SOLARIS_Analysis/WebSimHelper/heliosmatics.js

1160 lines
30 KiB
JavaScript

function addRow() {
let table = document.getElementById("ExTable");
let nRow = table.rows.length;
let row = table.insertRow(nRow-1);
let energy = Math.random()*Math.min(heavy[4], heavy[5], heavy[6]);
let angle = Math.floor(Math.random() * 30) + 10;
row.innerHTML = '<td><input type="text" name="Ex" size="8" value=\"' + energy.toFixed(3) + '\" id=\"Ex' + (nRow-1) + '\" enterkeyhint=\"done\"/></td> \
<td><input type="text" name="thetaCM" size="8" value=\"' + angle + '\" id=\"theta' + (nRow-1) + '\" enterkeyhint=\"done\"/></td> \
<td></td> \
<td></td> \
<td></td> \
<td></td> \
<td></td> \
<td></td> \
<td></td> \
<td></td> \
<td></td> \
<td></td>';
CalculateEZ();
CalculateRZ();
//let table2 = document.getElementById("DWBATable");
//row = table2.insertRow(nRow-1);
//row.innerHTML = '<td id=\"dwba' + (nRow-1) + '\">' + (nRow-2) + '</td> \
// <td><input type="text" name="Jpi" size="5" value="3/2+" enterkeyhint="done"/></td> \
// <td><input type="text" name="Orb" size="5" value="0d3/2" enterkeyhint="done"/></td>';
}
function deleteRow(){
let table = document.getElementById("ExTable");
let nRow = table.rows.length;
if ( nRow > 3){
table.deleteRow(nRow-2);
}
CalculateEZ();
CalculateRZ();
//let table2 = document.getElementById("DWBATable");
//if ( nRow > 3){
// table2.deleteRow(nRow-2);
//}
}
let beam = []; //A, Z, Mass, Name, Sn, Sp, Sa
let beamMass;
let yield;
let target= [];
let light=[];
let heavy=[]; //A, Z, Mass, Name, Sn, Sp, Sa
let beamEx;
let BField;
let KEA;
let KE;
let reactionName;
let Qvalue;
let minKEA;
let perpDistant = 11.5; //mm, detector prepdicular distance
let bore = 462.0; // mm
let arrayLen = 50 * 10 + 2 * 9 // SOLARIS
let detLen = 50; // SOLARIS
let nDet = 10; // SOLARIS
let detGap = 2; // SOLARIS
let pos = []; //1D array, store the 1st pos of detector
let arrayPos = []; // 2D array, store {tip, toe} of each detector
const c = 299.792468; // mm/ns
let beam_k_lab;
let E_tot_cm ;
let KE_cm ;
let max_Ex ;
let beta ;
let gamma ;
let ez_slope ; // MeV/mm
let alpha ;
let alpha_B ;
let xList =[]; // for E-Z plot
let yList =[]; // for E-Z plot
let ExList = [];
let Zb0List = [];
let rhoList = [];
let ZB0List = [];
let rhoBList = [];
let xRange ;
let yRange = [0, 12];
let zList = []; // for R-Z plot
let rbList = []; // for R-Z plot
let rBList = []; // for R-Z plot
let color = ['rgb(31,119,180)', // muted blue
'rgb(255,127,14)', // safety orange
'rgb(44,160,44)', // cooked asparagus green
'rgb(214,39,40)', // brick red
'rgb(148,103,189)', // muted purple
'rgb(140,86,75)', // chestnut brown
'rgb(277,119,194)', // raspberry yogurt pink
'rgb(127,127,127)', // middle gray
'rgb(118,189,34)', // curry yellow-green
'rgb(23,190,207)']; // blue-teal
function GetYield(A,Z){
// let str = 'beamRate.py?A=' + A + '&Z=' + Z;
// let client = new XMLHttpRequest();
// client.onreadystatechange = function() {
// let haha = client.responseText.split(",");
// yield = haha[0]
// }
// client.open('GET', str, false);
// client.send();
// FRIB blocking the request....:(
}
function GetMassFromSym(AZ, id){
let str = 'massProxy.py?ASym=' + AZ;
let client = new XMLHttpRequest();
client.onreadystatechange = function() {
let mass = client.responseText.split(",");
if( id == 0 ){
beam[0] = parseInt(mass[0]);
beam[1] = parseInt(mass[1]);
beam[2] = parseFloat(mass[2]);
beam[3] = AZ;
beam[4] = parseFloat(mass[4]);
