ANASEN_analysis/GainMatchSX3.C

352 lines
11 KiB
C

#define GainMatchSX3_cxx
#include "GainMatchSX3.h"
#include <TH2.h>
#include <TF1.h>
#include <TStyle.h>
#include <TCanvas.h>
#include <TMath.h>
#include <TCutG.h>
#include <fstream>
#include <utility>
#include <algorithm>
#include <TProfile.h>
#include "Armory/ClassSX3.h"
#include "TGraphErrors.h"
#include "TMultiDimFit.h"
#include "TVector3.h"
TH2F *hSX3FvsB;
TH2F *hSX3FvsB_g;
TH2F *hsx3IndexVE;
TH2F *hsx3IndexVE_g;
TH2F *hSX3;
TH2F *hsx3Coin;
int padID = 0;
SX3 sx3_contr;
TCutG *cut;
TCutG *cut1;
std::map<std::tuple<int, int, int, int>, std::vector<std::tuple<double, double, double>>> dataPoints;
void GainMatchSX3::Begin(TTree * /*tree*/)
{
TString option = GetOption();
hSX3FvsB = new TH2F("hSX3FvsB", "SX3 Front vs Back; Front E; Back E", 400, 0, 16000, 400, 0, 16000);
hSX3FvsB_g = new TH2F("hSX3FvsB_g", "SX3 Front vs Back; Front E; Back E", 400, 0, 16000, 400, 0, 16000);
hsx3IndexVE = new TH2F("hsx3IndexVE", "SX3 index vs Energy; sx3 index ; Energy", 24 * 12, 0, 24 * 12, 400, 0, 5000);
hsx3IndexVE_g = new TH2F("hsx3IndexVE_g", "SX3 index vs Energy; sx3 index ; Energy", 24 * 12, 0, 24 * 12, 400, 0, 5000);
hSX3 = new TH2F("hSX3", "SX3 Front v Back; Fronts; Backs", 8, 0, 8, 4, 0, 4);
hsx3Coin = new TH2F("hsx3Coin", "SX3 Coincident", 24 * 12, 0, 24 * 12, 24 * 12, 0, 24 * 12);
sx3_contr.ConstructGeo();
// Load the TCutG object
TFile *cutFile = TFile::Open("sx3cut.root");
if (!cutFile || cutFile->IsZombie())
{
std::cerr << "Error: Could not open sx3cut.root" << std::endl;
return;
}
cut = dynamic_cast<TCutG *>(cutFile->Get("sx3cut"));
if (!cut)
{
std::cerr << "Error: Could not find TCutG named 'sx3cut' in sx3cut.root" << std::endl;
return;
}
cut->SetName("sx3cut"); // Ensure the cut has the correct name
// Load the TCutG object
TFile *cutFile1 = TFile::Open("UvD.root");
if (!cutFile1 || cutFile1->IsZombie())
{
std::cerr << "Error: Could not open UvD.root" << std::endl;
return;
}
cut1 = dynamic_cast<TCutG *>(cutFile1->Get("UvD"));
if (!cut1)
{
std::cerr << "Error: Could not find TCutG named 'UvD' in UvD.root" << std::endl;
return;
}
cut1->SetName("UvD");
}
Bool_t GainMatchSX3::Process(Long64_t entry)
{
b_sx3Multi->GetEntry(entry);
b_sx3ID->GetEntry(entry);
b_sx3Ch->GetEntry(entry);
b_sx3E->GetEntry(entry);
b_sx3T->GetEntry(entry);
b_qqqMulti->GetEntry(entry);
b_qqqID->GetEntry(entry);
b_qqqCh->GetEntry(entry);
b_qqqE->GetEntry(entry);
b_qqqT->GetEntry(entry);
b_pcMulti->GetEntry(entry);
b_pcID->GetEntry(entry);
b_pcCh->GetEntry(entry);
b_pcE->GetEntry(entry);
b_pcT->GetEntry(entry);
sx3.CalIndex();
qqq.CalIndex();
pc.CalIndex();
std::vector<std::pair<int, int>> ID;
for (int i = 0; i < sx3.multi; i++)
{
for (int j = i + 1; j < sx3.multi; j++)
{
if (sx3.id[i] == 3)
hsx3Coin->Fill(sx3.index[i], sx3.index[j]);
}
if (sx3.e[i] > 100)
{
ID.push_back(std::pair<int, int>(sx3.id[i], i));
