSelector {
class gainmatch : public TSelector {
public :
TTree *fChain; //!pointer to the analyzed TTree or TChain
@ -41,8 +41,8 @@ public :
TBranch *b_pcE; //!
TBranch *b_pcT; //!
Calibration(TTree * /*tree*/ =0) : fChain(0) { }
virtual ~Calibration() { }
gainmatch(TTree * /*tree*/ =0) : fChain(0) { }
virtual ~gainmatch() { }
virtual Int_t Version() const { return 2; }
virtual void Begin(TTree *tree);
virtual void SlaveBegin(TTree *tree);
@ -57,13 +57,13 @@ public :
virtual void SlaveTerminate();
virtual void Terminate();
ClassDef(Calibration,0);
ClassDef(gainmatch,0);
};
#endif
#ifdef Calibration_cxx
void Calibration::Init(TTree *tree){
#ifdef gainmatch_cxx
void gainmatch::Init(TTree *tree){
// Set branch addresses and branch pointers
if (!tree) return;
@ -95,20 +95,20 @@ void Calibration::Init(TTree *tree){
}
Bool_t Calibration::Notify(){
Bool_t gainmatch::Notify(){
return kTRUE;
}
void Calibration::SlaveBegin(TTree * /*tree*/){
void gainmatch::SlaveBegin(TTree * /*tree*/){
TString option = GetOption();
}
void Calibration::SlaveTerminate(){
void gainmatch::SlaveTerminate(){
}
#endif // #ifdef Calibration_cxx
#endif // #ifdef gainmatch_cxx

View File

@ -19,7 +19,6 @@ const std::map<int, unsigned short> board = {
{4, 22129},
{5, 15529},
{6, 15528},
// {7,89},
{7, 334},
{8, 379},
{9, 325},
@ -28,14 +27,13 @@ const std::map<int, unsigned short> board = {
const int nBd = board.size();
const int nV1740 = 7;
const int nV1725 = 4;
const int nV1725 = 3;
//+++++++++++++++++++ detID;
// The detectors are seperated into 2 type: SuperX3, QQQ, and PC
// the SuperX3 has 24 detectors for each kind, wach detector has 12 channels
// the QQQ has 4 detectors for each kind, each detector has 32 channels
// the PC has 2 types, anode and cathode, each has 24 channels
// the MISC has 6 channels, the lollipop IC and siliscon followed by the hotneedle IC, as well as the Rf and MCP
// The detID = Type * 10000 + index * 100 + channel
// fro example, detID(superX3-8, ch-7) = 00807
@ -78,23 +76,17 @@ const std::vector<int> mapping = {
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
//================== 89
// 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// 30004, -1, 30003, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
//================== 334
20116, 20117, 20118, 20119, -1, 20121, 20122, 20123, 20016, 20017, 20018, -1, 20020, 20021, 20022, 20023,
20116, 20117, 20118, 20119, 20120, 20121, 20122, 20123, 20016, 20017, 20018, 20019, 20020, 20021, 20022, 20023,
//================== 379
-1 , 20001, 20002, 20003, 20004, 20005, -1, 20007, 20008, -1, 20010, 20011, 20012, 20013, 20014, 20015,
20000, 20001, 20002, 20003, 20004, 20005, -1, 20007, 20008, -1, 20010, 20011, 20012, 20013, 20014, 20015,
//================== 325
20100, 20101, 20102, 20103, 20104, 20105, 20106, 20107, 20108, 20109, 20110, 20111, 20112, -1, 20114, 20115,
20100, 20101, 20102, 20103, 20104, 20105, 20106, 20107, 20108, 20109, 20110, 20111, 20112, 20113, 20114, 20115,
//================== 405
// 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
20006, -1, 30005, 20009, -1, 20120, 20000, 20019, 20113, 30000, 30004, 30001, 30002, -1, 30003, -1
20006, -1, -1, 20009, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1
};
//MCP moved from channel 1 to 2 after Run number 322
//MCP and Rf moved to ch 0 and 1 after Run number after Run282
//moved back to ch
void PrintMapping(){
int digiID = 0;
@ -149,9 +141,8 @@ void PrintMapping(){
printf("\033[35m%3d(%2d)\033[0m|", detID, ch);
}else if( typeID == 3){ // MISC
}else{
printf("\033[33m%3d(%2d)\033[0m|", detID, ch);
}
}
@ -224,6 +215,7 @@ void GenMapping(std::string mapFile){
detID += 20000;
if( words[3] == "ANODE") detID += atoi(words[4].c_str());
if( words[3] == "CATHODE") detID += 100 + atoi(words[4].c_str());
}
if( words[2] == "blank") {