beam[5] = parseFloat(mass[5]);
beam[6] = parseFloat(mass[6]);
GetYield(beam[0], beam[1]);
}
if( id == 1 ){
target[0] = parseInt(mass[0]);
target[1] = parseInt(mass[1]);
target[2] = parseFloat(mass[2]);
target[3] = AZ;
}
if( id == 2 ){
light[0] = parseInt(mass[0]);
light[1] = parseInt(mass[1]);
light[2] = parseFloat(mass[2]);
light[3] = AZ;
}
}
client.open('GET', str, false);
client.send();
}
function GetMassFromAZ(A,Z){
let str = 'massProxy.py?A=' + A + '&Z=' + Z;
let client = new XMLHttpRequest();
client.onreadystatechange = function() {
let mass = client.responseText.split(",");
heavy[2] = parseFloat(mass[2]);
heavy[3] = mass[3]?.trim();
heavy[4] = parseFloat(mass[4]);
heavy[5] = parseFloat(mass[5]);
heavy[6] = parseFloat(mass[6]);
}
client.open('GET', str, false);
client.send();
}
function GetMass(){
GetMassFromSym(document.getElementById('beam').value, 0);
GetMassFromSym(document.getElementById('target').value, 1);
GetMassFromSym(document.getElementById('light').value, 2);
// console.log(beam);
// console.log(target);
// console.log(light);
beamMass = beam[2];
heavy[0] = beam[0]+target[0]-light[0];
heavy[1] = beam[1]+target[1]-light[1];
GetMassFromAZ(heavy[0], heavy[1]);
// console.log( heavy);
document.getElementById('heavyName').innerHTML = heavy[3];
document.getElementById('heavySp').innerHTML = 'Sn: ' + heavy[4] + ' MeV, Sp: ' + heavy[5] + ' MeV, Sa : ' + heavy[6] + ' MeV';
//document.getElementById('beamSp').innerHTML = "haah";
//document.getElementById('beamYield').innerHTML = "FRIB ultimate yield : " + yield + " pps";
//document.getElementById('n0').innerHTML = beam[0] + "," + beam[1] + "," + beam[2]
//document.getElementById('n1').innerHTML = target[0] + "," + target[1] + "," + target[2]
//document.getElementById('n2').innerHTML = light[0] + "," + light[1] + "," + light[2]
//document.getElementById('n3').innerHTML = heavy[0] + "," + heavy[1] + "," + heavy[2]
}
function CalConstants(){
beamEx = parseFloat(document.getElementById('beamEx').value);
beam[2] = beamMass + beamEx;
BField = parseFloat(document.getElementById('BField').value);
KEA = document.getElementById('KEA').value;
KE = KEA * beam[0];
reactionName = beam[3] +"(" + target[3] + "," + light[3] + ")" + heavy[3] + "@" + KEA + "MeV/u, " + BField.toFixed(2) + " T";
Qvalue = - heavy[2] - light[2] + beam[2] + target[2] ;
minKEA = (Math.pow(light[2] + heavy[2],2) - Math.pow(beam[2] + target[2],2))/2/target[2]/beam[0];
document.getElementById('reactionName').innerHTML = reactionName;
document.getElementById('minKEA').innerHTML = "min Beam Energy: " + minKEA.toFixed(3) + " MeV/u";
document.getElementById('Q-value').innerHTML = Qvalue.toFixed(3);
beam_k_lab = Math.sqrt(Math.pow(beam[2] + KE,2) - Math.pow(beam[2],2));
E_tot_cm = Math.sqrt(Math.pow(target[2] + beam[2],2) + 2*target[2]*KE);
KE_cm = E_tot_cm - beam[2] - target[2];
max_Ex = KE_cm + Qvalue;
beta = beam_k_lab/(beam[2] + target[2] + KE);
gamma = 1./Math.sqrt(1-beta*beta);
ez_slope = Math.abs(BField) * c * light[1]*beta/2/Math.PI/1000; // MeV/mm
alpha = ez_slope/beta;
//alpha_B = alpha * heavy[1]/light[1];
alpha_B = Math.abs(BField) * c * heavy[1]*beta/2/Math.PI/1000 / beta;
}
function CalArrayPos(){
let helios = document.getElementById('HELIOS').checked;
let haha = parseFloat(document.getElementById('posArray').value);
arrayPos = [];
for( let i = 0; i < nDet; i++){
let kaka = [];
if( helios == true ){