hsx3IndexVE->Fill(sx3.index[i], sx3.e[i]);
}
}
if (ID.size() > 0)
{
std::sort(ID.begin(), ID.end(), [](const std::pair<int, int> &a, const std::pair<int, int> &b)
{ return a.first < b.first; });
// start with the first entry in the sorted array: channels that belong to the same detector are together in sequenmce
std::vector<std::pair<int, int>> sx3ID;
sx3ID.push_back(ID[0]);
bool found = false;
for (size_t i = 1; i < ID.size(); i++)
{ // Check if id of i belongs to the same detector and then add it to the detector ID vector
if (ID[i].first == sx3ID.back().first)
{ // count the nunmber of hits that belong to the same detector
sx3ID.push_back(ID[i]);
if (sx3ID.size() >= 3)
{
found = true;
}
}
else
{ // the next event does not belong to the same detector, abandon the first event and continue with the next one
if (!found)
{
sx3ID.clear();
sx3ID.push_back(ID[i]);
}
}
}
if (found)
{
int sx3ChUp = -1, sx3ChDn = -1, sx3ChBk = -1;
float sx3EUp = 0.0, sx3EDn = 0.0, sx3EBk = 0.0;
for (size_t i = 0; i < sx3ID.size(); i++)
{
int index = sx3ID[i].second;
// Check the channel number and assign it to the appropriate channel type
if (sx3.ch[index] < 8)
{
if (sx3.ch[index] % 2 == 0)
{
sx3ChDn = sx3.ch[index];
sx3EDn = sx3.e[index];
}
else
{
sx3ChUp = sx3.ch[index];
sx3EUp = sx3.e[index];
}
}
else
{
sx3ChBk = sx3.ch[index] - 8;
// if (sx3ChBk == 2)
// printf("Found back channel Det %d Back %d \n", sx3.id[index], sx3ChBk);
sx3EBk = sx3.e[index];
}
}
// If we have a valid front and back channel, fill the histograms
hSX3->Fill(sx3ChDn, sx3ChBk);
hSX3->Fill(sx3ChUp, sx3ChBk);
// Fill the histogram for the front vs back
hSX3FvsB->Fill(sx3EUp + sx3EDn, sx3EBk);
for (int i = 0; i < sx3.multi; i++)
{
if (sx3.id[i] == 3 && sx3.e[i] > 100)
{
// Fill the histogram for the front vs back with gain correction
hSX3FvsB_g->Fill(sx3EUp + sx3EDn, sx3EBk);
// Fill the index vs energy histogram
hsx3IndexVE_g->Fill(sx3.index[i], sx3.e[i]);
// }
// {
TString histName = Form("hSX3FVB_id%d_U%d_D%d_B%d", sx3.id[i], sx3ChUp, sx3ChDn, sx3ChBk);
TH2F *hist2d = (TH2F *)gDirectory->Get(histName);
if (!hist2d)
{
hist2d = new TH2F(histName, Form("hSX3FVB_id%d_U%d_D%d_B%d", sx3.id[i], sx3ChUp, sx3ChDn, sx3ChBk), 400, 0, 16000, 400, 0, 16000);
}
// if (sx3ChBk == 2)
// printf("Found back channel Det %d Back %d \n", sx3.id[i], sx3ChBk);
// hsx3IndexVE_g->Fill(sx3.index[i], sx3.e[i]);
// hSX3FvsB_g->Fill(sx3EUp + sx3EDn, sx3EBk);
hist2d->Fill(sx3EUp + sx3EDn, sx3EBk);
if (cut && cut->IsInside(sx3EUp + sx3EDn, sx3EBk))
// if (sx3.id[i] < 24 && sx3ChUp < 4 && sx3ChBk < 4 && std::isfinite(sx3EUp) && std::isfinite(sx3EDn) && std::isfinite(sx3EBk))
{
// Accumulate data for gain matching
dataPoints[{sx3.id[i], sx3ChBk, sx3ChUp, sx3ChDn}].emplace_back(sx3EBk, sx3EUp, sx3EDn);
}
}
}
}
}
return kTRUE;
}
void GainMatchSX3::Terminate()
{
const int MAX_DET = 24;
const int MAX_UP = 4;