View File

@ -1,23 +0,0 @@
Histogram Number Slope Intercept
24 1 -2.89219e-10
25 0.942098 -0.105169
26 0.980862 -0.732032
27 0.982975 -2.22704
28 0.978815 -1.51477
29 0.965245 -2.19515
30 0.945384 -0.892599
31 0.977408 -0.908592
32 0.919546 3.25464
33 0.972194 2.44956
34 0.92852 5.44745
35 0.947098 1.40531
36 0.875491 -1.13145
37 1.95496 -1735.58
38 0.970862 2.86019
40 0.91793 -3.80615
41 0.913897 -2.12964
42 0.954014 -0.760604
43 0.993616 -1.40278
45 0.926169 -21.2016
46 1.00577 -2.14281
47 0.943312 -1.26464

View File

@ -1,49 +0,0 @@
Histogram Number Slope Intercept
0 0.931015 -1.35431
1 1 -1.87356e-10
2 0.964185 1.49989
3 0.92638 -1.30621
4 0.905569 1.00834
5 0.901182 0.470903
6 0.853932 3.32687
7 0.942785 1.08887
8 0.878904 -0.0107433
9 0.922662 -2.32259
10 0.903343 8.38332
11 0.914227 6.56108
12 0.961008 23.0982
13 0.920976 5.22104
14 0.936584 31.5073
15 0.959044 5.43267
16 0.95263 -0.404053
17 0.90953 4.82833
18 0.940277 10.3629
19 0.86746 -17.8678
20 1.00683 4.76371
21 0.968342 -43.9496
22 0.892882 -32.0742
23 0.933615 1.10704
24 1 -2.89219e-10
25 0.942098 -0.105169
26 0.980862 -0.732032
27 0.982975 -2.22704
28 0.978815 -1.51477
29 0.965245 -2.19515
30 0.945384 -0.892599
31 0.977408 -0.908592
32 0.919546 3.25464
33 0.972194 2.44956
34 0.92852 5.44745
35 0.947098 1.40531
36 0.875491 -1.13145
37 1 0
38 0.970862 2.86019
39 1 0
40 0.91793 -3.80615
41 0.913897 -2.12964
42 0.954014 -0.760604
43 0.993616 -1.40278
44 1 0
45 0.926169 -21.2016
46 1.00577 -2.14281
47 0.943312 -1.26464

View File

@ -1,21 +0,0 @@
Histogram Number Slope Intercept
1 1 -1.87356e-10
2 0.964185 1.49989
3 0.92638 -1.30621
4 0.905569 1.00834
5 0.901182 0.470903
7 0.942785 1.08887
8 0.878904 -0.0107433
10 0.903343 8.38332
11 0.914227 6.56108
12 0.961008 23.0982
13 0.920976 5.22104
14 0.936584 31.5073
15 0.959044 5.43267
16 0.95263 -0.404053
17 0.90953 4.82833
18 0.940277 10.3629
20 1.00683 4.76371
21 0.968342 -43.9496
22 0.892882 -32.0742
23 0.933615 1.10704

View File

@ -1,12 +0,0 @@
7 0 1.20298
7 1 0.995493
7 2 0.993613
7 3 1.2514
9 0 1.01574
9 1 0.961032
9 2 0.988379
9 3 1.05832
19 0 1.07936
19 1 0.97626
19 2 1.00078
19 3 1.03335

View File

@ -1,8 +0,0 @@
3 0 1 1 0.852399 0.881228
3 0 2 2 0.813845 0.975967
3 0 3 3 0.859643 0.863715
3 1 1 1 0.76728 0.942438
3 1 2 2 0.780302 0.929008
3 2 2 2 0.729082 1.02005
3 3 2 2 0.759098 1.05376
3 3 3 3 0.821183 0.952335