if( haha < 0 ){
kaka.push(haha - pos[i] - detLen );
kaka.push(haha - pos[i]);
}else{
kaka.push(haha + pos[i] );
kaka.push(haha + pos[i] + detLen );
}
}else{
if( haha < 0 ){
kaka.push(haha - (i+1) * detLen - i * detGap);
kaka.push(haha - (i) * detLen - i * detGap);
}else{
kaka.push(haha + (i) * detLen + i * detGap);
kaka.push(haha + (i+1) * detLen + i * detGap);
}
}
arrayPos.push(kaka);
}
}
function SetSSType(){
let helios = document.getElementById('HELIOS').checked;
let solaris = document.getElementById('SOLARIS').checked;
let iss = document.getElementById('ISS').checked;
if ( helios == true ) {
perpDistant = 11.5;
detGap = 5;
detLen = 50;
nDet = 6;
pos = [];
pos.push(.0);
pos.push(58.6);
pos.push(117.9);
pos.push(176.8);
pos.push(235.8);
pos.push(294.0);
}
if ( solaris == true ) {
perpDistant = 11.5;
detGap = 5;
detLen = 50;
nDet = 10;
}
if ( iss == true ) {
perpDistant = 28.75;
detGap = 0.5;
detLen = 125;
nDet = 4;
}
arrayLen = detLen * nDet + detGap * (nDet-1);
if( helios ) arrayLen = pos[5] + detLen;
CalArrayPos();
//document.getElementById('n1').innerHTML = perpDistant;
}
function CalculateEZ(){
let tableEx = document.getElementById("ExTable");
let nRow = tableEx.rows.length;
xList = [];
yList = [];
ExList = [];
Zb0List = [];
rhoList = [];
ZB0List = [];
rhoBList = [];
//alert("CalculateEZ called, nRow = " + nRow);
for( let i = 1; i < nRow-1; i++){
let Ex = parseFloat(document.getElementById("Ex" + i).value);
let theta = parseFloat(document.getElementById("theta" + i).value);
ExList.push(Ex);
//alert( i, ", Ex : " + Ex);
let haha1 = E_tot_cm*E_tot_cm - Math.pow(heavy[2] + Ex + light[2],2);
let haha2 = E_tot_cm*E_tot_cm - Math.pow(heavy[2] + Ex - light[2],2);
let k_cm = Math.sqrt(haha1*haha2)/2/E_tot_cm;
let cs = Math.cos(theta*Math.PI/180.);
let ss = Math.sin(theta*Math.PI/180.);
let qb = Math.sqrt(light[2]*light[2]+k_cm*k_cm);
let Eb = gamma * qb - gamma * beta * k_cm * cs - light[2];
let Zb0 = (gamma*beta* qb - gamma * k_cm * cs )/alpha; //mm
Zb0List.push(Zb0);
let rho = k_cm * ss/c/light[1]/Math.abs(BField) * 1000; // mm
rhoList.push(rho);
let Zb = Zb0 * (1- Math.asin(perpDistant/rho/2)/Math.PI);
let thetaLab = 180 - Math.atan2(k_cm * ss, gamma * (beta * qb - k_cm * cs)) * 180/Math.PI;
let Tcyc = (light[2] + Eb)/alpha/c;
tableEx.rows[i].cells[2].innerHTML = Eb.toFixed(3);
tableEx.rows[i].cells[3].innerHTML = Zb0.toFixed(1);
tableEx.rows[i].cells[4].innerHTML = Zb.toFixed(1);
tableEx.rows[i].cells[5].innerHTML = (2*rho).toFixed(1);
tableEx.rows[i].cells[6].innerHTML = thetaLab.toFixed(2);
tableEx.rows[i].cells[7].innerHTML = Tcyc.toFixed(2);
let qB = Math.sqrt(heavy[2]*heavy[2]+k_cm*k_cm);
let EB = gamma * qB + gamma * beta * k_cm * cs - heavy[2];
let thetaLab_B = Math.atan2(-k_cm * ss, gamma * (beta * qB + k_cm * cs)) * 180/Math.PI;
let ZB0 = (gamma*beta* qB + gamma * k_cm * cs )/alpha_B; //mm
let rhoB = k_cm * ss/c/heavy[1]/Math.abs(BField) * 1000; // mm
ZB0List.push(ZB0);
rhoBList.push(rhoB);
tableEx.rows[i].cells[8].innerHTML = EB.toFixed(3);
tableEx.rows[i].cells[9].innerHTML = thetaLab_B.toFixed(2);
tableEx.rows[i].cells[10].innerHTML = (ZB0/2).toFixed(2);
tableEx.rows[i].cells[11].innerHTML = (2*rhoB).toFixed(2);
let xxx = [];
let yyy = [];
for( let j = 0; j < 100 ; j++){
let thetaCM = Math.PI/Math.log10(100) * Math.log10(100/(100-j)) ;
let temp = Math.PI * ez_slope / beta / k_cm * perpDistant / Math.sin(thetaCM); // perpDistant / 2/ rho(thetaCM)