const int MAX_DOWN = 4;
const int MAX_BK = 4;
double gainArray[MAX_DET][MAX_BK][MAX_UP][MAX_DOWN] = {{{{0}}}};
bool gainValid[MAX_DET][MAX_BK][MAX_UP][MAX_DOWN] = {{{{false}}}};
std::ofstream outFile("sx3_MultiDimFit_results.txt");
if (!outFile.is_open())
{
std::cerr << "Error opening output file!" << std::endl;
return;
}
// === Loop over all (id, bk, up, dn) combinations ===
for (const auto &kv : dataPoints)
{
auto [id, bk, u, d] = kv.first;
const auto &pts = kv.second;
if (pts.size() < 5)
continue;
int N = pts.size();
double *x0 = new double[N];
double *x1 = new double[N];
double *x2 = new double[N];
double *y = new double[N];
int mPowers[] = {1,1,1};
// Fill arrays
for (int i = 0; i < N; ++i)
{
double eBk, eUp, eDn;
std::tie(eBk, eUp, eDn) = pts[i];
x0[i] = eBk;
x1[i] = eUp;
x2[i] = eDn;
y[i] = eUp + eDn; // Target is front sum
}
// Build MultiDim Fit
TMultiDimFit *mdf = new TMultiDimFit(3, TMultiDimFit::kMonomials, "v");
mdf->SetMaxPowers(mPowers); // Up to quadratic terms
mdf->SetMaxTerms(3); // Limit number of terms kept
// Add points
for (int i = 0; i < N; ++i)
{
double vars[3] = {x0[i], x1[i], x2[i]};
mdf->AddRow(vars, y[i]);
}
mdf->MakeHistograms();
mdf->FindParameterization();
mdf->Print("a"); // Print coefficients
mdf->
// Save result string
TString formula;
mdf->GetFunctions(formula);
outFile << id << " " << bk << " " << u << " " << d << " " << formula.Data() << std::endl;
printf("Det %d Bk %d Up %d Dn %d — MultiDimFit formula: %s\n", id, bk, u, d, formula.Data());
gainValid[id][bk][u][d] = true; // Save as "valid" so we can use it
// Clean up
delete[] x0;
delete[] x1;
delete[] x2;
delete[] y;
delete mdf;
}
outFile.close();
std::cout << "MultiDim fits complete.\n";
// === Example histogram after correction ===
TH2F *hFVB = new TH2F("hFVB", "Corrected Up+Dn vs Back;Back E;Corrected Up+Dn E",
400, 0, 16000, 400, 0, 16000);
for (const auto &kv : dataPoints)
{
auto [id, bk, u, d] = kv.first;
if (!gainValid[id][bk][u][d])
continue;
// Recreate the fitted model to evaluate
TMultiDimFit *mdf = new TMultiDimFit(3, TMultiDimFit::kMonomials, "v");
mdf->SetMaxPowers(2);
mdf->SetMaxTerms(10);
// Re-fill points to refit (if needed — or you can serialize coefficients instead)
const auto &pts = kv.second;
for (const auto &pr : pts)
{
double eBk, eUp, eDn;
std::tie(eBk, eUp, eDn) = pr;
double vars[3] = {eBk, eUp, eDn};
double y = eUp + eDn;
mdf->AddRow(vars, y);
}
mdf->FindParameterization();
// Fill histogram with corrected "front" from model
for (const auto &pr : kv.second)
{
double eBk, eUp, eDn;
std::tie(eBk, eUp, eDn) = pr;
double vars[3] = {eBk, eUp, eDn};
double correctedFront = mdf->Eval(vars);
if (eBk == 0 || correctedFront == 0)
continue;
hFVB->Fill(eBk, correctedFront);
}
delete mdf;
}
// Save histogram if needed
// TFile *outHist = new TFile("sx3_multidimfit_hists.root", "RECREATE");
// hFVB->Write();
// outHist->Close();
}