if( !isFinite(temp) ) continue;
let pxTemp = 1. /alpha * (gamma * beta * qb - gamma * k_cm * Math.cos(thetaCM)) * (1 - Math.asin(temp)/Math.PI) ;
let pyTemp = gamma * qb - light[2] - gamma * beta * k_cm * Math.cos(thetaCM);
if( !isNaN(pxTemp) && !isNaN(pyTemp) ){
xxx.push(pxTemp);
yyy.push(pyTemp);
}
};
xList.push(xxx);
yList.push(yyy);
};
PlotEZ();
AdjustRangeEZ();
}
function PlotEZ(){
SetSSType();
Plotly.purge("Plot_EZ");
let nEx = xList.length;
let data = [];
for( let i = 0; i < nEx; i++){
let kaka = color[i%10];
let newData = {
x : xList[i],
y : yList[i],
mode:"lines",
type:"scatter",
name:"Ex="+ExList[i],
marker : { color : kaka}
}
data.push(newData);
}
let haha = parseFloat(document.getElementById('posArrayRange').value);
let xStart = (haha < 0 ? haha - arrayLen - 100 : haha - 100);
let xEnd = (haha < 0 ? haha + 100: haha + arrayLen + 100);
xRange = [xStart, xEnd];
//document.getElementById('n0').innerHTML = xRange;
let haha2 = parseFloat(document.getElementById('eRangeSlider').value);
yRange = [0, haha2];
let layout = {
xaxis: {range: xRange, title: { text : "Z [mm]", standoff : 1}, mirror : "allticks", linewidth : "1"},
yaxis: {range: yRange, title: "Energy [MeV]" , mirror : "allticks", linewidth : "1"},
title: reactionName,
dragmode : "pan",
margin: { l: 40, r: 40, b : 60, t : 40},
legend: {yanchor:"top", xanchor:"left", x:"0.01",y:"0.99" }
};
Plotly.newPlot( "Plot_EZ", data, layout, {responsive: true});
PlotThetaCMLine(document.getElementById('thetaCM').value);
PlotBore();
PlotRZ();
}
function PlotThetaCMLine(thetaCM){
let cs = Math.cos(thetaCM * Math.PI /180);
let ss = Math.sin(thetaCM * Math.PI /180);
let zzList = [];
let eList = [];
for( let z = -2000; z < 2000; z+=30){
zzList.push(z);
let kaka = Math.pow(gamma * ss,2);
let a1 = light[2]*light[2]*(1-kaka);
let haha = (cs*Math.sqrt(alpha*alpha*z*z + a1) - kaka * ez_slope * z)/(1-kaka)- light[2];
eList.push(haha);
}
Plotly.addTraces("Plot_EZ", {x : zzList,
y: eList,
name:"thetaCM=" + thetaCM ,
marker : { color : 'rgb(100,100,100)'},
line : {dash : 'solid', width : 1 }
}
, 0);
}
function PlotBore(){
let zzList = [];
let eList = [];
for( let z = -2000; z < 2000; z+=30){
zzList.push(z);
let haha = Math.sqrt((z*z+Math.PI*Math.PI*bore*bore)*alpha*alpha + light[2]*light[2]) - light[2];
eList.push(haha);
}
Plotly.addTraces("Plot_EZ", {x : zzList, y: eList, name:"Bore", marker : { color : 'rgb(200,200, 200)'} }, 0);
}
function CalculateRZ(){
// this rquire ZB0List and rhoBList from CalculateEZ();
zList = [];
rbList = [];
rBList = [];
for( let z = -2000; z < 4000; z += 2 ) zList.push(z);
// cal the heavy recoil first
for( let i = 0; i < ZB0List.length; i++){
let rrr = []
for( let j = 0; j < zList.length; j++){
if( zList[j] < 0 ){
rrr.push(NaN);
}else{
rrr.push(2*rhoBList[i] *Math.abs( Math.sin(zList[j] * Math.PI / ZB0List[i])));
}
}
rBList.push(rrr);
}
// cal the light recoil first
for( let i = 0; i < Zb0List.length; i++){
let rrr = []
for( let j = 0; j < zList.length; j++){
if( target[0] > light[0] ){
if( zList[j] > 0 ){
rrr.push(NaN);
}else{
rrr.push(2*rhoList[i] *Math.abs( Math.sin(zList[j] * Math.PI / Zb0List[i])));
}
}else{
if( zList[j] < 0 ){
rrr.push(NaN);
}else{
rrr.push(2*rhoList[i] *Math.abs( Math.sin(zList[j] * Math.PI / Zb0List[i])));
}
}
}
rbList.push(rrr);
}
PlotRZ();
AdjustRecoilPos();
}
function PlotRZ(){
Plotly.purge("Plot_RZ");
let data = [];
let nEx = ExList.length;
for(let i = 0 ; i < nEx; i++ ){
let kaka = color[i%10];
let newData = {
x : zList,
y : rBList[i],
mode : "lines",
type : "scatter",
name : "Ex="+ExList[i] + ",theta=" + document.getElementById('theta'+(i+1)).value,
marker : { color : kaka}
}
data.push(newData);
}
for(let i = 0 ; i < nEx; i++ ){
let kaka = color[i%10];
let newData = {
x : zList,
y : rbList[i],
mode : "lines",
line : {dash : 'dashdot', width : 1 },
type : "scatter",
name : "Ex="+ExList[i] + ",theta=" + document.getElementById('theta'+(i+1)).value,
marker : { color : kaka}
}
data.push(newData);
}
let xxx = [parseInt(document.getElementById('zRange1').value), parseInt(document.getElementById('zRange2').value)];
let yyy = [0, parseInt(document.getElementById('rRange').value)];
let layout = {
xaxis: {range: xxx, title: { text : "Z [mm]", standoff : 1}, mirror : "allticks", linewidth : "1"},
yaxis: {range: yyy, title: "R [mm]" , mirror : "allticks", linewidth : "1"},
title: reactionName,
showlegend : true,
dragmode : "pan",
margin: { l: 40, r: 40, b : 60, t : 40},
legend: { yanchor:"top", xanchor:"left", x:"0.01",y:"0.99"}
};
Plotly.newPlot( "Plot_RZ", data, layout, {responsive: true});
}
function CalZ(theta, k_cm, qb){
let cs = Math.cos(theta*Math.PI/180.);
let ss = Math.sin(theta*Math.PI/180.);
let Zb0 = (gamma*beta* qb - gamma * k_cm * cs )/alpha; //mm
let rho = k_cm * ss / c/ light[1]/ Math.abs(BField) * 1000; // mm
return Zb0 * ( 1 - Math.sin( perpDistant/2/rho ) / Math.PI );
}
function SearchThetaCM(Z, thetaMin, k_cm, qb){
let step = 0.01;
for( let yy = thetaMin; yy < 180; yy += step){
if( yy > 12 ) step = 0.1;
if( yy > 20 ) step = 0.5;
if( yy > 40 ) step = 1.0;
let z1 = CalZ(yy, k_cm, qb);
let z2 = CalZ(yy+step, k_cm, qb);
//console.log(Z, ", ", yy.toFixed(3), ", ", z1.toFixed(3), ", ", z2.toFixed(3), ", ", (z2-z1).toFixed(3) );
if( z1 > z2 ){ /// in the bending range
continue;
}else{
if( Z < z1 ){
// return yy;
break;
}
if( z1<= Z && Z <= z2 ){ // do a linear approximation
return (Z-z1)/(z2-z1)*step + yy;
}
}
}
return NaN;
}
function CalThetaCM(){
let ex = parseFloat(document.getElementById('Ex0').value);
let angGate = parseFloat(document.getElementById('thetaCMGate').value);
let xGate = parseFloat(document.getElementById('XGate').value);
SetSSType();
let haha1 = E_tot_cm*E_tot_cm - Math.pow(heavy[2] + ex + light[2],2);
let haha2 = E_tot_cm*E_tot_cm - Math.pow(heavy[2] + ex - light[2],2);
let k_cm = Math.sqrt(haha1*haha2)/2/E_tot_cm;
let qb = Math.sqrt(light[2]*light[2]+k_cm*k_cm);
let table = document.getElementById('thetaCMTable');
let nRow = table.rows.length;
if( nRow > 1 ){
for( let i = nRow-1; i > 0; i -- ){
table.deleteRow(i);
}
}
for( let i = 0; i < arrayPos.length; i++){
let row = table.insertRow(i+1);
row.insertCell().innerHTML = i;
let p1 = (arrayPos[i][0] + detLen * (100. - xGate)/200.);
let p2 = (arrayPos[i][1] - detLen * (100. - xGate)/200.);
row.insertCell().innerHTML = arrayPos[i][0].toFixed(1) + "(" + p1.toFixed(1) + ")";
row.insertCell().innerHTML = arrayPos[i][1].toFixed(1) + "(" + p2.toFixed(1) + ")";
///Search thetaCM for Z
let a1 = SearchThetaCM(p1, angGate, k_cm, qb);
let a2 = SearchThetaCM(p2, angGate, k_cm, qb);
row.insertCell().innerHTML = a1.toFixed(2);
row.insertCell().innerHTML = a2.toFixed(2);
let am = (a2+a1)/2;
let da = Math.abs(a2-a1);
row.insertCell().innerHTML = am.toFixed(2);
row.insertCell().innerHTML = da.toFixed(2);
row.insertCell().innerHTML = (Math.sin(am*Math.PI/180) * da * Math.PI/180).toExponential(2);
}
}
document.getElementById('beam').addEventListener('keypress',
function(e){
if(e.keyCode == 13){
GetMass();
CalConstants();
}
}, false
);
document.getElementById('beamEx').addEventListener('keypress',
function(e){
if(e.keyCode == 13){
CalConstants();
}
}, false
);
document.getElementById('target').addEventListener('keypress',
function(e){
if(e.keyCode == 13){
GetMass();
CalConstants();
}
}, false
);
document.getElementById('light').addEventListener('keypress',
function(e){
if(e.keyCode == 13){
GetMass();
CalConstants();
}
}, false
);
document.getElementById('BField').addEventListener('keypress',
function(e){
//document.getElementById('n0').innerHTML = e.keyCode;
if(e.keyCode == 13){
document.getElementById('BRange').value = this.value;
CalConstants();
CalculateEZ();
CalculateRZ();
CalThetaCM();
}
}, false
);
document.getElementById('BRange').oninput = function(){
document.getElementById('BField').value = this.value;
CalConstants();
CalculateEZ();
CalculateRZ();
AdjustRangeEZ();
CalThetaCM();
}
document.getElementById('KEA').addEventListener('keypress',
function(e){
if(e.keyCode == 13){
document.getElementById('KEARange').value = this.value;
CalConstants();
CalculateEZ();
CalculateRZ();
CalThetaCM();
}
}, false
);
document.getElementById('KEARange').oninput = function(){
document.getElementById('KEA').value = this.value;
CalConstants();
CalculateEZ();
CalculateRZ();
CalThetaCM();
}
document.getElementById('thetaCM').addEventListener('keypress',
function(e){
if(e.keyCode == 13){
document.getElementById('thetaCMRange').value = this.value;
CalConstants();
CalculateEZ();
AdjustRecoilPos();
}
}, false
);
document.getElementById('thetaCMRange').oninput = function(){
document.getElementById('thetaCM').value = this.value;
CalConstants();
CalculateEZ();
AdjustRecoilPos();
}
function AdjustRangeEZ(){
let haha = parseFloat(document.getElementById('posArray').value);
let xStart = (haha < 0 ? haha - arrayLen - 100 : haha - 100);
let xEnd = (haha < 0 ? haha + 100: haha + arrayLen + 100);
SetSSType();
xRange = [xStart, xEnd];
yRange = [0, parseFloat(document.getElementById('eRangeSlider').value)];
//document.getElementById('n0').innerHTML = pos;
//document.getElementById('n2').innerHTML = arrayLen;
//document.getElementById('n1').innerHTML = xRange;
let shapeArray = [];
for( let i = 0; i < nDet; i++){
let newBlock = {
type: 'rect',
xref: 'x',
yref: 'paper',
x0 : arrayPos[i][0],
x1 : arrayPos[i][1],
y0 : 0,
y1 : 1,
fillcolor : '#9999FF',
opacity : 0.1,
line : { width : 0} }
shapeArray.push(newBlock);
}
let update = {
'xaxis.range' : xRange,
'yaxis.range' : yRange,
'shapes' : shapeArray
}
Plotly.relayout("Plot_EZ", update);
}
document.getElementById('posArray').addEventListener('keypress',
function(e){
if(e.keyCode == 13){
document.getElementById('posArrayRange').value = this.value;
AdjustRangeEZ();
AdjustRecoilPos();
CalThetaCM();
}
}, false
);
document.getElementById('posArrayRange').oninput = function(){
document.getElementById('posArray').value = this.value;
AdjustRangeEZ();
AdjustRecoilPos();
CalThetaCM();
}
function AdjustRecoilPos(){
let pos1 = parseInt(document.getElementById('posRecoil').value);
let pos2 = pos1+10;
let radius1 = parseInt(document.getElementById('innerRecoil').value);
let radius2 = parseInt(document.getElementById('outterRecoil').value);
//document.getElementById('n0').innerHTML = pos1;
let shapeRecoil = {
type: 'rect',
xref: 'x',
yref: 'y',
x0 : pos1,
x1 : pos2,
y0 : radius1,
y1 : radius2,
fillcolor : '#FF0000',
opacity : 0.4,
line : { width : 0}
};
let totalShape = [];
for( let i = 0; i < nDet; i++){
let newhaha = {
type: 'rect',
xref: 'x',
yref: 'y',
x0 : arrayPos[i][0],
x1 : arrayPos[i][1],
y0 : 0,
y1 : perpDistant,
fillcolor : '#9999FF',
opacity : 0.1,
line : { width : 0} };
totalShape.push(newhaha);
}
totalShape.push(shapeRecoil);
let update = {
'shapes' : totalShape
}
Plotly.relayout("Plot_RZ", update);
}
document.getElementById('posRecoil').addEventListener('keypress',
function(e){
if(e.keyCode == 13){
document.getElementById('posRecoilRange').value = this.value;
AdjustRecoilPos();
}
}, false
);
document.getElementById('posRecoilRange').oninput = function(){
document.getElementById('posRecoil').value = this.value;
AdjustRecoilPos();
}
document.getElementById('innerRecoil').addEventListener('keypress',
function(e){
if(e.keyCode == 13){
AdjustRecoilPos();
}
}, false
);
document.getElementById('outterRecoil').addEventListener('keypress',
function(e){
if(e.keyCode == 13){
AdjustRecoilPos();
}
}, false
);
function AdjustRangeRZ(){
let zmin = parseInt(document.getElementById('zRange1').value);
let zmax = parseInt(document.getElementById('zRange2').value);
let rmax = parseInt(document.getElementById('rRange').value);
let update = {
'xaxis.range' : [zmin, zmax],
'yaxis.range' : [0, rmax]
}
Plotly.relayout("Plot_RZ", update);
}
document.getElementById('zRange1').addEventListener('keypress',
function(e){
if(e.keyCode == 13){
document.getElementById('zRange1Slider').value = this.value;
AdjustRangeRZ();
}
}, false
);
document.getElementById('zRange1Slider').oninput = function(){
document.getElementById('zRange1').value = this.value;
AdjustRangeRZ();
}
document.getElementById('zRange2').addEventListener('keypress',
function(e){
if(e.keyCode == 13){
document.getElementById('zRange2Slider').value = this.value;
AdjustRangeRZ();
}
}, false
);
document.getElementById('zRange2Slider').oninput = function(){
document.getElementById('zRange2').value = this.value;
AdjustRangeRZ();
}
document.getElementById('rRange').addEventListener('keypress',
function(e){
if(e.keyCode == 13){
let rrrr = parseInt(this.value);
if ( rrrr < 1 ){
document.getElementById('rRange').value = 1;
rrrr = 1;
}
document.getElementById('rRangeSlider').value = rrrr;
AdjustRangeRZ();
}
}, false
);
document.getElementById('rRangeSlider').oninput = function(){
document.getElementById('rRange').value = this.value;
AdjustRangeRZ();
}
document.getElementById('eRange').addEventListener('keypress',
function(e){
if(e.keyCode == 13){
let rrrr = parseInt(this.value);
if ( rrrr < 1 ){
document.getElementById('eRange').value = 1;
rrrr = 1;
}
document.getElementById('eRangeSlider').value = rrrr;
AdjustRangeEZ();
}
}, false
);
document.getElementById('eRangeSlider').oninput = function(){
document.getElementById('eRange').value = this.value;
AdjustRangeEZ();
}
window.logMeThis = function(){
SetSSType();
CalculateEZ();
CalculateRZ();
}
let FuncEx = window.logMeThis.bind(null, "Ex");
window.addEventListener('keypress', FuncEx);
let FuncThetaCM = window.logMeThis.bind(null, "thetaCM");
window.addEventListener('keypress', FuncThetaCM);
window.checkSSType = function(){
SetSSType();
CalculateEZ();
CalThetaCM();
CalculateRZ();
}
let FuncCheckSSType = window.checkSSType.bind(null, "SSType");
document.getElementById('HELIOS').addEventListener('click', FuncCheckSSType);
document.getElementById('SOLARIS').addEventListener('click', FuncCheckSSType);
document.getElementById('ISS').addEventListener('click', FuncCheckSSType);
document.getElementById('Ex0').addEventListener('keypress',
function(e){
if(e.keyCode == 13){
CalThetaCM();
}
}, false
);
document.getElementById('thetaCMGate').addEventListener('keypress',
function(e){
if(e.keyCode == 13){
CalThetaCM();
}
}, false
);
document.getElementById('XGate').addEventListener('keypress',
function(e){
if(e.keyCode == 13){
CalThetaCM();
}
}, false
);
function HalfCylinder(r, y, d, up){
let a = [];
let b = [];
let c = [];
let nStep = 60;
let step = 2*r/nStep;
for( let i = 0; i <= nStep ; i++){
let x = -r + i * step;
a.push(x);
c.push(Math.sqrt(r*r - x*x) * up);
b.push(y);
}
for( let i = 0; i <= nStep; i ++){
let x = r - i * step;
a.push(x);
c.push(Math.sqrt(r*r - x*x) * up);
b.push(y+d);
}
let haha = [];
haha.push(a);
haha.push(b);
haha.push(c);
return haha;
}
function detMesh(startPos, phi){
let aaa = 110; // prepdist
let len = 500; // detLen
let www = 100; //det width
let a =[];
let b =[];
let c =[];
let cs = Math.cos(phi * Math.PI / 180);
let ss = Math.sin(phi * Math.PI / 180);
let A0 = aaa * cs - www / 2 * ss;
let A1 = aaa * ss + www / 2 * cs;
let B0 = aaa * cs + www / 2 * ss;
let B1 = aaa * ss - www / 2 * cs;
a.push(A0); b.push(A1); c.push(startPos);
a.push(B0); b.push(B1); c.push(startPos);
a.push(B0); b.push(B1); c.push(startPos + len);
a.push(A0); b.push(A1); c.push(startPos + len);
let haha = [];
haha.push(a);
haha.push(b);
haha.push(c);
return haha;
}
function Helix(theta, phi, rho, sign, nCyc){
// sign = B-field
// nCyc < 0 = updatream
let a = [];
let b = [];
let c = [];
let deg = Math.PI/180;
let nStep = 100;
let ts = Math.tan(theta * deg);
let zRange = nCyc * rho/ts * Math.PI * 2;
let zStep = zRange/nStep;
for( let i = 0; i < nStep; i++){
let zzz;
zzz = i * zStep;
b.push(zzz);
a.push( rho * ( Math.sin( ts * zzz / rho - phi * deg ) + Math.sin(phi * deg) ) );
c.push( rho * sign * (Math.cos( ts * zzz / rho - phi * deg ) - Math.cos(phi * deg)) );
}
let haha = [];
haha.push(a);
haha.push(b);
haha.push(c);
return haha;
}
function Plot3D(){
let u1 = HalfCylinder(bore, -1000, 2500., 1);
let d1 = HalfCylinder(bore, -1000, 2500., -1);
let line1 = Helix(40, 0, 80, -1, -1);
let line2 = Helix(2, 180, 10, -1, 0.5);
let data = [
{type : 'mesh3d', x : u1[0], y : u1[1], z : u1[2], hoverinfo: 'none', opacity : 0.2, color : "#DDDDDD"}
,{type : 'mesh3d', x : d1[0], y : d1[1], z : d1[2], hoverinfo: 'none', opacity : 0.2, color : "#DDDDDD"}
,{type : 'scatter3d', mode : 'lines', x : line1[0], y : line1[1], z : line1[2], name : "haha"}
,{type : 'scatter3d', mode : 'lines', x : line2[0], y : line2[1], z : line2[2], name : "kaka"}
];
/*
let data = [];
for( let i = 0; i < 1; i++){
let haha = detMesh(-200, 360/6*i + 90);
console.log(haha[0], "| ", haha[1], "| ", haha[2]);
data.push(
{type : 'mesh3d', x : haha[0], y : haha[1], z : haha[2], hoverinfo: 'none', opacity : 1.0, color : "#FF0000"}
);
}*/
let layout = {
aspectmode: 'manual',
aspectratio:{ x : 0.5, y : 0.5, z : 2.5 },
margin: { l: 40, r: 40, b : 60, t : 40},
};
Plotly.newPlot('Plot_3D', data, layout);
}
GetMass();
CalConstants();
SetSSType();
CalculateEZ();
CalculateRZ();
AdjustRecoilPos();
CalThetaCM();
//Plot3D();